S J P N Trust's
 Hirasugar Institute of Technology, Nidasoshi

Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE \& ME

Department of Electrical \& Electronics Engineering

Electronics Laboratory

Manual
18EEL38

Lab Incharge

Prof. A. U. Neshti \& Prof. S. S. Birade

Lab Instructor

Shri. V. M. Mutalik

Department of Electrical \& Electronics Engineering

VISION

To be the centre of excellence in teaching and learning to produce the competent \& socially responsible professionals in the domain of Electrical \& Electronics Engineering.

MISSION

To educate students with core knowledge of Electrical \& Electronics Engineering by developing problem solving skills, professional skills and social awareness to excel in their career.

Overview

Year / Semester	$2^{\text {nd }}$ Year $/ 3^{\text {rd }}$ Semester	Academic Year	$2021-22$
Laboratory Title	Electronics Lab	Laboratory Code	18EEL38
Total Contact Hours	42 Hours	Duration of SEE	3 Hours
CIE Marks	40 Marks	SEE Marks	60 Marks
Lab Manual Author	Prof. Sagar S Birade	Sign -	Date
Checked By		Sign -	Date

Objectives

- To design and test half wave and full wave rectifier circuits.
- To design and test different amplifier and oscillator circuits using BJT.
- To study the simplification of Boolean expressions using logic gates.
- To realize different Adder and Subtractor circuits.
- To design and test counters and sequence generators.

Description

1.0 Learning Objectives

Student aims to understand, design and analyze the basic applications of the diodes, transistors, logic gates and various IC's. In this laboratory student designs many circuits' namely rectifiers, transistor amplifiers, RC phase shift oscillator, realize adder/subtractor circuit, code conversion and counter circuits etc.

2.0 Learning Outcomes

The student, after successful completion of the course, will be able to

1. To design and test half wave and full wave rectifier circuits.
2. To design and test different amplifier and oscillator circuits using BJT.
3. To study the simplification of Boolean expressions using logic gates.
4. To realize different Adders and Subtractors circuits.
5. To design and test counters and sequence generators.

Prerequisites

- Basic knowledge of bread board connection methods.
- Details of various elements like pin configuration of different logic gates, color code of resistors etc.
- Analog Electronic Circuits design and analysis

Base Course

1. Analog Electronic Circuits.
2. Basic Electrical/Electronics Engineering.

Introduction

In Electronics Lab we are conducting experiments such as rectifiers, transistor amplifiers, RC phase shift oscillator, realize adder/subtractor circuit, code conversion and counter circuits etc using Diode, Transistors, Logic Gates and various IC's. At the end of the course student will be able to understand and design transistor circuits, digital circuits and get the performance practically.

Resources Required

1. Signal Generator
2. Digital Storage Oscilloscope
3. Regulated Power Supply
4. Bread Boards

General Instructions

1. After circuit connection, before switching ON the supply, verify it by instructor/ lab in charge.
2. Make sure voltage level of power supply is at minimum value at the start.
3. Before leaving the lab keep all the equipments properly.

Contents

Expt No.	Title of the Experiment	Date Planned	Date Conducted
1	Design and Testing of Full wave - centre tapped transformer type and Bridge type rectifier circuits with and without Capacitor filter. Determination of ripple factor, regulation and efficiency.		
2	Static Transistor characteristics for CE, CB and CC modes and determination of h parameters.		
3	Frequency response of single stage BJT and FET RC coupled amplifier and determination of half power points, bandwidth, input and output impedances.		
4	Design and testing of BJT - RC phase shift oscillator for given frequency of oscillation.		
5	Determination of gain, input and output impedance of BJT Darlington emitter follower with and without bootstrapping.		
6	Simplification, realization of Boolean expressions using logic gates/Universal gates.		
7	Realization of half/Full adder and Half/Full Subtractors using logic gates.		
8	Realization of parallel adder/Subtractors using 7483 chip- BCD to Excess-3 code conversion \& Vice -Versa.		
9	Realization of Binary to Gray code conversion and vice versa.		
10	Design and testing Ring counter/Johnson counter.		
11	Design and testing of Sequence generator.		
12	Realization of 3 bit counters as a sequential circuit and MOD - N counter design using 7476, 7490, 74192, 74193.		

Evaluation Scheme

1. Lab activity - Continuous Assessment, Attendance, Journal - 24 Marks.
2. Internal exam at the end of semester -16 Marks.
3. Semester End Exam - 100 Marks (scaled down to 60).

Reference

1. 'Electronic Devices and Circuit Theory', Robert L Boylestad Louis Nashelsky Published by Pearson $11^{\text {th }}$ Edition 2015.
2. Fundamentals of Analog Circuits Thomas L Floyd Pearson 2nd Edition, 2012.
3. "Digital Integrated Electronics" by H. Taub and D. Schilling
4. https://www.aec.at/futurelab/en/

EXPERIMENT NO -1

Full Wave and Bridge Rectifiers

Aim: Design and Testing of Full wave - centre tapped transformer type and Bridge type rectifier circuits with and without Capacitor filter. Determination of ripple factor, regulation and efficiency

Apparatus Required:

Sl. No	Name of the Component	Type	Range	Quantity
1	Bread Board	-	-	1
2	Diode	-	1 N 4007	4
3	Centre tapped transformer	-	$12-0-12 \mathrm{~V}$	1
4	Ammeter	Digital	$0-200 \mathrm{~mA}$ AC\&DC	1 each
5	Voltmeter	Analog	$0-30 \mathrm{~V}$ DC	1
6	Capacitor	Electrolyte	$470 \mu \mathrm{~F} / 25 \mathrm{~V}$	1
7	Connecting Wire	Single strand	-	few

Full Wave rectifier without Filter

Circuit Diagram:

Design:

Choosing transformer with secondary voltage $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}$
From the data sheet we have, $\mathrm{I}_{\mathrm{L}(\max)}=150 \mathrm{~mA}$
For Full Wave rectifier $\mathrm{V}_{\mathrm{dc}}=\frac{2 \mathrm{Vm}}{\pi}=10.8 \mathrm{~V}$

$$
\mathrm{R}_{\mathrm{L}}=\frac{V_{d c}}{\boldsymbol{I}_{L(\operatorname{Max})}}=\frac{10}{150 \mathrm{~m}}=10.8 / 150 \mathrm{~m}=72 \Omega[\text { Std } 100 \Omega]
$$

Power dissipated in R_{L} is

$$
\mathrm{P}_{\mathrm{L}}=\mathrm{V}_{\mathrm{dc}} \times \mathrm{I}_{\mathrm{L}(\max)}=10.8 \times 150 \times 10^{-3}=1.5 \text { watts }
$$

Choose $R_{L}=100 \Omega$ with the help of DRB

Calculations:

> Ripple factor $\gamma=\frac{\mathrm{I}_{\mathrm{ac}}}{\mathrm{I}_{\mathrm{dc}}}$
> $\%$ Efficiency $\eta=\frac{\mathrm{I}_{\mathrm{dc}}}{\mathrm{I}_{\mathrm{dc}}+\mathrm{I}^{2}{ }_{\mathrm{ac}}} \times 100$
> \% Regulation $=\frac{\mathrm{V}_{\mathrm{dc}(\mathrm{NL}}-V_{d c}}{V_{\mathrm{dc}}} \times 100$

Tabular Column:

R_{L} in Ω	V_{dc} in volts	I_{dc} in mA	I_{ac} in mA	Ripple factor (γ)	Efficiency	\% Regulation
Max (NL)						

Full Wave rectifier with C- Filter

Circuit Diagram

Design:

To design a Full wave rectifier with C-filter for the following specifications
Choosing transformer with secondary voltage $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{L}(\max)}=150 \mathrm{~mA}$ and ripple factor $=0.04$

For Full Wave rectifier with C-filter $V_{d c}=17 \mathrm{~V}$

$$
\mathrm{R}_{\mathrm{L}}=\frac{V_{d c}}{\boldsymbol{I}_{L(M a x)}}=\frac{17}{150 m}=113.13 \Omega[\operatorname{Std} 150 \Omega]
$$

Power dissipated in R_{L} is

$$
\mathrm{P}_{\mathrm{L}}=\mathrm{V}_{\mathrm{dc}} \times \mathrm{I}_{\mathrm{L}(\max)}=17 \times 150 \times 10^{-3}=2.55 \text { watts }
$$

Choose $\mathrm{R}_{\mathrm{L}}=150 \Omega$ [use DRB]

For Full wave rectifier with C-filter

$$
\text { Ripple factor }=\frac{1}{4 \sqrt{3} \mathrm{fR}_{\mathrm{L}} \mathrm{C}}
$$

Therefore

$$
\mathrm{C}=\frac{1}{4 \sqrt{3} \times 50 \times 150 \times 0.04}=481 \mu \mathrm{~F}
$$

Choose $\mathrm{C}=470 \mu \mathrm{~F} / 25 \mathrm{~V}$ a standard value

Calculations:

Ripple factor $\gamma=\frac{\mathrm{I}_{\mathrm{ac}}}{\mathrm{I}_{\mathrm{dc}}}$

Tabular column:

R_{L} in Ω	I_{dc} in mA	I_{ac} in mA	Ripple factor (γ)

Procedure:

For Full Wave Rectifier

1. Connect the circuit as shown in figure.
2. Set the DRB to maximum and note down value of V_{dc} (No Load) (here maximum resistance is designated as No load).
3. Vary the DRB (in steps of $100 \Omega, 200 \Omega, 300 \Omega$) and note down the values of $\mathrm{I}_{\mathrm{dc}}, \mathrm{I}_{\mathrm{ac}}$, and V_{dc} and record the readings in the tabular column.
4. Observe the output waveforms on the Oscilloscope and draw these waveforms to scale.
5. For each value of I_{dc} determine the values of ripple factor, efficiency and regulation.
6. Connect the circuit with Capacitor -filter as shown in the fig 4.
7. Calculate the value of Capacitor for the given value of ripple factor (Assume R_{L} to some value) by using the formula and then repeats the steps 2-5

Result:

	Ripple Factor	Efficiency	\% Regulation
Full wave Bridge rectifier without Filter			
Full wave Bridge rectifier with C-Filter			

Conclusion:

Full Wave Bridge Rectifier without Filter

Circuit Diagram:

DESIGN:

Choosing transformer with secondary voltage $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{L}(\max)}=150 \mathrm{~mA}$
For Full Wave Rectifier $\mathrm{V}_{\mathrm{dc}}=\frac{2 V m}{\pi}=10.8 \mathrm{~V}$

$$
\mathrm{R}_{\mathrm{L}}=\frac{V_{d c}}{\boldsymbol{I}_{L(M a x)}}=10.8 / 150 \mathrm{~m}=72 \Omega[\operatorname{Std} 100 \Omega]
$$

Power dissipated in R_{L} is

$$
\mathrm{P}_{\mathrm{L}}=\mathrm{V}_{\mathrm{dc}} \times \mathrm{I}_{\mathrm{L}(\text { max })}=10.8 \times 150 \times 10^{-3}=1.5 \text { watts }
$$

Choose $\mathrm{R}_{\mathrm{L}}=100 \Omega$ [use DRB]

Calculations:

$$
\begin{aligned}
& \text { Ripple factor } \gamma=\frac{\mathrm{I}_{\mathrm{ac}}}{\mathrm{I}_{\mathrm{dc}}} \\
& \text { \%Efficiency } \eta=\frac{\mathrm{I}^{2}{ }_{\mathrm{dc}}}{\mathrm{I}^{2}{ }_{\mathrm{dc}}+\mathrm{I}^{2}{ }_{\mathrm{ac}}} \times 100 \\
& \text { \% Regulation }=\frac{\mathrm{V}_{\mathrm{dc}(\mathrm{NL})}-\mathrm{V}_{\mathrm{dc}}}{\mathrm{~V}_{\mathrm{dc}}} \times 100
\end{aligned}
$$

Tabular column:

R_{L} in Ω	V_{dc} in volts	I_{dc} in mA	I_{ac} in mA	Ripple Factor (γ)	Efficiency	\%Regulation
Max (NL)						

Full Wave Bridge Rectifier with C- Filter

Circuit Diagram:

Design:

Choosing transformer with secondary voltage $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{L}(\max)}=150 \mathrm{~mA}$ and ripple factor $=0.04$

For Full Wave rectifier with C-filter $\quad \mathrm{V}_{\mathrm{dc}}=17 \mathrm{~V}$

Power dissipated in R_{L} is

$$
\mathrm{P}_{\mathrm{L}}=\mathrm{V}_{\mathrm{dc}} \times \mathrm{I}_{\mathrm{L}(\max)}=17 \times 150 \times 10^{-3}=2.55 \text { watts }
$$

Choose $\mathrm{R}_{\mathrm{L}}=150 \Omega$ [use DRB]
For Full wave rectifier with C-filter Ripple factor $=\frac{1}{4 \sqrt{3} \mathrm{fR}_{\mathrm{L}} \mathrm{C}}$

Therefore

$$
\mathrm{C}=\frac{1}{4 \sqrt{3} \times 50 \times 150 \times 0.04}=481 \mu \mathrm{~F} \text { [Choose } \mathrm{C}=470 \mu \mathrm{~F} / 25 \mathrm{~V} \text { a standard value] }
$$

Calculations:

$$
\text { Ripple factor } \gamma=\frac{\mathrm{I}_{\mathrm{ac}}}{\mathrm{I}_{\mathrm{dc}}}
$$

Tabular column:

R_{L} in Ω	I_{dc} in mA	$\mathrm{I}_{\text {ac }}$ in mA	Ripple factor (γ)

Procedure:

For Full Wave Bridge Rectifier

1. Connect the circuit as shown in circuit diagram. 5
2. Set the DRB to maximum and note down value of V_{dc} (No Load) (here maximum resistance is designated as No load).
3. Vary the DRB (in steps of $100 \Omega, 150 \Omega, 300 \Omega$)and note down the values of $\mathrm{I}_{\mathrm{dc}}, \mathrm{I}_{\mathrm{ac}}$, and V_{dc} and record the readings in the tabular column.
4. Observe the output waveforms on the Oscilloscope and draw these waveforms to scale.
5. For each value of I_{dc} determine the values of ripple factor, efficiency and regulation.
6. Connect the circuit with Capacitor -filter as shown in the fig 6.
7. Calculate the value of Capacitor for the given value of ripple factor (Assume R_{L} to some value) by using the formula and then repeats the steps 2-5

Result:

	Ripple Factor	Efficiency	\% Regulation
Full wave Bridge rectifier without Filter			
Full wave Bridge rectifier with C-Filter			

CONCLUSION:

Experiment No. 2

CE, CB \& CC CONFIGURATIONS

Common Emitter Configuration

Aim: To study the input and output characteristics of a transistor in Common Emitter configuration.

Apparatus Required:

Sl. No.	Name	Type	Range	Quantity
1	Transistor	npn	BC 107	1 No.
2	Resistors	-	$1 \mathrm{~K} \Omega, 100 \mathrm{~K} \Omega$	1 No. Each
3	Bread board	-		1 No.
4	Dual Regulated Power supply	DC	$0-30 \mathrm{~V} / 2 \mathrm{~A}$	1 No.
5	Ammeters	Digital	$0-200 \mathrm{~mA}, 0-200 \mu_{\mathrm{A}}$	1 No. Each
6	Voltmeter	Digital	$0-20 \mathrm{~V}$	2 No.
7	Connecting wires	Single Strand	-	Few.

Circuit Diagram:

h - Parameter model of CE transistor:

Observations:

Input Characteristics					
V_{BB} (Volts)	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}$		$\mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$		
	$\mathrm{~V}_{\mathrm{BE}}$ (Volts)	$\mathrm{I}_{\mathrm{B}}(\mu \mathrm{A})$	$\mathrm{V}_{\mathrm{BE}}($ Volts $)$	$\mathrm{I}_{\mathrm{B}}(\mu \mathrm{A})$	

Output Characteristics						
V_{CC} (Volts)	$\mathrm{I}_{\mathrm{B}}=0 \mu \mathrm{~A}$		$\mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A}$	$\mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}$		
	$\mathrm{~V}_{\mathrm{CE}}$ (Volts)	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$	$\mathrm{V}_{\mathrm{CE}}($ Volts $)$	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$	$\mathrm{V}_{\mathrm{CE}}($ Volts $)$	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$

Graph:

Input Characteristics

Output Characteristics

Procedure:

Input Characteristics:

1. Connect the circuit as shown in the circuit diagram.
2. Keep output voltage $\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}$ by varying V_{CC}.
3. Varying V_{BB} gradually, note down base current I_{B} and base-emitter voltage V_{BE}.
4. Step size is not fixed because of non linear curve. Initially vary V_{BB} in steps of 0.1 V . Once the current starts increasing vary V_{BB} in steps of 1 V up to 12 V .
5. Repeat above procedure $(\operatorname{step} 3)$ for $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$.

Output Characteristics:

1. Connect the circuit as shown in the circuit diagram.
2. Keep emitter current $\mathrm{I}_{\mathrm{B}}=20 \mu^{\prime} \mathrm{A}$ by varying V_{BB}.
3. Varying V_{CC} gradually in steps of 1 V up to 12 V and note down collector current I_{C} and Collector-Emitter Voltage (V_{CE}).
4. Repeat above procedure (step 3) for $\mathrm{I}_{\mathrm{B}}=60 \mu \mathrm{~A}, 0 \mu \mathrm{~A}$.

To Plot Graph:

1. Plot the input characteristics by taking V_{BE} on X -axis and I_{B} on Y -axis at a constant V_{CE} as a constant parameter.
2. Plot the output characteristics by taking V_{CE} on X -axis and taking I_{C} on Y -axis taking I_{B} as a constant parameter.

Calculations from Graph:

1. Input Characteristics: To obtain input resistance find $\Delta \mathrm{V}_{\mathrm{BE}}$ and $\Delta \mathrm{I}_{\mathrm{B}}$ for a constant V_{CE} on one of the input characteristics.
Input impedance $\quad h_{i e}=R_{i}=\Delta V_{B E} / \Delta I_{B}\left(V_{C E}\right.$ is constant $)$
Reverse voltage gain $\mathrm{h}_{\mathrm{re}}=\Delta \mathrm{V}_{\mathrm{EB}} / \Delta \mathrm{V}_{\mathrm{CE}}\left(\mathrm{I}_{\mathrm{B}}=\right.$ constant $)$
2. Output Characteristics: To obtain output resistance find $\Delta \mathrm{I}_{\mathrm{C}}$ and $\Delta \mathrm{V}_{\mathrm{CB}}$ at a constant I_{B}. Output admittance $\quad 1 /$ hoe $=R_{0}=\Delta \mathrm{I}_{\mathrm{C}} / \Delta \mathrm{V}_{\mathrm{CE}}\left(\mathrm{I}_{\mathrm{B}}\right.$ is constant $)$ Forward current gain $\mathrm{hfe}=\Delta \mathrm{I}_{\mathrm{C}} / \Delta \mathrm{I}_{\mathrm{B}}\left(\mathrm{V}_{\mathrm{CE}}=\right.$ constant $)$

Result:

The h-parameters for a transistor in CE configuration are:
a. The Input Resistance $\left(\mathrm{h}_{\mathrm{ie}}\right)$ \qquad
d. The Forward Current Gain $\left(\mathrm{h}_{\mathrm{fe}}\right)$

Conclusion:

Common Base Configuration

Aim: To study the input and output characteristics of a transistor in Common Base Configuration.

Apparatus Required:

Sl. No.	Name	Type	Range	Quantity
1	Transistor	npn	BC 107	1 No.
2	Resistors	-	$1 \mathrm{~K} \Omega$	2 No.s
3	Bread board	-	-	1 No.
4	Dual Regulated Power supply	DC	$0-30 \mathrm{~V} / 2 \mathrm{~A}$	1 No.
5	Ammeters	Digital	$0-200 \mathrm{~mA}, 0-200 \mathrm{~mA}$	1 No. Each
6	Voltmeter	Digital	$0-20 \mathrm{~V}$	2 No.
7	Connecting wires	Single Strand	-	Few.

Circuit Diagram:

h - Parameter model of CB transistor:

Observations:

Input Characteristics				
$\mathbf{V}_{\text {EE }}$ (Volts)	$\mathbf{V}_{\text {CB }}=\mathbf{0 V}$		$\mathbf{V}_{\text {CB }}=\mathbf{4 V}$	
		$\mathbf{V}_{\text {EB }}$ (Volts)	$\mathbf{I}_{\mathbf{E}}(\mathbf{m A})$	$\mathbf{V}_{\text {EB }}$ (Volts)
			$\mathbf{I}_{\mathbf{E}}(\mathbf{m A})$	

Output Characteristics						
$\mathbf{V}_{\text {CC }}$ (Volts)	$\mathrm{I}_{\mathrm{E}}=0 \mathrm{~mA}$		$\mathrm{I}_{\mathrm{E}}=5 \mathrm{~V}$		$\mathrm{IE}=10 \mathrm{~mA}$	
	$\mathrm{V}_{\text {CB }}$ (Volts)	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$	$\mathrm{V}_{\text {CB }}$ (Volts)	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$	$\mathrm{V}_{\text {CB }}$ (Volts)	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$

Graph:

1. Plot the input characteristics for different values of $\mathbf{V}_{\boldsymbol{C B}}$ by taking $\mathbf{V}_{\boldsymbol{E E}}$ on X -axis and $\mathbf{I}_{\boldsymbol{E}}$ on Y-axis taking $\mathbf{V}_{\mathbf{C B}}$ as constant parameter.
2. Plot the output characteristics by taking $\mathbf{V}_{\boldsymbol{C B}}$ on X -axis and taking $\mathbf{I}_{\boldsymbol{C}}$ on Y -axis taking \mathbf{I}_{E} as a constant parameter.

Procedure:

Input Characteristics:

1) Connect the circuit as shown in the circuit diagram.
2) Keep output voltage $\mathrm{V}_{C B}=0 \mathrm{~V}$ by varying V_{CC}.
3) Varying $\mathrm{V}_{E E}$ gradually, note down emitter current I_{E} and emitter-base voltage $\left(\mathrm{V}_{E E}\right)$.
4) Step size is not fixed because of nonlinear curve. Initially vary V_{EE} in steps of 0.1 V . Once the current starts increasing vary V_{EE} in steps of 1 V up to 12 V .
5) Repeat above procedure (step 3) for $\mathrm{V}_{C B}=4 \mathrm{~V}$.

Output Characteristics:

1. Connect the circuit as shown in the circuit diagram.
2. Keep emitter current $\mathrm{I}_{E}=5 \mathrm{~mA}$ by varying $\mathrm{V}_{E E}$.
3. Varying $\mathrm{V}_{C C}$ gradually in steps of 1 V up to 12 V and note down collector current I_{C} and collector-base voltage (V_{CB}).
4. Repeat above procedure (step 3) for $\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}$.
5.

Repeat above procedure (step 3) for $\mathrm{I}_{E}=10 \mathrm{~mA}$.

Calculations from Graph:

The h-parameters are to be calculated from the following formulae:

1. Input Characteristics: To obtain input resistance, find $\Delta \mathrm{V}_{E E}$ and $\Delta \mathrm{I}_{E}$ for a constant $\mathrm{V}_{C B}$ on one of the input characteristics.

Input impedance $\quad \mathrm{h}_{\mathrm{ib}}=\mathrm{R}_{\mathrm{i}}=\Delta \mathrm{V}_{\mathrm{EE}} / \Delta \mathrm{I}_{\mathrm{E}}\left(\mathrm{V}_{\mathrm{CB}}=\right.$ constant $)$
Reverse voltage gain hrb $=\Delta \mathrm{V}_{\mathrm{EB}} / \Delta \mathrm{V}_{\mathrm{CB}} \quad$ ($\mathrm{I}_{\mathrm{E}}=$ constant)
2. Output Characteristics: To obtain output resistance, find $\Delta \mathrm{I}_{C}$ and $\Delta \mathrm{V}_{C B}$ at a constant I_{E}.

Output admittance $\quad \mathrm{h}_{\mathrm{ob}}=1 / \mathrm{Ro}=\Delta \mathrm{I}_{\mathrm{C}} / \Delta \mathrm{V}_{\mathrm{CB}}\left(\mathrm{I}_{\mathrm{E}}=\right.$ constant $)$
Forward current gain $\mathrm{h}_{\mathrm{fb}}=\Delta \mathrm{I}_{\mathrm{C}} / \Delta \mathrm{I}_{\mathrm{E}}\left(\mathrm{V}_{\mathrm{CB}}=\right.$ constant $)$

Result:

The h -parameters for a transistor in CB configuration are:
a. The Input resistance $\left(\mathrm{h}_{\mathrm{ib}}\right)$ \qquad Ohms.
b. The Reverse Voltage Transfer Ratio (h_{rb}) \qquad .
c. The Output Admittance $\left(\mathrm{h}_{\mathrm{ob}}\right)$ \qquad Mhos.
d. The Forward Current gain $\left(\mathrm{h}_{\mathrm{fb}}\right)$ \qquad _.

Conclusion:

Common Collector Configuration

Aim: To study the input and output characteristics of a transistor in Common Collector Configuration.

Apparatus Required:

Sl. No.	Name	Type	Range	Quantity
1	Transistor	npn	BC 107	1 No.
2	Resistors	-	$39 \mathrm{~K} \Omega, 1 \mathrm{~K} \Omega$	1 No. Each
3	Bread board	-	-	1 No.
4	Dual Regulated Power supply	DC	$0-30 \mathrm{~V} / 2 \mathrm{~A}$	1 No.
5	Ammeters	Digital	$0-200 \mathrm{~mA}, 0-200 \mu \mathrm{~A}$	1 No. Each
6	Voltmeter	Digital	$0-20 \mathrm{~V}$	2 No.
7	Connecting wires	Single Strand	-	Few.

Circuit Diagram:

h - Parameter model of CB transistor:

Observations:

Input Characteristics							
$\begin{gathered} \hline \text { Sl. } \\ \text { No } \end{gathered}$	Applied Voltage $\mathrm{V}_{\mathrm{BB}}(\mathrm{V})$	$\mathrm{V}_{\text {CE }}=2 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$	
		$\mathrm{V}_{\text {BE }}$ (V)	$\mathrm{I}_{\mathrm{B}}(\mu \mathrm{A})$	$\mathrm{V}_{\text {BE }}(\mathrm{V})$	$\mathrm{I}_{\mathrm{B}}(\mu \mathrm{A})$	$\mathrm{V}_{\text {BE }}$ (V)	$\mathrm{I}_{\mathrm{B}}(\mu \mathrm{A})$
1							
2							
3							
4							
5							

Output Characteristics							
$\begin{aligned} & \text { Sl. } \\ & \text { No } \end{aligned}$	Applied Voltage $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A}$		$\mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A}$		$\mathrm{I}_{\mathrm{B}}=30 \mu \mathrm{~A}$	
		$\mathrm{V}_{\mathrm{CE}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$	$\mathrm{V}_{\mathrm{CE}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$	$\mathrm{V}_{\text {CE }}$ (V)	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$
1							
2							
3							
4							
5							

Graph:

Input Characteristics

Output Characteristics

1. Plot the input characteristics for different values of $\mathbf{V}_{C E}$ by taking $\mathbf{V}_{\boldsymbol{B E}}$ on \mathbf{X}-axis and \mathbf{I}_{B} on Y-axis taking $\mathbf{V}_{\mathbf{C C}}$ as constant parameter.
2. Plot the output characteristics by taking $\mathbf{V}_{C E}$ on \mathbf{X}-axis and taking \mathbf{I}_{C} on Y -axis taking $\mathbf{I}_{\boldsymbol{B}}$ as a constant parameter.

Procedure:

Input Characteristics:

1. Connect the circuit as shown in the circuit diagram.
2. Keep output voltage V_{CE} as constant 2 V by varying V_{CC}.
3. Varying V_{BB} gradually, note down base current I_{B} and emitter-base voltage $\left(\mathrm{V}_{B E}\right)$.
4. Step size is not fixed because of nonlinear curve. Initially vary V_{EE} in steps of 0.1 V . Once the current starts increasing vary V_{BB} in steps of 1 V up to 12 V .
5. Repeat above procedure (step 3) for $\mathrm{V}_{C E}=5 \mathrm{~V} \& 10 \mathrm{~V}$.

Output Characteristics:

1. Fix base current, I_{B} at constant value say $10 \mu \mathrm{~A}$.
2. Vary the output voltage V_{CC} in steps.
3. Measure the voltage V_{CE} and current I_{C} for different values.
4. Repeat above steps for $I_{B}=20 \mu \mathrm{~A}, 30 \mu \mathrm{~A}$
5. Draw output static characteristics for tabulated values.

Result:

The h-parameters for a transistor in CB configuration are:

a. The Input resistance (h_{ib}) Ohms.
b. The Reverse Voltage Transfer Ratio (h_{rb}) \qquad .
c. The Output Admittance (h_{ob}) \qquad Mhos.
d. The Forward Current gain $\left(\mathrm{h}_{\mathrm{fb}}\right)$ \qquad .

Conclusion:

EXPERIMENT NO -3
 SINGLE STAGE BJT RC - COUPLED AMPLIFIER

Aim: To find the Frequency response of single stage BJT and FET RC coupled amplifier and determination of half power points, bandwidth, input and output impedances.

Apparatus Required:

S.N	Particulars	Type	Range	Quantity
1.	Transistor	SL100	-	01
2.	Capacitors	Electrolyte	$0.47 \mu \mathrm{~F}$, $47 \mu \mathrm{~F}$	02 01
3.	Resistors	-	$22 \mathrm{~K} \Omega, 1 \mathrm{~K} \Omega, 4.7 \mathrm{~K} \Omega$ $270 \Omega, 10 \mathrm{~K} \Omega$	01 Each
4.	Regulated Power Supply	DC	$0-30 \mathrm{~V} / 2 \mathrm{~A}$	01
5.	Signal Generator	-	3 MHz	01
6.	Oscilloscope and Probes	-	-	01
7.	Bread Board	-	-	01
8.	Connecting wires	Single Strand	-	few

Circuit Diagram:

Frequency Response

Design:

Biasing Circuit

Let $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4.5 \mathrm{~mA}, \beta=100$ (for SL100)

Calculation of R_{E}

$$
V_{R E}=\frac{V_{c c}}{10}=\frac{12}{10}=1.2 \mathrm{~V}
$$

That is

$$
I_{E} R_{E}=1.2 \mathrm{~V}
$$

Therefore

$$
R_{E}=\frac{1.2}{I_{E}}=\frac{1.2}{I_{C}}=\frac{1.2}{4.5 \mathrm{~mA}}=0.267 \mathrm{~K} \Omega
$$

Use

$$
R_{E}=270 \Omega
$$

Calculation of R_{1} and R_{2}
From the biasing circuit

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{BE}}+\mathrm{V}_{\mathrm{RE}}=0.7+1.2=1.9 \mathrm{~V} \mathrm{~s} \\
& \mathrm{I}_{\mathrm{B}}=\frac{I_{C}}{\beta}=\frac{4.5 \mathrm{~mA}}{100}=0.045 \mathrm{~mA}
\end{aligned}
$$

Assume $10 \mathrm{I}_{\mathrm{B}}$ flows through R_{1} and $9 \mathrm{I}_{\mathrm{B}}$ flows through R_{2}

$$
\mathrm{R}_{1}=\frac{V_{C C}-V_{B}}{10 I_{B}}=\frac{12-1.9}{10 X 0.045}=22.4 \mathrm{~K} \Omega
$$

Use

$$
\mathrm{R}_{1}=22 \mathrm{~K} \Omega
$$

Also we have

$$
\begin{array}{ll}
& \mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{R} 2}=9 \mathrm{I}_{\mathrm{B}} \times \mathrm{R}_{2} \\
\text { Therefore } & \mathrm{R}_{2}=\frac{V_{B}}{9 I_{B}}=\frac{1.9}{9 \times 0.045 \mathrm{~m}}=4.69 \mathrm{~K} \Omega \\
\text { Use } & \mathrm{R}_{2}=4.7 \mathrm{~K} \Omega
\end{array}
$$

Procedure:

1. Connect the biasing circuit as shown in the figure -2 , set the RPS voltage $\mathrm{Vcc}=12 \mathrm{~V}$. Measure the DC voltages (Using Oscilloscope) V_{B} at the base, V_{C} at the collector and V_{E} at the emitter with respect to ground. Then determine
$\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{E}}=$ \qquad V $\mathrm{I}_{\mathrm{C}}=\frac{V_{c c}-V_{C}}{R_{c}}=$ \qquad mA (then Q point is given by $\mathrm{V}_{\mathrm{CE}}, \mathrm{I}_{\mathrm{C}}$)
2. Connect the RC coupled amplifier circuit shown in figure-1.
3. Apply the input sine wave at frequency say 10 KHz from the signal generator and adjust peak -to-peak amplitude (Vi) of $\mathbf{2 0}$ to $\mathbf{5 0}$ milli volts (till maximum undistorted sine wave output is obtained).
4. Vary the input sine wave frequency from 10 Hz to 1 MHz in suitable steps and measure the output voltage V_{0} of the amplifier at each step using Oscilloscope(Keeping input amplitude remains constant throughout the frequency range) and record the readings in the tabular column.
5. Calculate the Gain in dB

6 Plot the graph of gain in $\mathrm{dB} \mathrm{v} / \mathrm{s}$ the frequency in semi \log graph sheet and determine lower cutoff frequency $\left(f_{1}\right)$, upper cutoff frequency (f_{2}), mid band voltage gain Amid, and gain bandwidth product (GBW).

Procedure: For measuring the input impedance ' Z_{i} '

1. Connect the circuit as shown in fig. 3
2. Set the following.
i) $\quad \mathrm{DRB}$ to its minimum value ' 0 '
ii) Input sine wave amplitude is kept at 50 mV .
iii) Frequency around 10 kHz .
iv) Measure p-p V_{0}
3. Let $V_{o}=V_{a}$, Increase DRB till $V_{o}=V_{a} / 2$. So that the corresponding DRB value gives the input impedance ' Z_{i} ' of the RC Coupled amplifier.

Calculation of R_{C}
Choose $\quad \mathrm{V}_{\mathrm{CE}}=\frac{V_{c c}}{2}=\frac{12}{2}=6 \mathrm{~V}$
From the biasing circuit

	$V_{C C^{-}} I_{C} R_{C^{-}}-V_{C E^{-}} V_{R E}=0$
	$12-4.5 R_{C}-6-1.2=0$
Therefore \quad	$R_{C}=1.07 \mathrm{~K} \Omega$
Use	$R_{C}=1 \mathrm{~K} \Omega$

Calculation of Bypass capacitor $\left(\mathrm{C}_{\mathrm{E}}\right)$ and coupling capacitors $\left(\mathrm{C}_{\mathrm{C} 1}\right.$ and $\left.\mathrm{C}_{\mathrm{C} 2}\right)$
Let $\quad X_{C E}=\frac{1}{10} R_{E}$ at frequency $f=100 \mathrm{~Hz}$
That is $\frac{1}{2 \pi f X C_{E}}=\frac{R_{E}}{10}$
Therefore $\quad \mathrm{C}_{\mathrm{E}}=\frac{10}{2 \pi f \times R_{E}}=\frac{10}{2 \pi \times 100 \times 270}=59 \mu \mathrm{~F}$
Use standard value

$$
\mathrm{C}_{\mathrm{E}}=47 \mu \mathrm{~F}(\text { Electrolytic })
$$

Also use $\quad \mathrm{C}_{\mathrm{C} 1}$ and $\mathrm{C}_{\mathrm{C} 2}=0.1 \mu \mathrm{~F}$ (ceramic)

ii) Determination of Input Impedance $\left(Z_{i}\right)$ and Output Impedance $\left(Z_{0}\right)$

Procedure: For measuring the output impedance ' Z_{O} '

1. Connect the circuit as shown in fig. 4
2. Set the following.
i. DRB to its Maximum value.
ii. Input sine wave amplitude is kept at 50 mV
iii. Frequency around 10 kHz .
iv. Measure p-p V_{o}

Let $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{b}}$, Decrease DRB till $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{b}} / 2$
3. So that the corresponding DRB value gives the Output impedance ' Z_{o} ' of the RC Coupled amplifier

Results:

- Mid band voltage gain = \qquad
- Mid band voltage gain in $\mathrm{dB}=$ \qquad dB
- Lower cutoff frequency = \qquad HZ
- Upper cutoff frequency
$=$ \qquad Hz
- Band width
$=$ \qquad
- Gain Bandwidth Product
$=$ \qquad Hz
- Input Impedance \qquad
- Output Impedance \qquad

Conclusion:

\square

EXPERIMENT NO 4 RC PHASE SHIFT OSCILLATOR

Aim: To design and verify the performance of RC Phase shift Oscillator.

Apparatus required:

S.N	Particulars	Type	Range	Quantity
1.	Transistor	SL100	-	01
2.	Capacitors	Ceramic	$0.01 \mu \mathrm{~F}$	03
				$22 \mathrm{~K} \Omega$
3.	Resistors		$6.8 \mathrm{~K} \Omega$	01
		-	$1 \mathrm{~K} \Omega$	01
			$2.2 \mathrm{~K} \Omega$	01
			470Ω	02
		DC	$0-30 \mathrm{~V} / 2 \mathrm{~A}$	01
4.	Regulated Power Supply		01	
5.	Potentiometer	-	$10 \mathrm{~K} \Omega$	01
6.	Oscilloscope and Probes	-	-	01
7	Bread Board	-	-	01
8	Connecting wires	-	-	few

Circuit diagram:

SPECIMEN GRAPH:

Design:

Amplifier design:

Let $V_{\mathrm{CC}}=12 \mathrm{~V}, I_{C}=4 m A, \mathrm{~h}_{\mathrm{fe}}=100$ (for SL100)
Let $V_{E}=2 V, V_{C E}=6 V$
Therefore $\quad R_{E}=\frac{V_{E}}{I_{E}}=\frac{V_{E}}{I_{C}}=\frac{2}{4 m A}=0.5 \mathrm{~K} \Omega=500 \Omega$
Use

$$
R_{E}=470 \Omega
$$

$R_{C}:$ From the biasing circuit (apply KVL to CE loop)

$$
\begin{aligned}
& V_{C C^{-}} I_{C} R_{C^{-}} V_{C E^{-}} V_{E}=0 \\
& 12-4 R_{C^{-}}-6-2=0
\end{aligned}
$$

Therefore

$$
R_{C}=1 K \Omega
$$

Calculation of $\mathbf{R}_{\mathbf{1}} \mathbf{A N D} \mathbf{R}_{\mathbf{2}}$

From the biasing circuit

	$V_{B}=V_{C C} x \frac{R_{2}}{R_{1}+R_{2}}$	
We know that	$V_{B}=V_{B E}+V_{E}$	
	$V_{B}=2+0.7=2.7 \mathrm{~V}$	
Therefore	$\frac{V_{B}}{V_{C C}}=\frac{R_{2}}{R_{1}+R_{2}}$	
	$\frac{2.7}{12}=\frac{R_{2}}{R_{1}+R_{2}}$	
	$0.225=\frac{R_{2}}{R_{1}+R_{2}}$	
	$0.225 R_{l}+0.225 R_{2}=R_{2}$	
	$R_{1}=3.44 R_{2}$	
If	$\boldsymbol{R}_{2}=6.8 \mathrm{~K} \Omega$, then $R_{l}=23.3 \mathrm{~K} \Omega$,	Use $R_{l}=22 \mathrm{~K} \Omega$
Use	$\boldsymbol{C}_{\boldsymbol{E}}=\mathbf{5 0 \mu \boldsymbol { F }}$ or $\mathbf{4 7} \boldsymbol{\mu} \mathbf{F}$ (Electrolytic)	
Also use	$\boldsymbol{C}_{C}=\mathbf{0 . 1 \mu F}$ (ceramic)	

Design of shifting network

The frequency of oscillations is determined by phase shifting network. The oscillating frequency for the above circuit is given by

$$
f_{0}=\frac{1}{2 \pi R C \sqrt{6+4 K}}
$$

Where

$$
K=\frac{R_{C}}{R} \text { which is usually }<1
$$

Let $\quad \boldsymbol{f}_{0}=\mathbf{2} \mathbf{K H z}$ (Audio frequency range 20 Hz to 20 KHz) and $\boldsymbol{R}=\mathbf{2 . 2} \mathbf{K} \boldsymbol{\Omega}$

Therefore $\quad K=\frac{R_{C}}{R}=\frac{1 K}{2.2 K}=0.454$

Therefore

$$
\begin{aligned}
f_{0} & =\frac{1}{2 \pi R C \sqrt{6+4(0.454)}} \\
C & =0.0121 \mu F ; \boldsymbol{U s} \boldsymbol{e} \boldsymbol{C}=\mathbf{0 . 0 1} \mu \boldsymbol{F}
\end{aligned}
$$

Note:
The last resistor in the phase shifting network is chosen to be a 10 K pot. This is to get an overall phase shift of 180° at frequency of oscillations.

The minimum h_{fe} required for the transistor to oscillate is

$$
h_{f(\text { min })}=23+29 x \frac{R}{R_{C}}+4 x \frac{R_{C}}{R}
$$

Where $R_{C}=1 K \Omega$ and $R=2.2 K \Omega$ (Phase shifting network)
Therefore

$$
\begin{aligned}
& h_{f((\text { min })}=23+29 \times \frac{2.2 K}{1 K}+4 \times \frac{1 K}{2.2 K} \\
& h_{f(\text { min })}=89
\end{aligned}
$$

Procedure:

1. Connections are made as per the circuit diagram.
2. Switch ON the power supply and set the biasing voltage $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$.
3. Adjust the $10 \mathrm{~K} \Omega$ pot to get a stable sinusoidal output and observe the sine wave form on oscilloscope.
4. Measure the frequency of oscillations of the output from the oscilloscope, then compare with theoretical value.
5. With respect to the output Vo , the waveforms at points $\mathrm{TP}_{1}, \mathrm{TP}_{2}$ and TP_{3}, are observed on oscilloscope. We can see the phase shift at each point being shifted by an angle 60°, $120^{\circ}, 180^{\circ}$.
6. Draw the waveform on graph sheet.

Result:

Theoretical frequency of oscillations $=$ \qquad KHz

Practical frequency of oscillations = \qquad KH

Conclusion:

EXPERIMENT NO -5 BJT DARLINGTON EMMITTER FOLLOWER

AIM: To determination of gain, input and output impedance of BJT Darlington emitter follower with and without bootstrapping.

APPARATUS REQUIRED:

S.N	Particulars	Type	Range	Quantity
1.	Transistor	SL100	-	02
2.	Capacitors	Ceramic Electrolytic	$\begin{aligned} & 10 \mu \mathrm{~F} \\ & 47 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline 01 \\ & 02 \end{aligned}$
3.	Resistors	-	$\begin{gathered} 1 \mathrm{~K} \Omega \\ 680 \Omega \end{gathered}$	$\begin{aligned} & \hline 03 \\ & 01 \end{aligned}$
4.	Regulated Power Supply	DC	0-30V/2A	01
5.	Signal Generator	-	3 MHz	01
6.	Voltmeter	-	$0-30 \mathrm{~V}$	02
8.	CRO and Probes	-	-	01
9.	Bread Board	-	-	01
10.	Connecting wires	-	-	few

CIRCUIT DIAGRAM:

Design:

Let $\mathrm{V}_{\mathrm{CC}}=12$ V D.C.; $\mathrm{I}_{\mathrm{C} 2} \approx \mathrm{I}_{\mathrm{E} 2}=6 \mathrm{~mA}, \mathrm{~h}_{\mathrm{fe}} 1=50, \mathrm{~h}_{\mathrm{fe}} 2=100$;
Choose VCE2 $=$ VCC $/ 2=12 / 2=6 \mathrm{~V}$;
$\mathrm{I}_{\mathrm{B} 2}=\mathrm{I}_{\mathrm{C} 2} / \mathrm{h}_{\mathrm{fe}} 2=6000 / 100=60 \mu \mathrm{~A}=\mathrm{I}_{\mathrm{C} 1}$;
$\mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{C} 1} / \mathrm{h}_{\mathrm{fe} 1}=60 / 50=1.2 \mu \mathrm{~A}$
$\mathrm{R}_{\mathrm{E}}=\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CE} 2}\right) / \mathrm{I}_{\mathrm{E} 2}=6 \mathrm{~V} / 6 \mathrm{~mA}=1000 \Omega$

Assume $\mathrm{R}_{3}=1 \mathrm{~K}$, then $\mathrm{R}_{3} \mathrm{I}_{\mathrm{B} 1}=1.2 \mathrm{mV}$.
$\mathrm{V}_{\mathrm{AG}}=\mathrm{V}_{\mathrm{AB} 1}+\mathrm{V}_{\mathrm{BE} 1}+\mathrm{V}_{\mathrm{BE} 2}+\mathrm{V}_{\mathrm{E} 2}$
$=\mathrm{R}_{3} \mathrm{I}_{\mathrm{B} 1}+\mathrm{V}_{\mathrm{BE} 1}+\mathrm{V}_{\mathrm{BE} 2}+\mathrm{V}_{\mathrm{E} 2}$
$=1.2 \mathrm{mV}+0.7 \mathrm{~V}+0.7 \mathrm{~V}+6 \mathrm{~V}$
$=7.4012 \mathrm{~V}$

With $\mathrm{R}_{2}=1 \mathrm{~K}, \mathrm{I}_{\mathrm{R} 2}=\mathrm{V}_{\mathrm{AG}} / \mathrm{R}_{2}=7.4012 \mathrm{~mA}=7401.2 \mu \mathrm{~A}$, let $\mathrm{R}_{2}=1 \mathrm{~K}$
Therefore, $\mathrm{I}_{\mathrm{R} 1}=\mathrm{I}_{\mathrm{R} 2}+\mathrm{I}_{\mathrm{B} 1}=7401.2+1.2=7402.4 \mu \mathrm{~A}$
$\mathrm{R}_{1}=\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{AG}}\right) / \mathrm{I}_{\mathrm{R} 1}=12-7.4012 / 7402.4 \mu \mathrm{~A}=621.258 \Omega$; let $\mathrm{R} 1=680 \Omega$
Choose $\mathrm{C}_{\mathrm{C} 1}=\mathrm{C}_{\mathrm{C} 2}=0.47 \mu \mathrm{~F}$.

PROCEDURE:

To measure Voltage Gain

1. Connect the circuit as shown in the figure
2. Switch on the power supply and set $\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V}$.
3. Measure the DC Voltages using CRO or Multimeter and record.

	VCE1	VBE1	VCE2	VBE2	VE2
Assumed	6 V	0.7 V	6 V	0.7 V	6 V
Obtained					

4. Apply a sine wave voltage from the Function Generator.
5. Observe the o / p Vo. Measure and record Vi and Vo. Compute and enter the voltage gain, $\mathrm{A}_{\mathrm{V}}=\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{I}}$ in the table.

Voltage gain with bootstrap

Vi							Vi, max
Vo							
Av							

Record V_{i}, Max, The maximum input you can apply for undistorted output as the "Maximum Signal handling capacity" of the Emitter follower.
6. Repeat the experiment after disconnecting the capacitor CB in branch AB , i.e.; just remove the Bootstrapping capacitor, CB. Now you have taken away the Bootstrapping.

Voltage gain without bootstrap

Vi							Vi, max
Vo							
Av							

To measure Input Impedance $\mathbf{Z}_{\mathbf{i}}$:

1. Connect the circuit as shown below.

2. Set the DRB to minimum (0Ω). Apply a10 KHz sine wave signal of amplitude $1 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ or any suitable value to get an undistorted output.
3. Measure $\mathrm{V}_{\mathrm{O}}(\mathrm{p}-\mathrm{p})$. Let $\mathrm{V}_{\mathrm{O}}=\mathrm{Va}$ (say) with DRB value $=0$
4. Increase DRB value in steps till $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{A}} / 2$. The corresponding DRB value gives Z_{I}.
5. Repeat the experiment by disconnecting CB , the bootstrapping capacitor.
6. Compare the two input impedance values you have measured.

To measure output impedance, Zo:

1. Connect the circuit as shown in figure

2. Set the DRB to its maximum resistance value. Apply a 10 KHz sine wave of amplitude1V (p-p) or any suitable value to get undistorted output
3. Measure $V_{O}(p-p), V_{O}=V_{B}$ without $D R B$ connection or $D R B$ value at Max.
4. Decrease DRB value in steps till $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{B}} / 2$. The corresponding DRB value gives Z_{O}.
5. In this part of the experiment, it is likely that the \mathbf{o} / \mathbf{p} wave form may get distorted as the DRB value is decreased. Then, V_{I} has to be set to a lower value and the steps
to be repeated. Note carefully that the answer will be wrong if you take readings with distorted output.
6. Repeat the experiment by disconnecting the Bootstrapping capacitor.

RESULT:

1. Voltage Gain with Boot Strap. :
2. Voltage Gain with Boot Strap. : \qquad
3. Input Impedance, Zi , with Bootstrap. \qquad
4. Input Impedance, Zi, without Bootstrap. \qquad
5. Output Impedance, Z 0 , with Bootstrap. \qquad
6. Output Impedance, Z0, without Bootstrap. : \qquad
7. Current Gain, Ai, With Bootstrap. \qquad
8. Current Gain, Ai, Without Bootstrap. : \qquad

$$
\mathbf{V}_{\mathbf{i}}=\mathbf{Z}_{\mathbf{i}} \times \mathbf{I}_{\mathbf{i}}, \mathbf{V}_{\mathbf{o}}=\mathbf{Z}_{0} \times \mathbf{I}_{\mathbf{0}} \square \mathbf{A}_{\mathbf{i}}=\left(\mathbf{I}_{0} / \mathbf{I}_{\mathbf{i}}\right)=\mathbf{A}_{V} \times\left(\mathbf{Z}_{i} / \mathbf{Z}_{0}\right)
$$

CONCLUSION:

\square

EXPERIMENT NO 6 Simplification \& Realization of Boolean Expressions

Aim: Simplification, realization of Boolean expressions using logic gates/Universal gates.

Components Required:

Sl. No	Name of the Component	IC number	Qty
1	AND gate	7408	2
2	OR gate	7432	2
3	Not gate	7404	2
4	EXOR gate	7486	2
5	NAND gate	7400	2
6	NOR gate	7402	2
7	EX-NOR gate	4077	1
8	Patch chords		few
9	Trainer Kit		

NOT GATE

SYMBOL

TRUTH TABLE

Dec	$I / P(A)$	$O / P \overline{(A)}$
0	0	1
1	1	0

IC 7404

OR GATE

AND GATE

SYMBOL

TRUTH TABLE

Dec Eq	Inputs		Output
	A	B	Y
0	0	0	0
1	0	1	0
2	1	0	0
3	1	1	1

IC 7408

NAND GATE

SYMBOL
TRUTH TABLE

Dec Eq	Inputs		Output
	A	B	Y
0	0	0	1
1	0	1	1
2	1	0	1
3	1	1	0

IC $\mathbf{7 4 0 0}$

NOR GATE

SYMBOL

	Inputs			Output
	A	B	Y	
	0	0	1	
1	0	1	0	
2	1	0	0	
3	1	1	0	

IC7402

XOR GATE

sYMBOL
$A \longrightarrow-Y=A \oplus B$

Dec Eq	Inputs		
	A	B	Y Y
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	0

IC- 7486

EX-NOR GATE

SYMBOL

$\mathrm{A} \longrightarrow-\mathrm{Y}=\mathrm{A} \oplus \mathrm{B} \quad$| $\operatorname{Dec} \mathbf{E q}$ | Inputs | | |
| :---: | :---: | :---: | :---: |
| | A | B | Y (put |
| 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 2 | 1 | 0 | 0 |
| 3 | 1 | 1 | 1 |

Implementation of Basic Gates Using Universal Gates

NAND gate as AND gate
Logic Diagram
Truth Table

Dec Eq	Inputs		
	A	B	Output
0	0	0	0
1	0	1	0
2	1	0	0
3	1	1	1

NAND gate as OR gate
Logic Diagram
Truth Table

Dec Eq	Inputs		Output
	A	B	Y
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

NAND gate as NOT gate
Logic Diagram
Truth Table

Dec Eq	$\mathrm{I} / \mathrm{P}(\mathrm{A})$	$\mathrm{O} / \mathrm{P} \overline{(\mathrm{A})}$
0	0	1
1	1	0

NAND gate as NOR gate

Logic Diagram

Truth Table

Dec Eq	Inputs		Output
	A	B	Y
0	0	0	1
1	0	1	0
2	1	0	0
3	1	1	0

NAND gate as Ex-OR gate
Logic Diagram
Truth Table

Dec Eq	Inputs		Output
	A	B	Y
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	0

NAND gate as Ex-NOR gate

NOR gate as AND gate

Logic Diagram

Logic Diagram

$=[A \bar{B}+\bar{A} B]=A \oplus B$
$\overline{\overline{\mathrm{AAB}} \overline{\mathrm{BAB}}}=[\mathrm{A}+\bar{B}] \overline{\mathrm{AB}}=[\mathrm{A}+B][\bar{A}+\bar{B}]$

Truth Table

Dec Eq	Inputs		Output
	A	B	Y
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	0

Truth Table

Dec Eq	Inputs		Output
	A	B	Y
0	0	0	0
1	0	1	0
2	1	0	0
3	1	1	1

NOR gate as OR gate
Logic Diagram
Truth Table

Dec Eq	Inputs		
	A	B	Y 价put
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

NOR gate as NOT gate

Logic Diagram

Truth Table

Dec Eq	$I / P(A)$	$O / P \overline{(A)}$
0	0	1
1	1	0

NOR gate as NAND gate

Logic Diagram

Truth Table

Dec Eq	Inputs		Output
	A	B	Y
0	0	0	1
1	0	1	1
2	1	0	1
3	1	1	0

NOR gate as Ex-NOR gate

Logic Diagram

Truth Table

Dec Eq	Inputs		Output
	A	B	Y
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	0

NOR gate as Ex-OR gate

Logic Diagram

Truth Table

Dec Eq	Inputs		Output
	A	B	Y
0	0	0	1
1	0	1	0
2	1	0	0
3	1	1	1

Realize the following expressions in

(1) SOP form (sum of product)
(2) POS form (product of sum)

SOP FORM
$F(A, B, C, D)=\Sigma(5,7,9,11,13,15)$
\square

Simplification- SOP form
using basic gates

Using NAND gates

POS FORM

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\prod(0,1,2,3,4,6,8,10,12,14)
$$

Simplification- POS form

				10
00	0	$0{ }^{4}$	0^{12}	$0{ }^{8}$
01	$0{ }^{1}$	15	$1{ }^{\text {I/ }}$	19
	$0{ }^{3}$	$1{ }^{7}$	$1{ }^{15}$	
10	0	0^{5}	$0{ }^{14}$	$0{ }^{10}$

$$
y=(A+B) D
$$

Using basic gates

Using NAND gates

Truth table:

Procedure:

1. Place the IC in the socket of the trainer kit.
2. Complex Boolean Expressions are simplified by using K maps.
3. Make the connections as shown in the circuit diagram.
4. Apply different combinations of inputs according to the truth table and verify the outputs.
5. Repeat the above procedure for all the circuit diagrams.

Dec Eq	INPUTS				O/P
	A	B	C	D	$\mathrm{Y}=(\mathrm{A}+\mathrm{B})$ D
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	1

CONCLUSION:

EXPERIMENT NO 7 Half/ Full Adder \& Subtractor

Aim: Realization of half/Full adder and Half/Full Subtractors using logic gates.

Components Required:

Sl. No	Name of the Component	IC number	Qty
1	AND gate	7408	1
2	OR gate	7432	1
3	Not gate	7404	1
4	EXOR gate	7486	3
5	NAND gate	7400	3
6	NOR gate	7402	3
7	Patch chords		Few
8	Trainer Kit		

Half Adder Using Basic Gates

Truth Table				
DEC EQ	NPUTS		OUTPUTS	
	A	B	SUM	CARRY
0	0	0	0	0
1	0	1	1	0
2	1	0	1	0
3	1	1	0	1

Half Adder Using NAND Gates

Full Adder:

Truth Table

Dec Eq	Inputs			Outputs	
	A	B	Cin	Sum	Carry
0	0	0	0	0	0
1	0	0	1	1	0
2	0	1	0	1	0
3	0	1	1	0	1
4	1	0	0	1	0
$\mathbf{5}$	1	0	1	0	1
$\mathbf{6}$	1	1	0	0	1
$\mathbf{7}$	1	1	1	1	1

BCin					
A	00	01	11	10	
	0	1	0	1	
1	1	0	1	0	
	STM				

A
0
0

1 | $B C i n$ | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | |
| CARRY | | | | |

$$
\begin{aligned}
& \operatorname{SUM}=\overline{\mathrm{ABCin}}+\mathrm{ABCin}+\overline{\mathrm{ABCin}} \overline{-} \\
& \operatorname{SUM}=\operatorname{Cin}(\overline{\mathrm{AB}}+\mathrm{AB})+\overline{\operatorname{Cin}}(\overline{\mathrm{AB}}+\overline{\mathrm{AB}}) \\
& \operatorname{SUM}=\operatorname{Cin} \mathrm{XOR}(\mathrm{AXOR} \mathrm{~B})
\end{aligned}
$$

Logic Diagram Using Basic Gates

Using NAND Gates:

Half Subtractor

Truth Table

Dec Eq	INPUTS		OUTPUTS	
	A	B	Diff	Barrow
0	0	0	0	0
1	0	1	1	1
2	1	0	1	0
3	1	1	0	0

Using NAND gates

Full Subtractor

Truth Table

Dec Equi	Inputs			Outputs	
	A	B	Bin	Diff	Borrow
0	0	0	0	0	0
1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	1	0	0	1	0
5	1	0	1	0	0
6	1	1	0	0	0
7	1	1	1	1	1

Diff $=\bar{A} \bar{B} \operatorname{Bin}+\bar{A} B \overline{\operatorname{Bin}}+A \bar{B} \overline{\operatorname{Bin}}+A B \operatorname{Bin}$
$=(\bar{A} \bar{B}+A B) \operatorname{Bin}+(\bar{A} B+A \bar{B}) \overline{\operatorname{Bin}}$
$=(A \odot B) \operatorname{Bin}+(A \oplus B) \overline{\operatorname{Bin}}$
Diff $=\mathrm{A} \oplus \mathrm{B} \oplus \mathrm{Bin}$

Bout $=\bar{A} \bar{B} \operatorname{Bin}+\bar{A} B \overline{B i n}+\bar{A} B \operatorname{Bin}+A B \operatorname{Bin}$
$=\overline{\mathrm{A}} \overline{\mathrm{B}} \operatorname{Bin}+\mathrm{B} \overline{\operatorname{Bin}}]+[\mathrm{A}+\overline{\mathrm{A}}] \mathrm{B}$ Bin
Bout $=\overline{\mathrm{A}}(\mathrm{B} \oplus \operatorname{Bin})+\mathrm{B}$ Bin

Logic Diagram

Using NAND Gates

Procedure:

1. Obtain the Boolean Expressions for Half/Full adder and subtractor (sum \& Carry) by writing the truth table and simplifying with the help of K-map.
2. Make the connections as shown in the logic diagram.
3. Apply different combinations of inputs according to the truth table and verify the outputs.
4. Repeat the above procedure for all the circuit diagrams.

Conclusion:

\square

EXPERIMENT NO 8
 Parallel Adder/Subtractor and Code Conversion

AIM: (1) Realization of Parallel adder/subtractor using 7483chip
(2) BCD to EXCESS-3 code conversion and vice versa

Aim: Realization of Parallel adder/subtractor using 7483chip Components required:

Sl. No	Component	IC number	Qty
1	EXOR gate	7486	1
2	4 bit parallel adder/subtractor	7483	1
3	Patch chords		few
4	Trainer Kit		

Pin diagram \& Logic diagram

Block Diagram

Procedure:

1. Make the connections as per logic diagram.
2. For addition, make $\mathrm{C}_{\mathrm{in}}=0$ and apply the 4 bits as input A and apply another set of 4 -bits as B. Observe the output at $S_{3}, S_{2} S_{1} S_{0}$ and carry generated at $C_{\text {out }}$.
3. Repeat the above steps for different inputs and tabulate the result.
4. For subtraction C_{in} is made 1 .
5. Verify the difference. $S_{3}, S_{2} S_{1} S_{0}$ and $C_{\text {out }}$.

If $\mathrm{C}_{\text {out }}$ is 0 , diff is negative and diff is 2 's complement form.
If $\mathrm{C}_{\text {out }}$ is 1 , diff is positive.
6. Repeat the above steps for different inputs and tabulate the result.

Readings:

$\mathrm{C}_{\text {in }}$	Inputs								Outputs				
	A_{4}	A_{3}	A_{2}	A_{1}	B_{4}	B_{3}	B_{2}	B_{1}	$\begin{gathered} \text { Carry } \\ \text { C }_{\text {out }} \\ \hline \end{gathered}$	S_{4}	S_{3}	S_{2}	S_{1}
0 for addition	1	0	0	1	1	0	0	1	1	0	0	1	0
	0	1	1	1	0	0	0	1	0	1	0	0	0
1 for subtraction	1	0	0	1	1	0	0	0	1	0	0	0	1
	0	0	0	1	0	0	1	1	0	1	1	1	0

Conclusion:

Aim: Realization of BCD to Excess-3 code conversion and vice versa.

Truth table

BCD to Excess-3

BCD (Inputs)				Excess-3 (Outputs)			
A4	A3	A2	A1	X4	X3	X2	X1
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

Excess-3 to BCD

Excess-3 (Inputs)				BCD (Outputs)			
X4	X3	X2	X1	S4	S3	S2	S1
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	1	0	0	0	1	1
0	1	1	1	0	1	0	0
1	0	0	0	0	1	0	1
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	1
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	1

Circuit Diagram

Cin=0 for BCD to Excess-3
Cin=1 for Excess-3 to BCD

Procedure:

1. Write Truth table for BCD to Excess-3 as well as Excess-3 to BCD conversion.
2. Obtain the simplified boolean expression using k-map.
3. Connections are made as per the logic diagram

- For BCD to Excess -3 code conversion $\rightarrow 3$ has to be added to input bits. make $\mathrm{Cin}=0$.
- For Excess-3 to BCD code conversion $\rightarrow 3$ has to be subtracted from the input therefor $\mathrm{Cin}=1$.

4. Apply different combinations of inputs and verify the truth table.

Conclusion

\square

EXPERIMENT NO 9

Binary to Gray and Gray to Binary code conversion

Aim: Realization of Binary to Gray code conversion and vice versa.

Components Required:

Sl.No	Name of the component	IC Number	Quantity
1	EXOR gate	7486	1
2	NAND gate	7400	4
3	Patch chords		Few
4	Trainer Kit		

Binary to Gray code

$$
\mathbf{G 3}=\sum(8,9,10,11,12,13,14,15)
$$

$$
\mathrm{G} 3=\mathrm{B} 3
$$

$$
\mathbf{G} 2=\sum(4,5,6,7,8,9,10,11)
$$

$\overline{\mathrm{B} 3 \mathrm{~B}} 2+\mathrm{B} 3 \overline{\mathrm{~B} 2}$
$B 3 \oplus B 2$

$$
\mathbf{G} 1=\sum(2,3,4,5,10 ., 11,12,13)
$$

$\mathbf{G} \mathbf{0}=\sum(\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{5}, \mathbf{6}, 9,10,13,14)$

$$
\begin{aligned}
& \mathrm{G} 0=\overline{\mathrm{B}} 1 \mathrm{~B} 0+\mathrm{B} 1 \overline{\mathrm{BO}} \\
& \mathrm{G} 0=\mathrm{B} 1 \oplus \mathrm{~B} 0
\end{aligned}
$$

Truth Table:

BINARY					GRAY CODE			
Inputs				Outputs				
B3	B2	B1	B0	G3	G2	G1	G0	
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	1	
0	0	1	0	0	0	1	1	
0	0	1	1	0	0	1	0	
0	1	0	0	0	1	1	0	
0	1	0	1	0	1	1	1	
0	1	1	0	0	1	0	1	
0	1	1	1	0	1	0	0	
1	0	0	0	1	1	0	0	
1	0	0	1	1	1	0	1	
1	0	1	0	1	1	1	1	
1	0	1	1	1	1	1	0	
1	1	0	0	1	0	1	0	
1	1	0	1	1	0	1	1	
1	1	1	0	1	0	0	1	
1	1	1	1	1	0	0	0	

Using XOR Gates:

GRAY TO BINARY

Truth Table:

GRAY CODE				BINARY CODE			
Inputs				Outputs			
G3	G2	G1	G0	B3	B2	B1	B0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1
1	0	0	0	1	1	1	1
1	0	0	1	1	1	1	0
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	0	1	0	1	1
1	1	1	1	1	0	1	0

Logic Diagram:

Procedure:

1. Write Truth table for Binary to Gray code as well as Gray code to Binary conversion.
2. Obtain the simplified boolean expression using k-map.
3. Connections are made as per the logic diagram
4. Apply different combinations of inputs and verify the truth table.

Conclusion

\square

EXPERIMENT NO 10

Ring \& Johnson Counters

Aim: Design and testing of Ring counter/Johnson counter using IC-7495
RING COUNTER USING IC-7495

Components Required:

S1.No	Name of the Component	IC number	Quantity
1	Ring Counter	7495	1
2	NOT gate	7404	1
3	Patch chords		few
4	Trainer Kit		

Truth Table

Input	Outputs			
Clock Pulse	Q0	Q1	Q2	Q3
t 0	1	0	0	0
t 1	0	1	0	0
t 2	0	0	1	0
t 3	0	0	0	1
t 4	1	0	0	0

Procedure:

1. Connections are made as shown in the logic diagram.
2. The data 1000 is applied at $\mathrm{D} 0, \mathrm{D} 1, \mathrm{D} 2$ \& D 3 respectively.
3. Keeping the mode $\mathrm{M}=1$, one clock pulse is applied. The data 1000 appears at Q0, Q1, Q2 \& Q3.
4. Keeping $\mathrm{M}=0$, clock pulses are applied and truth table is verified.

JHONSON COUNTER USING IC-7495

Truth Table

Input	Outputs			
Clock Pulse	Q0	Q1	Q2	Q3
t0	1	0	0	0
t 1	1	1	0	0
t 2	1	1	1	0
t 3	1	1	1	1
t4	0	1	1	1
t5	0	0	1	1
t6	0	0	1	1
t 7	0	0	0	1
t 8	1	0	0	0

Procedure:

1. Connections are made as shown in the logic diagram.
2. The data 1000 is applied at $\mathrm{D} 3, \mathrm{D} 2, \mathrm{D} 1 \& \mathrm{D} 0$ respectively.
3. Keeping the mode $\mathrm{M}=1$, one clock pulse is applied. The data 1000 appears at Q0, Q1, Q2 \& Q3 respectively.
4. Keeping $M=0$, clock pulses are applied and truth table is verified.

Conclusion:

\square

EXPERIMENT NO 11

Sequence Generator

Aim: Design and testing of Sequence generator.
Take the sequence as: $\mathbf{1 0 0 0 1 0 0 1 1 0 1 0 1 1 1}$
Design: There are 15 bits, so there will be 15 states $s=15$. So at least 4 flip-flops are required.
Components Required:

Sl. No	Name of the Component	IC Number	Quantity
1	Shift register	7495	1
2	Ex-OR	7486	1
3	Trainer Kit		1
4	Patch Chords		few

Truth Table

SI.	Outputs			
No.	A	B	C	D
1	1	1	1	1
2	0	1	1	1
3	0	0	1	1
4	0	0	0	1
5	1	0	0	0
6	0	1	0	0
7	0	0	1	0
8	1	0	0	1
9	1	1	0	0
10	0	1	1	0
11	1	0	1	1
12	0	1	0	1
13	1	0	1	0
14	1	1	0	1
15	1	1	1	0

Simplification

$$
\begin{aligned}
& F=\bar{C} D+C \bar{D} \\
& F=C \oplus D
\end{aligned}
$$

Procedure:

(1) The sequence is written such that no state repeats itself. The binary sequence is repeated once in every $2^{\mathrm{N}-1}$ clock cycles.
(2) The Expression for ' f ' is got using K-map.
(3) Rig up the circuit as shown in the figure.
(4) Initially let $\mathrm{M}=1$, $\mathrm{clkp}=\mathrm{c}_{\mathrm{p}}$, the initial state (A, B, C, D-1111) is loaded.
(5) Then make clks $=C_{p}, M=0$, output is observed at MSB (A).

Note: When we observe the sequence, which is to be generated, the LSB is a 1 , following bit is 0 . If 0 has to be generated, then input to that particular D-Flip Flop must be a 0 . Therefore $f\left(Q_{A}, Q_{B}, Q_{C}, Q_{D}\right)$ has its first entry as 0 .

Conclusion:

EXPERIMENT NO 12

Mod-N Counter

Aim: Realization of 3-bit counters as a sequential circuit and mod-N counter design using 7476, 7490, 74192, 74193.

Components Required:

Sl.No	Name of the Component	IC Number	Qty
1	Decade Counter	7490	1
2	Programmable 4-bit Sync up/down decade Counter	74192	1
3	Programmable 4-bit Sync up/down Counter	74193	1
4	Patch chords		few
5	Trainer Kit		

To realize a MOD-N counter using IC-7490

PIN DIAGRAM

INTERNAL DIAGRAM

Functional Table

Inputs					Outputs				
R1	R2	S1	S2	Qa	Qb	Qc	Qd		
H	H	L	X	L	L	L	L		
H	H	X	L	L	L	L	L		
X	L	H	H	1	0	0	1		
L	X	L	X	MOD-2 COUNTER					
X	L	X	L	MOD-5 COUNTER					

7490 AS MOD-2 COUNTER

7490 AS MOD- 5 COUNTER

7490 AS MOD-6 COUNTER

INVALID STATE 0110

7490 AS MOD-8 COUNTER

INVALID STATE-1000

7490 AS MOD-10 COUNTER

Procedure:

1. Connections are as per the logic diagram.
2. Inputs are applied at R1, R2, S1 \& S2.
3. Apply clock pulses one by one and verify the truth table.

PIN DETAILS OF IC-74192

MOD-6 UP COUNTER: Invalid state o110

MOD-9 DOWN COUNTER:
INVALID STATE 1001

DESIGN A COUNTER WHICH CAN COUNT FROM 7 TO 9

NOTE After 1001, output becomes 0000

Procedure:

1. Connections are made as shown in the logic diagram with load pin open.
2. The present value is made available at the data inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
3. The load pin is made low so that the present value appears at $\mathrm{Qd}, \mathrm{Qc}, \mathrm{Qb}$ and Qa .
4. The output of the gate is then connected to the load input.
5. Clock pulses are applied one by one and the truth table is verified.

MOD-N COUNTERS

To realize a MOD-N counter using IC-74193 with a given preset value, write down the expected function table

Pin details of IC 74193(Synchronous counter)

FUNCTION TABLE

Inputs				Outputs			
Clr $^{\prime}$	Load	Up	Down	Q_{d}	Q_{c}	Q_{b}	Q_{a}
H	X	X	X	0	0	0	0
L	L	X	X	D	C	B	A
L	H	Cp	H	COUNT UP			
L	H	H	Cp	COUNT DOWN			
L	H	H	H	NO CHANGE			

Design a counter which counts from (6-12) Invalid state 1101

REALIZE A (15-6) COUNTER USING IC 74193

Invalid state---0101
Note:-Lo and Bo are used basically for cascading the counters

Procedure:

1. Connections are made as shown in the logic diagram with load pin open.
2. The present value is made available at the data inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
3. The load pin is made low so that the present value appears at $\mathrm{Qd}, \mathrm{Qc}, \mathrm{Qb}$ and Qa .
4. The output of the gate is then connected to the load input.
5. Clock pulses are applied one by one and the truth table is verified.

Conclusion:

\square

Simulation
Experiments

AIM: Simulation of Input and Output characteristics of NPN transistor in Common Emitter Configuration.

PROCEDURE:

(For Schematics)

1. Double click on Pspice icon.
2. Go to File menu \& click on New.
3. Draw the following circuit. For that go to Get New Part menu. Select the components that you need. Connect with wire.

4. Go to Setup Analysis tick Bias Point Detail, DC sweep option. In DC sweep option do the following settings

Now click on Nested Sweep and do the following settings

5. Now click on Simulate. In simulation window click on Add Trace and select $\operatorname{IB}(\mathrm{Q} 2)$ and click OK . The Input characteristics will be displayed.

6. Go to Setup Analysis tick Bias Point Detail, DC sweep option. In DC sweep option do the following settings

Now click on Nested Sweep and do the following settings

7. Now click on Simulate. In simulation window click on Add Trace and select $\mathrm{IC}(\mathrm{Q} 2)$ and click OK. The Output characteristics will be displayed.

AIM: Simulation of Centre tap full wave rectifier.

PROCEDURE:

(For Schematics)

1. Double click on Pspice icon.
2. Go to File menu \& click on New.
3. Draw the following circuit. For that go to Get New Part menu. Select the components that you need. Connect with wire. Connect the voltage and current marker.

4. Now double click on VSIN symbol and set the following values $\mathrm{DC}=0, \mathrm{AC}=0, \mathrm{VOFF}=0, \mathrm{VAMPL}=12 \mathrm{v}$, FREQ=50. For R1 set VALUE=10.
5. Go to Setup Analysis menu and tick the option Bias Point Detail and Transient. In the Transient option set the Final Time at 100 ms .
6. Now click on Simulate. The output voltage and current waveform will be displayed.

AIM: Simulation of Full wave bridge rectifier.

PROCEDURE:

(For Schematics)

1. Double click on Pspice icon.
2. Go to File menu \& click on New.
3. Draw the following circuit. For that go to Get New Part menu. Select the components that you need. Connect with wire. Connect the voltage and current marker.

4. Now double click on VSIN symbol and set the following values $\mathrm{DC}=0, \mathrm{AC}=0$, VOFF $=0$, VAMPL $=12 \mathrm{v}$, FREQ=50. For R1 set VALUE=10.
5. Go to Setup Analysis menu and tick the option Bias Point Detail and Transient. In the Transient option set the Final Time at 100 ms .
6. Now click on Simulate. The output voltage and current waveform will be displayed.
(A) BRIDGE RECTIFIER (active)

AIM: Simulation of RC coupled amplifier.

PROCEDURE:

(For Schematics)

1. Double click on Pspice icon.
2. Go to File menu \& click on New.
3. Draw the following circuit. For that go to Get New Part menu. Select the components that you need. Connect with wire. Connect the VDB marker.

4. Now double click on VAC symbol and set the following values $\mathrm{ACMAG}=1 \mathrm{~V}$.
5. Go to Setup Analysis menu and tick the option Bias Point Detail, Transient and AC Sweep. In the AC Sweep option do the following settings and click OK.

In the Transient option set the Print setup 0ms and Final Time at 30ms and click OK.
6. Now click on Simulate and select the Analysis type AC. The frequency response will be displayed.

