ANALOG AND DIGITAL ELECTRONICS

MODULE -2
THE BASIC GATES & THE COMBINATIONAL LOGIC CIRCUITS
THE BASIC GATES

PREREQUISITES:
Electronic circuits and systems can be divided into two broad categories — analog and digital. Analog
circuits are designed for use with small signals and are used in a linear fashion. Digital circuits are
generallry used with large signals and are considered nonlinear. Any quantity that changes with time can
be represented as an analog signal or it can be treated as digital signal.

Digital electronics involves circuits that have exactly two possible states. A system having only

two states is said to be binary. The binary number system is widely used in digital electronics.

Hexa-Decimal | Decimal Binary Hexa-Decimal | Decimal Binary
0 0 0000 8 8 1000
1 1 0oeol 9 9 1001
2 2 0010 A 10 1010
3 3 0011 B 11 1011
4 4 0100 C 12 1100
5 5 o010t D 13 1101
6 6 6110 E i4 1110
7 7 0111 F 15 1‘111

The operation of electronic circuits can be described in terms of its voltage levels — high (H) level and low
(L) level. This could be related to the binary number system by assipning L=0=F (false)and H=1=T
(true).

F
. T oot
eI S vk
H

p -

bt g
Fajag

A i £

Symmetrical Signal & Asymmetrical Signal

The frequency is defined as, f=1/T where, T is the period of the signal.

Duty Cycle is a convenient measure of how symmetrical or how unsymmetrical a waveform is.

Duty Cycle = —2 Duty Cycle,H = —2%— Duty Cycle,L = —2L—
Tont Topr

Ton+ Tuﬁr Tont Toff

ANALOG AND DIGITAL ELECTRONICS

TEW OF LOGIC GATES:

Truth Table
Circuit Symbeol Verilog IC Details
A B X
NOT Gate: o | - | 1 7 F G EL G
X=-
not (X, A
|) 0 X, A}
0 0 0]
0 1 1 X=A|B
1 0 1 or (X, A, B)
1 1 1
AND Gate: o popo
A X 0 1 0 X=A&B
B:' 1 0 0 and (X, A, B)
N 3 3 O 3 0 [
X=AB I 1 1 Quad 2 Input AND Gate "™
NOR Gate: 0 0 1 fe lr__l‘ll‘ i E[_]
A o x| 9 [[0 X =~A|Bj e e
%@ [
, 1 0 0 nor (X, A, B) E) I :rr_] ‘
B - T T T ¥ T
X = A 1 1 0 T QUAD 2 In Put NOR GATE
NAND Gate: 0 | 0 1 'l mBnRmim alinl
0 1 1 X=~A&B)
1 0 1 nand (X, A, B)
1 1 0
0 0 0
! 0 1 xor (X, A, B)
X = A®B]
= AB+ AB 1 1 0 Quad 2 Input Ex-OR Gate
XNOR Gate: 0 0 1 -4Tu| up i w] UL
0 | 1 |0 x__anB l—% L@__‘
1€ 74366
) e | e
1 1 1 1' II JI li S‘ 5‘ PE NG

e MAHESH PRASANNA K., VCET, PUTTUR

— |0

INVERTER

- -

X= (A+B') = AB D

X=(AB'Y = AtB

Bubbled AND Gate:

Bubbled AND gate and NOR gate are equivalent

De Morgan’s First Theorem:
The complement of a sum equals the product of the complements, ~~ A+B = A.B

""" B — ,‘MAHES‘I:[?BASANNA K., VCET, PUTTUR

ANALOG AND DIGITAL ELECTRONICS

A+B | A | B | AB
1 1 1 1
0 1] 0
1|0 1 0 0 1 0
11 1 0 0 0 0
NOR Gate Bubbled AND Gate

Bubbled OR Gate:
A4
ro. a@m ¥
Bubbled OR gate and NAND gate are equivalent

De Morgan’s Second Th e;;-:

predu surm _— - =

The complement of a Sum equals the preduet of the complements. AB= A+ B
Proof:

alel arn V728 L2l R A+p

0|0 0 1 1 | 1

011 0] 1 0 I

10 0 1 0 1 l

1|1 1 0 0 0 o

NAND Gate Bubbled OR Gate

Duality Theorem: Starting with a Boolean relation, you can derive another Boolean relation by -
{. Changing each OR sign to an AND sign
2. Changing each AND sign to an OR sign
3. Complementing any 0 or lappearing in the expression.
Example: 1. We say that, A+0 = A; the dual is, A1 =A
2. Consider, A(B+C)=AB+AC
By changing the OR and AND operation, w'e get the dual relation:
A + BC=(A+tB)A+C)

Laws of Boolean Algebra:
¥ The following laws are of immense use in the simplification of Boolean expressions.

T —-—-MAHESH PRASANNA K., VCET, PUTTUR

,,,,

i Isfote that, if A is a variable, then either A=0or A=1. Also, when A=0, A £ 1;
and whenA=1,A#0.

De Morgan’s First Theorem.-

The complement of sum is equal to the product of the complements.

(A+By=A".B i.e., a bubbled AND gate & a NOR gate are equivalent.
De Morgan’s Second Theorem:-

The complement of a product is equal to the sum of the compliments.

(A.BY=A"+B" i.e., a bubbled OR gate & a NAND gate are equivalent.

1) Commutative Law:-

A+tB=B+A and A.B=B.A
2} Associative Law:-
A+(B+C)=(A+B)+C and A.(BO)=(AB).C

3) Distributive Law:-
AB+C)=AB+AC

4) Inrelation to OR operation, the following laws hold good:-
A+0=A
A+A=A
A+l=1land
A+A’=
5) Inrelation to AND operation, the following laws hold good.:-
A.l=A
A.A=A
A.0=0
A A =0
A=A

6) Some more useful Boolean relations:-
A+AB=A
A+A’B=A+B
AA+B)=A
A(A’+tB)=AB
A+(B.CQ=(A+B)(A+C)

e MAHESH PRASANNA K., VCET, PUTTUR

ANALOG AND DIGITAL ELECTRONICS

Ea}ion of Boolean Expressions.-
+» The following hints are found to be of use, in reducing complex Boolean expressions —
1. If there are parentheses present in the given expression, they are removed first; since,
multiplication should precede addition.
Eg:-AB+C(A+B)=AB+AC+BC
2. IHfthere are several identical terms, all except one can be removed.
Eg:-A+B+C+A.1=A+B+C+A=A+B+C

3. Ifavariable repeats in a term, only one variable may be retained.

Eg:-A. A=A
B.B.C=BC
4, If in any term, both a variable & its complement are present, that term may be removed; since,
AN =0

Eg:-XX'Y=0.Y=0
5. Identify pairs of terms which contains same variables. If in 2 pair, 2 variable is absent in one term,
it can be removed.
E.g.:- ABCD+ ABC=ABC(D+1)
=ABC .1 since, | + D=1
= ABC
6. If, in a pair of terms, several variables are common, and another variable is present in one term &
its complement is present in another term, this variable & its complement can be removed.
E.z.- ABC + A’BC=BC (A’ + A)
=BC.1 since, A+ A=
=BC

Problem: A signal waveform has a frequency of of 3 MHz, and the width of the positive pulse is 0.05 ps.

What is the high duty cycle?
Solutum é)w ;j 5 Mz ‘;E 72/)! 4 ﬂg)’s E‘Pﬂ?ﬁ H r

/Dﬁ/"ﬂ ﬁ/ e pavelorm js. - T

/ =57:/?“ Ly

oW LM
7 7o ——{a%;f%}.

Problem: An asymmetrical signal waveform is high for 2 ms and low for 5 ms. Find the frequency and

oo 57»)/ &%ﬁ)c’, M=

duty cycle L of the waveform.
“=+ - .MAHESH PRASANNA K., VCET, PUTTUR

TorE
, T .
ANALOG AND DIGITAL ELECTRONICS }’c——'T -—
Giver: Tom =2ms F Trre=Ems.
Freauenc L B N By
a Cﬂ ’ - ‘7" - -2 - ?x / -2
| Tow Terr (29EINE 2
————
_ Ter)73
Q?uj CJD)@, L= = c /’_3 = p- P4 = F)4)
FAP -
Problem: Show the logic circuit for; Y = AB + AB
Solution: ‘ R =
—
Problem: Show the logic circuit for; Y = (A + BYA + B) and simplify.
Solution: A
1 7
Problem: Implement the following fimction using only NAND gates: ((A + B)C})D.
Solution:
—— F_——- by
2 == s Pr¥&/C Jd
§— >0~ FE-pr8 ~BEC __ [(pE)C]) P &rc)
5 P P
174 &
e
v
NOTE: The signal changes between the logic levels are not instantaneous sewl T
but take an amount of time. /
The time taken for the signal voltage to rise from low-level to a high-level ,./
is called rise time, ¢,. _ f;
The time for the signal voltage to fall from a high-level to a low-level F‘i /%5
Risn Sirow —

is called fall time, ¢

= .. MAHESH PRASANNA K., VCET, PUTTUR

.- ANALOG AND DIGITAL ELECTRONICS

ITIVE AND NEGATIVE LOGIC:

If we use a binary 0 for low voltage and binary 1 for high voltage, then it is called posifive logic.
Choosing H=1 =T and-L = 0 = F is called positive logic. If we use a binary 0 for high voltage and
binary 1 for low voltage, then it is called negative logic. Choosing H=0=Fand L =1 =T is called

negative logic.

Positive and Negative Gates:
In a positive logic system, binary 0 stands for low and binary 1 for high. Consider the following Table.

Note that, Y is 1 if either A or B is 1. This is OR gate; and it is because, we are using positive logic.

AlBlY Positive OR AlBLY AlB|Y

0l0]0 ololo 1111
ﬂ

o011 DY 011 1|00

1101 B 1101 R

RN Negative AND : RS 01010

In a negative logic system, binary 1 stands for low and binary 0 for high. With this code we can convert
the 1% Table to 3™ Table. Here, the output Y is 1, only when both A and B are 1. This is AND gate; and it
iz hecaune, we 2re using negative logic. Hence, gates are defined by the way they process the binary Os
and ls.

In the similar way, we can find the following equivalences between the positive and negative logic:

Positive OR — Nepgative AND
Positive AND - Negative OR
Positive NOR > Negative NAND
Positive NAND — Negative NOR

Assertion-Level Logic:

Many designers draw logic circuits with bubbles on all pins with active-low signals or omit .buBbles on all
pins with active-high signals. This use of bubbles with active-low signals is called assertion-level logic. It
means that you draw chips with the kind of input that causes something to happen, or with the kind of
output that indicates something has happened. If a low input turns on a chip, you show a bubble on that
input. If a low output is a sign of chip action, you draw a bubble on that output. You can equate the word
assert with activate.

E.g.: The 74150 Multiplexer has an active low input STROBE; this input turns on the chip only when it is

low. This is an active-low signal, which causes something to happen when it is low, rather than high.

----- "= - _MAHESH PRASANNA K., VCET, PUTTUR

-----MAHESH PRASANNA K., VCET, PUTTUR

L

=" ANALOG AND DIGITAL ELECTRONICS

- ()‘ﬂﬁCTlON TO HDL:
Hardware Description Language (HDL) — a textual description of a digital circuit — a language which is
more crisp, and machine readable.
Advantages:

1. To describe a large complex design requiring hundreds of logic gates in a convenient manner, in a

smaller space

2. To use software test bench to detect functional error, if any and correct it (called simmlation)

3. To get hardware implementation details (called synthesis)
There are two widely used HDLs — Verilog and Very high speed integrated circuit Hardware Description
Language (VHDL). Verilog is considered simple of the two and is more popular.

Verilog HDL:

Verilog, introduced in 1980, as a simulation and verification tool by Gateway Design Associations, later
acquired by Cadence Data Systems. Put to public domain in 1990, and is now controlled by a group of
companies and universities, called Open Verilog International.

Describing Input Qutput: In any digital circuit, there will be a set inputs and a set of outputs, often
termed as ports. The relationship between these inputs and outputs are explained within the digital circuit.
To design any circuit, that has (say) three inputs a, b, ¢ and two outputs x, y as shown in the following

Fig; the corresponding Verilog code can be written as follows:

/ maodule testeki{x,y,o bl Ymodule name with pont iD

input a.bho defines it poris

s owitputxy defines ouipst pors
e T - < Feodule body begin next descenibing logic relation
Lccmrctpe § A
§ e i
fmodule body onds
cisdinodule

N _/

Note that, module and endmodule are keywords for Verilog. A module describes a design entity with a

name or identifier selected by user (here it is testcks) followed by input output port list. The symbol “//* is
used to put comments and improve readability for a human. The module body describes the logic within
the black box which acts on the inputs a, b, ¢ and generates output x, y. Observe, where semicolon ;" is

used and where not to end the statement.

ANALOG AND DIGITAL ELECTRONICS

tingwModule Body: There are three different models of writing module body in Verilog HDL —
Structural, Data tlow, and Behavioral.
Structural Modeling:

c&zla ot gate A B Y A \
8t ¥

input A, 8 S def s two dnpun pord
auEput v; S0 ged ines Gne outpul port
er gli¥,A,81; sY0ere declaration with predefined kepword or ropresent ing

Jogio (.) 18 spriosal wppr Jefined gale ldenii{ier %/
endmodule -

N /

Verilog supports predefined gate level primitives such as and, or, not, nor, nand, xor, xnor, etc. The

syntax followed above can be extended to other gates.

For NOT Gate: not (output, input)

For 2 input OR Gate or {output, inputl, input2)

For 4 input OR Gate or (output, inputl, input2, input3, input4)

Note that, Verilog can take up to 12 inputs for logic gates. Comments when extended to the next line is
written within /* */. Identifiers in Verilog are casc sensitive, begin with a letter or underscore and

can be of any length. Observe the following:

Kmu fiaz 242(A,8.0,D,%); \

input A.B.C,D;

e P i
wire and_spl, and opl; // Inteinal comnections o __q{n-
and gitand opil A.Bi; /7 gl represents upper AND gate '_>“"’_ ¥
awnd g2 {and_opi.C. Dy 7/ 42 representy lower AND gate PRI
or giiY.and opl,and opll; // g3 represents the OR gate {,Wé j’”‘“‘“‘
andmodule o

. /

Note that, we define two intermediate variables; and opl and and op2, representing two AND gate

outputs through keyword wire. Wire represents a physical wire in a circuit.
MNow, write the Verilog code for the testckt (shown below):

- ._MAHESH PRASANNA K., VCET, PUTTUR

L

" ANALOG AND DIGITAL ELECTRONICS

module cestektia, b, o, ®,¥i;
foput a, b, o

output x,¥;
wire or_opl, or_opi; /* internal
connectionsg, cutpute of upper and o

lower OR gates respectively +/
or giior_opl.a,b}; // gl rapressnts upper OR gate
or gzlor_op2.b,el; // g2 reprements lower OR gate
por g3ix.c,or_opli: // @3 represents the NOR gate
nand gé iy, or opl,or_opii; // gé represents the NAND gate

snducduls ' /

Preparation of Test Bench: A test bench in Verilog is used to simulate a digital circuit. Consider the

example of simulating a simple OR gate, for which Verilog code is described. The test bench creates the
input in the form of a timing waveform and passes this to OR gate module through a function or
procedural call. To generate timing waveform, we use the time delay available in Verilog in the form of
#n where n denotes a number in decimal that gives delay in nanosecond; E.g.: #20. (NOTE: All practical

logic circuit comes with finite gate delay', i.e., output changes according to input after certain time).

v TN

module testor; /f Simulation module given a name testor
reg A, B; // Storage of data for passing it to module OR_Gate \
wire X;
OR_Gate org (A, B, Y); // Circuit is instantiated with name OR_Gate
initial // Start simulation
begin /% Input is generated to test the circuit through following

statements, simulation begins */
" A=T1b0;B=1b0; //1°b0 signifies on binary digit with value 0, AB = 00
#20
A=1b0;B=1"bl; // After20ns, AB=01
#20
A=1'bl; B=1b0; // After 20 ns, AB= 10
#20
A=100; B=1’bl; // After 20ns, AB=11
#20

end

endmodule

e MAHESH PRASANNA K., VCET, PUTTUR

 ANALOG AND DIGITAL ELECTRONICS

input A, B;
output Y;

module OR_Gate (A, B, Y);

or #{20) gl(Y, A, B);

effected after 20 ns */

Qndmndnle

/1 OR gate used as procedure in simulation

/! Define two input ports (for two input OR gate)

/f Define one output port (OR gate output)

~

/* QGate declaration with a gate delay of 20 ns; output will be

/

The input AB given by testor is taking values 00, 01, 10, 11 and retain them for 20 ns. Output of OR gate

changes according to input but afier a delay of 20 ns. For first 20 ns, OR gate output is unknown, as it

needs 20 ns (gate delay) to respond. Note that, Verilog, in general offers four logic values in simulation:

0, 1, x (unknown), and z (high impedance). Unknown value is exhibited, when the input is ambiguous and

high impedance is shown,owhen a wire by mistake is left unconne

testpr, Y

X

cted.,

GO Spuy

|

teshr. B

k). B

L

oy Fops |

Verilog Simulation of 2 input OR gate with 20 ns given Delay

COMBINATIONAL LOGIC CIRCUITS

SUM-OF-PRODUCTS (SOPF) METHOD:

The following Fig shows four possible ways to AND two input sigha]s that are in complemented and un-

complemented form. These outputs are called fundamental products.

O)

—

P

g

R

A
P8 T)—hs _D)—2E 4=

&

Tre following Table lists each fundamental product next to the input conditions producing a high output.

A | B | Fundamental Products A B C | Fundamental Products
0 0 ﬁ g 0 0 0 /‘gg T
o |1 B3 o [o | 1 BEc
1]0)] g 0 1 0 DREE
1 1 B 0 1 1 ﬁ Zr

- .. MAHESH PRASANNA K., VCET, PUTTUR

ANALOG AND DIGITAL ELECTRONICS

1 1] 0 ﬁga’
1 0 1 ﬁga
1 1 0 ﬁ,g"’:"
1 1 1 »‘gﬂ

The fundamental products are also called minserms. Products are represented by m0, ml, m2, and m3

respectively.

Sum-of-Products Equation: Given a truth table, to get the sum-of-products solution —

1.
2.

Locate each output | in the truth table and write down the fundamental products

Identify all the fundamental products

3. OR the fundamental product.

Problem: For the following truth table, get the sum-of-products solution.

B

C

Y

0

0

1

0
0
0

—

A

0
G610
0

0

1

—
o o

—| O

Solution:

A|lB|C Y
0[0|0

01011

010

girrit ——'-Pﬁgc
1100

nojptit — ABc
N —=h2T
1111 —> RB2C

Logic Circuit: After getting a sum-of-products equation, derive the corresponding logic circuit by
drawing an AND-OR network or NAND-NAND network, as shown below: z

D8 Y N%b “(NPJ oK ol

I

-

BE L

¢+

f"

AND-OR Solution & NAND-NAND Solution

w=e... MAHESH PRASANNA K., VCET, PUTTUR

V=

-

DBC BEC A

BL
DEL.

" ANALOGAND DIGITAL ELECTRONICS

Simplify the Boolean equation. Y = ABC + ABC + ABC + ABC

Solution: _ E c
y"ﬁgf-)'ﬁﬁf-)-))éf.}-ggf i3] D
=C|PB+2B+PEB+pB »8 1%
32[5[2?—}3)-}}9[?-}@] Bf 4

PE D

=c[A1+p)] =Ca =T
TRUTH TABLE TO KARNAUGH MAP (K-MAP):

A Karnaugh Map is a visual display of the fundamental products needed for a sum-of-products solution.

Two-Variable Map: Three-Variable Map:
AIBIY[Y — A[B[C[Y)’\ a
B B C C_
01010y 0|0 00 =) , ‘
oitiol Bl OO ofol1]o nNE _-0__",?__,
bjeg! ofT]ol1 = X)
A) _ Y R
| - .. é Y 4 R S S '
1{ofojo P8 | R
rfof1]o IS
T{1[0]1 pE| O . O .
R Tt T
Four-Variable Map: 7{
—— — —
AlBIC[D[Y[[A[B]C[D]Y \CP “p D (D
ofolojojo| [1[0]0f0(0 A_‘]' — :
of(ojoft|t|[r]|o]oft]o A D!) s> N I
HofoJrfofo|j1{of1]oO]0 — --‘-,~—~'~--,--.:
ofol1|{1|o} [T]o]1]1]0 P& 0:9’]y
» T S B .
oj1jojojo| [r]1[ofo]® ,)
o[T{o|T]o| [T[1[0]|T[0 h% c.0 e,
I T S N ; 4
olr]|1joq1 1l1fr]oft — ! S IR
P38 . r , :
ol it 1| [T]t[1]1]0 ﬁﬁ ‘ﬁﬂ‘

wroeee MAHESH PRASANNA K., VCET, PUTTUR

e
Ol

i\

|

e

."’Jf’r

ANALOG AND DIGITAL ELECTRONICS

[QUADS, AND OCTETS:

airs: The following K-map contains a pair of 1s that are horizontally adjacent. Two adjacent 1s, such as

these arg called a pair. 4 pair eliminates one variable and its complement.

_ ..\ € Cocp B The guy /ﬂ/ joawa;); 292 33,
AE c 0 p .

» Y = ABLD »PBLD

PE o © 0

P8
P&

2l = pBL(DP+D)
% :

o 0O = JBC.

QA N | ©

Quad: A guad is a group of four 1s that are horizontally or vertically adjacent. 4 guad eliminates two

variable; and their complements.
\(fﬁ_ Zp o B Y = PBC » DB,

/i. o © o o =PB[C+c)

PElo o o o

— T = D5

[el

PE
Blo o o0

The Octet: The ocfet is a group of eight 1s, as shown in the following Fig. An octet eliminates three

variables and their complements.

_’_1\'55 €o cp 5 V= PB I PE
}93 iz % % o
Bz
5B
PEB

"~ MAHESH PRASANNA K., VCET, PUTTUR

- ~--MAHESH PRASANNA K., VCET, PUTTUR

" ANALOG AND DIGITAL ELECTRONICS

UGH SIMPLIFICATIONS:

A pair eliminates one variable and its complement. A quad eliminates two variables and their

complements. An octet eliminates three variables and their complements. Because of this, after drawing

the K-map, first encircle the octets, then the quads, and finally the pairs. Hence, the greatest simplification
results.
Problem: Using K-map, simplify, Y=%m (1,2,3,6,8 9 10,12, 13, 14).

Selution:

7_’55 Cp (p (D
) U N = BTy (D DED

Y
2\
N

78 O - (T
pB O | V) =h+PBEP
A" . y Yo= B+ BLP.
'NED _E2 _tp &2 5 To D (5
PBlo o © O 3 0o o O

B8
B
5B

Rolling}t}ne Map: .
D TP p Cp

73 :355—}35?

Eliminating Redundant Groups: After encircling groups, eliminate any redundant groups. This is a

group whose 1s are already used by other groups. _

\ D Cp cp [P

%WQ)D
Jfamy

—--MAHESH PRASANNA K., VCET, PUTTUR

' ANALOG AND DIGITAL ELECTRONICS

sion: The summary of the K-map method for simplitying Boolean equation:

Enter a 1 on the K-map for each fundamental product that produces a 1 output in the truth table.
Entet 0s elsewhere.

2. Encircle the octets, quads, and pairs. Remember to roll and overlap to get the largest groups
possible.

3. Ifany isolated Is remain, encircle each.

4. Eliminate any redundant group.

Write the Boolean equation by ORing the products corresponding to the encircled groups.

Problem: What is the simplified Boolean equation for the following equation expressed by minterms?

Y=F(A B C D =SM(7910 1112131415 Y= DR+ B+ 0+ E/D

Solution: L BERY,
— = = = £t VoSl R4, 7D
PEl o o o0 o JEC | Je
opro- 10 pplo
o 00) c oy lo
&0 \ O)]
RN i) A
) Op !
| 2 -
/0 : Ale C O
A /) Alo 8l A
Entcred Variable Map (EVM): In EVM, one of the input variaéles is placed inside K-map. This reduces
the K-map size by one degree; i.e. a three variable problem that requires 2° = 8 locations in K-map will
require 207" = 4 locations in EVM. This technique is particularly useful for mapping problems with more
than four variables.
Simplification of EVM: This is similar to K-map method. In Fig (a), C’ is grouped with 1 to get a larger
group as 1 can be written ac 1 = 1+ C’, Similarly, A is grouped with 1 in Fl)g (). _
e\ T c B
5 — =
A0 ﬁ Z 12 Ao
Sl A AR _
Fig(a 75135*,9,8 Flg(b))J/;,:/Qg,;-g[A }92;7"37(

Now, the product term representing each group is obtained by including map entered variable
(MEV) in the group as an additional ANDed term.
Hence, for Fig (a): Y = BC + AB.For Fig(b): Y = BC + AB.

Consider the EBM shown in Fig (¢). This has only two product terms; and doesn’t need a separate
coverage for 1, This is because, one can write | = C + C’, and C is included in one group and € is

included in other group.
~--MAHESH PRASANNA K., VCET, PUTTUR

| ANALOG AND DIGITAL ELECTRONICS

btem: Simplify Y (A, B, C) = Tm (2, 6, 7) by using entered variable map method by —
al “A” as map entered variable

b) "C” as map entered variable.

Solution:

DON'T CARE CONDITIONS:
In some digital systems, certain input conditions never occur during normal operation; therefore, the

corresponding output never appears. Since the output never appears, it is indicated by an X in the truth

table. The X is called a don 't-care condition.
Example: Consider the following truth table with don’t care conditions for all the inputs from 1010 to

111,

BECPH

A%
000)
o0 10
o0]}
3 2%
o)y)
20
o))}
| P00
00!

)0)p

/!

=~ .MAHESH PRASANNA K., VCET, PUTTUR

\
\

IR

XX = RVNQAVIT <

ANALOG AND DIGITAL ELECTRONICS

lber these points about don’t-care conditions:
1. Given the truth table, draw the K-map and transfer Os, 1s, and don’t-care terms.
2. Encircle the actual 1s on the K-map in the largest groups you can find treating don’t cares as 1s.

3. After the actualls have been included in the groups, disregard the remaining don’t cares by

visualizing them as 0s.

Problem: What is the simplest logic circuil for —
a) Y=F(4, B C D)=Fm(0)+3d(8 9 10 11, 14, 13)
b) Y=F(4, B C D)=YXm(0)+2d(12 13 14 I5)
¢) Y=F(4, B C,D}=Ym(7)+2d(I0, 11, 12,13 14, 13).

Solution:

@y SomlD+5ALED, 0)41«_);%)
\ cY Ep cp cD al 1
= R e
? 1) o o O '{ r)T =ABE
PEV O © o © 1
B|lo o = x @zzg@y)@ﬁ&z;&%zs)
/Q/J@x x x ¢ 25 Ep cr B
,f_fyfr‘éfﬁ nE @ v o 0
f)gLa.?' P2l © © o© ©
h }y_zﬂé’fﬁ PEL + b 4+ %
2 0 o o0 0o
O Vs=S mlF)+ SA[9N11203 0008 V,=BBEB,
¥\ 25 Fp cp 5 22CD

?5 c %4 o =

2o r0s (TED e
= x X

)32’ o 0O % X |

" MAHESH PRASANNA K., VCET, PUTTUR

Z’z A

" ANALOG AND DIGITAL ELECTRONICS

o
”
e

DUCT-OF-SUMS (POS) METHOD:
With SOP method —

o A fundamental product produces an output J for the corresponding input condition.
With POS method —

o A fundamental sum produces and output 0 for the corresponding input condition.
Product-of-Sums Equation: In the following Table, the first output 0 appears for A=0,B = O,and C =
0. The fundamental sum for these inputs is A + B + C; because, this produces an output zero for the
corresponding input condition: Y=A+B+C=0+0+0=0. |

A [B | C| Y —Fundamental Sum | Max-term
ofoJofo-A+B+C MO
olof1 M1
o101 M2
ol1[1]o-A¥ B+ C M3
1lofo]1 M4
1fof1]1 M5
1|1|0]0-A4+ B+ ¢ M6
11711 M7

The second output 0 appears for the innut condition A =0, B =1

R B S T
g G A

§ .
= 1. The fund

ne Nundamentud sum for
this is A + B’ + C. Notice that, B and C are complemented because; this is the only way to get a logical
sum of 0 for.thegiven input condition: Y = A+ B+ C=0+ 14+ 1=0+0+0=0.

Similarly, the third output 0 occurs for A =1, B =1, and C = 0; hence, its fundamental sum is A’
+B+C:Y=A+ B+ C=1+1+0=0+0+0=0.
To get the POS equation, AND the fundamental sums:

Y=((A+B+C)A+ B+ O A+ B+ 0O OR Y=F(A,B,C)=TIM(0,3,6)
Logic Circuit: 5 5 B g C
\
A \ A \\
E
c | k
; .
% Y
c
%)
2 ks
c
OR-AND Network & NOR-NOR Network
- 7e—MAHESH PRASANNA K., VCET, PUTTUR 7 = BB+ C + ,9;-1_3' ;5 -,-g >L

ANALQG AND DIGITAL ELECTRONICS

In SOP method — In POS method —

6. Given truth table . 1. Giventruth table

7. Identify 1s 2. Identify 0s

8. Write the fundamental products 3. Write the fundamental sums

9. OR the fundamental products 4. AND the fundamental sums

10. AND-OR network or ; 5. OR-AND network or
NAND-NAND network. NOR-NOR netwaork.

Problem: Write the POS and SOP representations for the following truth tables:

A|BICHTY Solution: AlBlC|Y Solution:

olo|of|0 _ 7 7 _

olofi1]o 7}577)’9[2)9/9 VAN ypﬁs”ﬁw[ﬂf-gfé)
el = bsroler)] =(p+8+L)[H+E>E)
TTojo|0 [}9%3%{)@%3@] AN LB5B+C).

AARE :i?ﬂ[&ﬁ{,?ﬂz a(1(T] Vepp = mﬁ),&,,;’a?)
111011 4 - — 00 pP

SREERN -'-‘93&:—/935.;- 1’ I RN = Z§C+§ZZ'->—})§EH
— ABL +REL. — PEC+DBL.

Problem: Suppose a truth table has a low output for the first three input conditions: 000, 001, and 010. Ir
all other outputs are high, write POS and SOP circuits?

Solution:
PBL\Y Vg =MD Vagp = 2 [i4,5,1;,y
AT DBy = BBy HECH PECY
201 \U @ %3*0[%&)0)%&& AZT 5 DBC
010 o,
)) | g
))) 2

e MAHESH HEAS’ANNA K., VCET, PUTTUR

o
Pl

e

BRO UUC’T-OF-SUMS SIMPLIFICATION:
Method 1: After writing the POS equation, one can simplify by using Boolean algebra.
Method 2: After writing the POS equation, simplification can be done on the K-map.
¢ Forming largest group of zeros
s Replace each group by a sum term
* The variable going in the formation of sum term is inverted if it remains constant with a value of
1 in the group and it is not inverted if that value is 0
¢ Finally, all the sum terms are ANDed to get simplest POS form.
Problemn: By grouping zeros, give the POS form of -
@) Y,=F(4,BCD=TIM(0123457
b) Y,=F(4, B C D)=TIM(0 1 24,5 10)+d(8 9 11, 12 13, 15)
Solution:

, ,777/”[17, 22.3.4.82) oY = Br)(prB)H+8)

xRN

Y, =BrC 252Dy ¥

= B+0)[3 I2U73)

78

Yo =TI 002,250+ A5.92,0273)5) |
%2 Z5 2 cp D, 7’3.—.-.(5)[371.2)).

e

ANG | @

)4

P8

7545

Method 3: Self Study. -
oo MAHESH PRASANNA K., VCET, PUTTUR

" ANALOG AND DIGITAL ELECTRONICS

Y=F(4,B CD)=%m(68 9 10, 11,12 13, 14 13).

Solution:

V= Sm(£.8 9720, 027314, 75)
v

7\ 5 Tp cp cD =P E» cp c»p
22 o o o o ’jjg'paa\@-
% 0 o o [) 2B | \p 'b—:}i::
Z2N N PEL 0 0 1
7B |)))) 2y
Yoo = P+ BED. Vs = (18)(p#(525)
Z _ "5“"_1}—-)) f‘s“
] p— 54
7 — A T
cC
A
| D
D
B ___ Vg
E__ S—
D —

A

2

A :}——‘)/
c G
A
%

v

T MAHESH PRASANNA K., VCET, PUTTUR

o

ANALOG AND DIGITAL ELECTRONICS

e

ATION BY QUINE-McCLUSKY (QM) METHOD:

LIFIC

Reduction of logic equation by K-map method is very simple, but has some limitations.
1. It depends on the user’s ability to identify patterns that gives largest size
2. The method becomes difficult to adapt for simplification of 5 or more variables.
Quine-McClusky method is a systematic approach for logic simplification that does not have these

limitations and also can easily be implemented in a digital computer.

Determination of Prime Implicants: QM method involves preparation of two tables — one determines
prime implicants and the other selects essential prime implicants to get minimal expression. Prime
implicants are expressions with least number of literals that represents all the terms given in a truth table,
Prime implicants are examined to get essential prime implicants for a particular expression that avoids
any type of duplication.

Consider the min-term expression Y = ¥m (0, 1, 2, 3, 10, 11, 12, 13, 14, 15}. The following truth table

can be written based on the given min-term expression:

AB|C|D|Y Stage 1 Stage 2 Stage 3
010|001} ABCD ABCD ABCD
g g ‘: (‘) : 6000 (DA PPP_ (BDAPO_._ (5,23
ot Tlere) wAEP-0 (OO - [52)3
&2
o(tr[ofo]o||PPID “Dop_y 304 _ o) (2,30
0 a
i ? _ g pp)) [(Diop)- (23D T-0)_ (2103,0)
)p)p 0P)v’- , r
T, g 39 Pip L2 I—) (I8,00,4,05)4
1folofJofo -2 £330)_)_ AN,
Doy 0D LB g0z)
-0 /, r)
SCIEREREEIKAE 2% Rt £6%) M- 022,135
et e o8- 03094
| N-0 D2y),
L1101 }1
el 2 L8q-n () e
n.y (35«
o e D)5

In Stage 1 of the process, we find out all the terms that gives output 1 from truth table. Put them in
different groups depending on how many 1 input variable combinations (ABCD) have. For example, first
group has no 1 in input combination, second group has only one 1, third two 1s, and fourth four 1s. We

also write decimal equivalent of each combination to their right for convenience.

~—MAHESH PRASANNA K., VCET, PUTTUR

' ANALOGAND DIGITAL ELECTRONICS

In Stage 2, we first try to combine first and second group of Stage 1, on a member to member
basis. The rule is to see if only one binary digit is differing between two members and we mark that
position by “—. This means corresponding variable is not required to represent those members. Thus (0)
of first group combine with (1) of second group to form (0, 1} in Stage 2 and can be represented by
A’B’C’ (000-). The logic of this representation comes from the fact that, min-term A’B’C’D’ (0000} and
A’B’C’D (0001) can be combined as A’B’C’(D’+D) = A’B’C’. We proceed in the same manner to find
rest of the combinations in successive groups of Stage 1 and table them. All the members of particular
stage, which finds itself in at least one combination of next stage, are tick marked.

In Stage 3, we combine members of different groups of Stage 2 in a similar way. Now, it will
have two “— elements in each combination. This means each combination requires two literals to
represent it. For example, (0, 1, 2, 3) is represented by A’B’(0 0 —). There are three other groups in
Stage 3: (2, 10, 3, 11) represented by B'C, (10, 14, 11, 15) by AC and (12, 13, 14, 15) by AB. Note that,
(0,2, 1, 3), (10, 11, 14, 15) and (12, 14, 13, 15) get represented by A’B, AC and AB respectively and do
not give any new term.

There is no Stage 4 for this problem, as no two members of Stage 3 has only one digit changing
among them. This completes the process of determination of prime implicants. The rule iz all the terms
that are not ticked at any stage is treated as prime implicants for that problem.

Selection of Prime Implicants: Now, we try to select essential prime implicants and remove redundancy

or duplication among them. For this, we prepare a Table as shown below:

- ol ryl a1 3ol 22|22 | 4|75
PE(9)83 | v | v v |V

B [2.380) v | e
A 80,415 v v | v
BB (183,14, . v 0| vl v v

Here, row lists all the prime implicants and columns lists all min-terms. The cross point of a row and
column is ticked if the term is covered by corresponding prime implicants.

Now, find minimum number of prime implicants that covers all the min-terms. We find A’B* and
AB cover terms that are not covered by others and they are essential prime implicants. B’C and AC
among themselves cover 10, 11 which are not covered by others. So, one of them has to be included in the
list of essential prime implicants,

Hence, we get; Y=AB+ BC+AB or VY= AB+ AC+AB

Homework: Solve the above problem by using K-map method,

Solution:

o MAHESH PRASANNA K., VCET, PUTTUR

ot

ANALOG AND DIGITAL ELECTRONICS

‘ wb;k: Give simplified logic equation of Y ¥ Ym (2, 6, 7) by Quine-McClusky method.
Solution:

REC

2
oo)
oo
)l
24

10)
)]0

) 1)

\ Shge)) _
)}gc

A28 1
Cre (&, _ 10 (26

)1 (8~ —
1Y~ e _
1)) [7= A88r3C.

L

Bc (2t} o v

————
N ————— N

—_—_—] 8~ 0O Vi

HAZARDS AND HAZARD COVERS:

We have discussed various simplification techniques that give minimal expression for a logic equation,
which in turn requires minimum hardware for realization, But, due to some practical problems, in certain
cases, we may prefer to include more terms than given by simplification techniques. The discussion so far
considered gates generating outputs instantaneously. But, practical circuits always offer finite propagation

delay, though very small, in nanoseconds order.

Sattic-1 Hazard:

This type of hazard occurs when Y = A + A’ type of situation appear for a logic circuit and when A
makes a transition | — 0. An A + A’ condition should always generate [at the output (static-1). But, the
NOT gate output (as shown in the following Fig) takes finite time to become 1 following 1 — 0 transition

of A. Thus for the OR gate there are two zeros appearing at its input for a small duration, resulting a 0 at

its output. The width of this zero is in nanoseconds and is called a glitch.

A e

Ty NOIT gt dalay

A ” E . fz“mmm
prep SEU N
¥ :

i
t

Static-1 Hazard

e, “—--MAHESH PRASANNA K., VCET, PUTTUR

s MAHESH PRASANNA K., VCET, PUTTUR

AC. The corresponding circuit is also shown in the following Fig. For this circuit, if input B=1, A =1

and C makes a transition 1 — 0; the output shows glitch.

Ak o
Y sl
Al 8 9

¥ 8 40 Circuit with static-! hazard ¥ 8O 40+ AR Hazand froe circuit

Static-1 Hazard & Tts Cover

Consider another grouping for the same K-map (as shown in the above Fig). This includes one additional
AND term, and now, output Y = BC’ + AC+ AB. The corresponding circuit diagram is also given. This
cireuit requires more hardware, but it is hazard free. The additional term AB ensures Y=1forB=1,A =
1 and C makes a transition 1 — 0, does not affect output.

NOTE: A NAND gate with A and A’ connected at its input for certain input combination will give static-

| hazard when A makes a transitioh U — 1 and requires hazard cover.

Sattic-0 Hazard:

This type of hazard occurs when Y = A.A’ type of situation appear for a logic circuit and when A makes a
transition 0 — 1. An A.A’ condition should always generate 0 at the output (static-0). But, the NOT gate
output (as shown in the following Fig) takes finite time to become 0 following 0 — 1 transition of A,
Thus for the AND gate there are two ones appearing at its input for a small duration, resulting a 1 at its

output.

JF Q—— $; = NOT gate deday

3“—7‘:‘1:.____ ty ~ OR gate deluy
S -7

;!*——5:

i
~

Static-0 Hazard

L
o

ot

ANALOG AND DIGITAL ELECTRONICS

(A+C’). The corresponding circuit is also shown in the following Fig. For this circuit, if input B=0, A =

0 and C makes a transition 0 - 1; there will be static-0 hazard occurring at output.

-

> =

Circutt with static-0 hazard ¥ (O Yhumnd froe civeuit
(4+8)

Static-0 Hazard & Its Cover

Consider another grouping for the same K-map (as shown in the above Fig). This includes one additional
OR term, and now, output Y = (B + C) (A + C’) (A + B). The corresponding circuit diagram is also given.
This circuit requires more hardware, but it is hazard free. The additional term A + B ensures Y = 0 for B
=0, A = 0 and C makes a transition 0 — 1, does not affect output.

NOTE: A NOR gate with A and A’ connected at its input for certain input combination will give static-0

hazard when A makes a Wransition 1 — € and requires hazard cover.

Dynamic¢c Hazard:
Dynamic hazard occurs when circuit output makes multiple transitions before it settles to a final value,
while the logic equation asks for only one transition. For example, an output transition designed as 1 — 0,

-may give 1 — 0 — 1 — 0 when such hazard oceurs and 2 0 — 1, can behave ike 0 —» 1 - 0 — 1,
P =Digh, £=Vigh

T = Ench gm‘f a?&ky
. . 1 .

.
.
. H f
.
* «
’ T] .
v
- . .
.
¢ 4

Example: Consider the following logic circuit.

5%

Y3

Example of Dynamic Hazard

.. MAHESH PRASANNA K., VCET, PUTTUR

' ANALOG AND DIGITAL ELECTRONICS

51 glc circuit can be written in the equation formas Y = (AC.+ BC)C. This shows dynamic hazard;
for AB = 11, and C makes a transition 1 — 0 {as shown in the waveform). The hazard can be prevented
by using an additional two input AND gate fed by input A and B and replacing the two input OR gate by
a three input OR gate,

HDL IMPLEMENTATION MODELS:

Structural modeling, though convenient, consumes more space in describing a circuit, and is unsuitable

for large, complex design.

Dataflow Modeling:
Verilog provides a keyword assign and a set of operators (given in the following Table) to describe a

circuit through its function. All assign statements are concurrent and continuous.

‘Relational Operation .. . | Symbol |Bit-wise Operation - Symbol
Less than ” — < —:Blit-wiseéNDT — N ~
"Less than or equalto] < Blt-WlSBQR o |
Grwerthan | > |BwiseAND Tz
“Greater than or equal to . _ - >= | Bit-wise EX-OR A
_-=Nm‘eq1_1ai 0 : B I= Ar’ith.matic 6peration _ e Symbol
éLdgi:c:a.a.l“(.)peration | IV | Symbol Biﬁafr{ﬁr’ad’diiibﬁf : i +
Togical NOT T | U |Binaysubtacfion -
LogiclOR | T 1 [Binacy multiphication | z
Logical AND T && | Binary division |) /

Data flow model resembles a fogic equation and thus gives a more crisp representation.

/2 y b A
c

D hry@;) ¢ -
mpﬁ’”)ﬁ F}-ﬁa m13:£’pr 2’)) Wd?’)e Mk}[n7b1£l?%;
inpw* 5,58 £, D; - npw 9,0,¢;

PW Y; ownp %, J;

erdmeds)e VT ""“’((ﬂ]b)g@k))f

\ endmodile

B ~MAHESHPRASANNA K., VCET, PUTTUR

POT-1R

oasfiyn Y =(pFB) |(c Py oo #=w((0)2) 1) V7% %m

//)erﬁ,

e ANALOG AND DIGITAL ELECTRONICS

ral Modeling:
In a behavioral model, statements are executed sequentially following algorithmic description, It always
uses always keyword followed by a sensitivity list. The procedural statements following always are

executed only if any variable within sensitivity list changes its value. Procedure assignment or output

variables within always must be register type, defined by reg.

moawe Figh [5,8,6,0,7);
inpu? %’ 75 oW Y, \

{70 ’@ (Do Zer s orD)))Sevsip p?/y}
@ l)"e?fg""i) WY 522 ¢82)59=2.

6)9ch (c =) EELD==)))) Y L) FD=);

V=1,
\amzi]y)g Y=p;)N ra) i%// éﬁwb)}f%mv g/ pjﬁ,(,p

Problem: Realize Y=3Ym (0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13) using dataflow model[NOTE;:
Structural «+» Gates / Circuits

Solution
7 - %b. cp c2 / 5'5 _ Dataflow + assign / Expression
rE| | D y: Z & ; f F :éf . Behavioral < always / Truth table
21 o\
PE i o ©
»B 14 o (l\

(" wgphile){.}Zb}v L5,E C.D V) I
w9, 8,88, oot Y.
oma;m Y = ~c|(~4¢ ~D)| (~8 ¢ =D ;

GWPMWME)

7o MAHESH PRASANNA K., VCET, PUTTUR

—
©

blem: Find the minimal sums for —

a) fl(abc)=%(1343567
b) f2(a, b c)=11(247)

Solution:
7? cpg)
b -7 _
oD ! . C +0.

o [) £

o) |o |) 7P =

B _
121) bl +aL.

Problem: Find the minimal products for —

a) fl(a bc)=%(01 234,6,7)
b) f2(a b c)=1I(1 4 3)
Salun

y_\— ,? A+brC.

g)

- }’(9 (ﬂ'?'b)[afc)
Jo| 1 @

Problem: Solve for the simplified Boolean expression using K-map

a) fl1(ab,c,d)= acd+ acd + béd + abc + @bed
b) f2(ab,c,d)=
d)

Soiyion:
)
ar
7
w\ p p o o

37D o [{ (4D
MAHESH PRASANNA K., VCET, PUTTUR

'-£=EA+ZG+ZJ,

-]

¢

ANALOG AND DIGITAL ELECTRONICS

f
nb\° o

oo

)| o

1| Q) o
Jo| o Q\

Ay

aN_ O
(4% \ (o)
o)) !

))))

(a+b+ d)(@+ b+d)(a+ b+ e+ d)(@a+b+c+d)@a+b+c+

ANALOG AND DIGITAL ELECTRONICS

blem: Design a 3-input, 1-output, minimal two-level gate combinational circuit; which has an output

~ equal to 1 when majority of its inputs are at logic 1, and has output 0 when majority of inputs are at logic

0.

Solution:

Construct the truth table:

b

C

w

—_ =] =] = o o o o ®»

0
0
|
1
0
0
1
1

0
1
0
1
0
1
0
1

Problem:

3\ =1

5”;9;;% /%rr)g)r e j = pb+br+ac
Y 22 p oo

Y io dnkty w 27 Ye
Eb 695‘71 /)&k)}f&»)a)wn
ar
o @rm}'»g /; r 5 J @@ [b+ a+t)

Yere sk, e cap i» 9

Design a minimal sum and minimal product combinational gate circuit to generate the odd
parity bit for an 8421 BCD code.

Solution: Construct the truth table, as described in the question.,

A|B[C|D]Y

stofifol| - V=2 m[0,35,4 9)+Zp)/fwn.z.zz 1,15)
Y -

23?;2 \ E5 E» cp B \cp'a'pc:pla'b'\

ofo[1[T1], 521 @ O U O BB) u

o[T[o[o (| 28| O m o @ 78

IEE ol

o[r[1]0 : 'P{ K NRS R 25

o[T[T [p| & O (I ﬁa X 25

110|000 D {

TRE . = A

K 0;{ ép},f)}p_——)-BCDa—ﬂBfD yﬁpj @+J>)[g *+C +D)

T[0T [y + Brp+PBLD. CB-J— L“?’D)(H-hg-?ﬂj

i ?3; (ool = DP. (p+B+c+5)

] o], 59‘9}:__022'

Ll r]x ’

MAHESH PRASANNA K., VCET, PUTTUR -

£y
f '
| a

e

ANALOG AND DIGITAL ELECTRONICS

0D am: Using Quine-McClusky method, simplify; f(a, b, c, d) =%, (3,4, 5,7, 10, 12, 14, 15) + ¥d (2).

* Solution: Determination of prime implicants, considering don’t care terms as 1

Sate 1 Stage 2
abed abcd

polo [V pp) . [2,3)
proo (- _pp [2)g)

p01) (| PI0— (HE
0)2) (| =100 [4,)2

o bedv
o)~ (5
01 [P))); . 2
me (g %,4)
)0 024
NN (8D~

-2 [P
)~ 04,9

1 1
There is no stage 3 here,, as no two members of stage 2 has only one digit changing among them.

Selection of essential prime implicants: (Please note, don’t care is not considered here)

3 4 5 7 10 12 14 15 Row

HEC[2,3 | «

BCPD [2.0) g

BEE (4.8 |
v

bep (2D | v~
B8 (5D v
DD Lpls) v v
BRD (19,40 |
BrP (325 v v
PEL [I4)5) Pl

o Row U dominates row Q

AYAN

IS TS IS B Bl BT B B)

o Row W dominates row R
o Columns with minterms 3 & 10 and 7 & 14 have one tick (mark) each. The

corresponding rows U & W are essential rows. Hence, minimal sum=U+W +....

- - MAHESH PRASANNA K., VCET, PUTTUR

- 4 5 12 15 Row

DBT (4.5) |
BED [4/8 | v e
BBD [5 P i
BDBD [)2,24) v
Becp [718) v
BREL [i4,)5) v

o Row S dominates row V

N | M <] H] @

o Row T dominates row X

o Rows Y and Z are equal. Hence, only one row out of Y and Z need to be considered for minimal

sum

© RowsS, T, and Y are considered for minimal terms. Delete row V, row X, and row Z. Therefore,

minimal sum=U+W+S8+T+Y.

Hence, f= ECD .}-9C§ +,§35+ 355 +ECD

Problem: Simplify f(a, b, c, d) =3, (2,3, 4, 5,13, 15) + ¥d (8, 9, 10, 11) using EVM technigues, taking —
al The variable in the last significant position as MEV '

b} The variables ¢ and d as MEV5.

Solution: :)é _ _
alblic|d f | MEV:d | MEVs:c&d o [
o[ofo[0] o =7 S
oo o O 2| o0 (I “)/;—-ap!-?-gﬁ
ofo[i[e] c ﬁ@ﬁ +AbT .
)

ofofrft] ab 0909 —
ol1{0(0] .
o|T[o]T| ’ = a1 1X (X
011110

P O —
Juuur, A T} _
ool x| X A IWA @ 'bf—'bﬁ-)-éc
Lfof1fo] x * +ﬁ}6.'
1011?< A " X ppj f'
trfefol p A
el &l &l

woee---MAHESH PRASANNA K., VCET, PUTTUR

' ANALOG AND DIGITAL ELECTRONICS

: A

Try these: Design a minimal sum combinational circuit to —
a) Find the 9s complement of BCD numbers
b) Convert BCD to Excess-3
¢} Multiply two 2-bit numbers

d) Output a I when an illegal BCD code occurs
e) Qutput the 25 complement of a 4-bit binary number.

Problem: Design Binary-to-Gray Code Converter.

Solution: 5 = 5
g.? g.z 5) gﬁ 3 s

SRvE

G, %o b Fo |

—_— &

RN
\ W
RN M
® ®
5 &

Binary Code Gray Code 83 * E 3
B3[B2[B1[B0|G3[G2[Gl|GO

ojololo]ojolo]oO @
ofo]ol1]0]o]o0]1 gz -
ojoli1lofo]o]t]1

ojolt|1]ofo]1]0o

oj1lojJolof1it1]o 57)
0ol tlol1]o]1][1][1 ‘3?)

o1 lt[olol1]o]l1

o |1 |tf1lof1]o]o &
1{o{olo|1[1]o]oO 3 o
tlolo[1 [t (11071 v

1 0 1 0 1 I 1 1

tlol1 |11 [1[1]0

T|1]ofol1]o[t1]oO

“-~-- ~..MAHESH PRASANNA K., VCET, PUTTUR

ANALOG AND DIGITAL ELECTRONICS

o1 [i]o]1]1
STT T[]t]ofo[1 613 - ‘] * 5
T[T[1|t]T[0]0]o0

Problem: Design Gray-to-Binary Code Converter

Solution: | 5.2 B.z
fy 6o by Gs 111

AN, W2

58,8 % 10| g o
s = bs £=%@%
% =%0h4 B-80/0%%

Gray Code Binary Code Gray Code Binary Code
G3|1G2|G1|G0|B3|B2|Bl|B0 G3|G2|Gl|GO|B3|B2|B1|B0]
6c{0jO0fO|O;0 (0|0 ojo0ojOojO0|D]|O 0
6ojojo|1]|]O0fO]oO]|1 o | 0f(0]1]0}0]|0]1
o(ojt1f(1]{OjO|1 |0 cjofj1]oflojoOo]|1[1
6o o0t |00 0O}1 |1 00|11 [O0]O0]|1]|O
¢(1{rltojoj1io|o o1 fojJojo|1|1]1
o1 {1101 }j0]1 o1 o]t o1 |1}0
c(1jo0(1|{O]1}1][O gl1|1]00o|t]|0Q]|O
o1 {oflojoOo]1 {01 |1 o |1 (1] 1 {O[1]0]1
1{1{o0f0 |t i 0[0]|O0 lLjojojo |1 |1]|1[1
1|t { oyt | 1}{ofo]1l rjojovr|1r|1{1¢10
1yt 1fof1]o rifof1rjpoj1 |1 10}0
1 1 1 O] 1101 1 1 011 1 1 11071
rjfolt1f{fo|(1|[1[Oo]0O lj1rjojojtrj|jofofo
1L{of1 {11 |1f[0{]]1 rjf1jofl1rjp1rjofof|1
rjojofr|rf1f{1j]o0 L T T 2 O 4 O S OO O
1yo0lojo |11]1 lI|1r{1]1jy1jo011}0

I ----NAHESH PRASANNA K., VCET, PUTTUR

" ANALOGAND DIGITAL ELECTRONICS

I“eni; Simplify, using K-map method Quine Mc-Clusky method: F =%m (0, 1, 2, 8, 10, 11, 14, 13).
~ Solution:

K-map method:

_ =N +BP+AEC
PBEY 0o © o DO —
2|\ O V-
Quine Mc-Clusky method:
[A[B]C|D[F}| Stage 1 Stage 2 Stage 3 |
0{0(0|0 } ABCD ABCD ABCD
UL (0990 Dppg- oY | —0-0 (28]
ToTT[Tp| |098) Prpp-0 (8D —P-C (85202
"|T[C[Clp| |09/ 2\ _ppo (9B
0l p Jopp (EX
oft[1[0]p 700 La —2)0 (2004 —
1 .
o[[T[T|p)o-0 (50)}) LI,)48,08)
1j0t0]0)) LJ}) , -
rfofeltip }i}; 0;/'}9)_- [)P,)))y-.j) - OBl
o179, V)1 CIg)art
OV | v LigAe —
1111010 D)—')} [)},)‘5)‘..-4
111]0¢}1 D R
rfrjrfof,)= (4252
111(11]1]

--.MAHESH PRASANNA K., VCET, PUTTUR

e

ANALOG AND DIGITAL ELECTRONICS

<
—
b2
oo

10 11 14 15

BELE(L0,)) |
BD (628K +«| || s |
AL [10.),)4,9 ¥

Therefore, F= D £ +.§5+§2§5.

—-——"'-__——_--
—
By: MAHESH PRASANNA K.,
DEPT. OF CSE, VCET.
EEE L T

L LS L LS

"7 MAHESH PRASANNA K., VCET, PUTTUR

