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Mathematical induction, is a technique for proving results or establishing statements 

for natural numbers. This part illustrates the method through a variety of examples.  

 

Definition 
 
Mathematical Induction is a mathematical technique which is used to prove a 

statement, a formula or a theorem is true for every natural number. 
 
The technique involves two steps to prove a statement, as stated below: 
 
Step 1(Base step): It proves that a statement is true for the initial value. 
 

Step 2(Inductive step): It proves that if the statement is true for the n
th

 iteration (or 

number n), then it is also true for (n+1)
th

 iteration ( or number n+1). 
 

How to Do It 
 
Step 1: Consider an initial value for which the statement is true. It is to be shown that 

the statement is true for n=initial value. 
 
Step 2: Assume the statement is true for any value of n=k. Then prove the statement is 

true for n=k+1. We actually break n=k+1 into two parts, one part is n=k (which is 

already proved) and try to prove the other part.  

 

Problem 1 
 

3
n
-1 is a multiple of 2 for n=1, 2, ... 

 
Solution 
 

Step 1: For n=1, 3
1
-1 = 3-1 = 2 which is a multiple of 2 

Step 2: Let us assume 3
n
-1 is true for n=k, Hence, 3

k
 -1 is true (It is an 

assumption) We have to prove that 3
k+1

-1 is also a multiple of 

2 3
k+1

 – 1 = 3 × 3
k
 – 1 = (2 × 3

k
) + (3

k
 –1) 

The first part (2×3
k
) is certain to be a multiple of 2 and the second part (3

k
 -1) is also  

true as our previous assumption.  

Hence, 3
k+1

 – 1 is a multiple of 2. 

So, it is proved that 3
n
 – 1 is a multiple of 2. 

 
 
 

Problem 2 
 

1 + 3 + 5 + ... + (2n-1) = n
2
 for n=1, 2, ... 
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Solution 
 

Step 1: For n=1, 1 = 1
2
, Hence, step 1 is satisfied. 

Step 2: Let us assume the statement is true for n=k. 
 

Hence, 1 + 3 + 5 + ... + (2k-1) = k
2
 is true (It is an assumption) 

 

We have to prove that 1 + 3 + 5 + ... + (2(k+1)-1) = (k+1)
2
 

also holds 1 + 3 + 5 + ... + (2(k+1) – 1)   
= 1 + 3 + 5 + ... + (2k+2 – 1) 

 
= 1 + 3 + 5 + ... + (2k + 1) 

 
= 1 + 3 + 5 + ... + (2k – 1) + (2k + 1) 

 

= k
2
 + (2k + 1) 

= (k + 1)
2
 

So, 1 + 3 + 5 + ... + (2(k+1) – 1) = (k+1)
2
 hold which satisfies the 

step 2. Hence, 1 + 3 + 5 + ... + (2n – 1) = n
2
 is proved. 

 

Problem 3 
 

Prove that (ab)
n
 = a

n
b
n
 is true for every natural number n 

 

Solution 
 

Step 1: For n=1, (ab)
1
 = a

1
b
1
 = ab, Hence, step 1 is satisfied. 

Step 2: Let us assume the statement is true for n=k, Hence, (ab)
k
 = a

k
b
k
 is true (It is 

an assumption). 
 

We have to prove that (ab)
k+1

 = a
k+1

b
k+1

 also hold 

Given, (ab)
k
 = a

k
b
k 

Or, (ab)
k
 (ab)= (a

k
b
k
) (ab) [Multiplying both side by „ab‟] 

Or, (ab)
k+1 

= (aa
k
) ( bb

k
) 

Or, (ab)
k+1 

= (ak+1bk+1) 
Hence, step 2 is proved.  

So, (ab)
n
 = a

n
b
n
 is true for every natural number n. 

 

Strong Induction 
 

Strong Induction is another form of mathematical induction. Through this induction 

technique, we can prove that a propositional function, P(n) is true for all positive 

integers, n, using the following steps: 





Step 1(Base step): It proves that the initial proposition P(1) true. 
  


Step 2(Inductive step): It proves that the conditional statement   

   
[ (1) ⋀ (2) ⋀ (3) ⋀ … … … … ⋀ ( )] → ( + 1) is true for pos it ive  integers k .  
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Mathematics
 

 
 
 
 
 
 
 
 

In this chapter, we will discuss how recursive techniques can derive sequences and be 

used for solving counting problems. The procedure for finding the terms of a sequence in 

a recursive manner is called recurrence relation. We study the theory of linear 

recurrence relations and their solutions. Finally, we introduce generating functions for 

solving recurrence relations.  

 

Definition 
 

A recurrence relation is an equation that recursively defines a sequence where the next 

term is a function of the previous terms (Expressing Fn as some combination of Fi with 

i<n). 

 

Example: Fibonacci series: Fn = Fn-1 + Fn-2, Tower of Hanoi: Fn = 2Fn-1 + 1 

 

Linear Recurrence Relations 
 

A linear recurrence equation of degree k is a recurrence equation which is in the format 
xn= A1 xn-1+ A2 xn-1+ A3 xn-1+... Ak xn-k (An is a constant and Ak≠0) on a sequence of 
numbers as a first-degree polynomial. 

 

These are some examples of linear recurrence equations: 
 

Recurrence Initial values  Solutions  
relations     

Fn = Fn-1 + Fn-2 a1=a2=1  Fibonacci number  
      

Fn = Fn-1 + Fn-2 a1=1, a2=3  Lucas number  
      

Fn = Fn-2 + Fn-3 a1=a2=a3=1  Padovan sequence  
     

Fn = 2Fn-1 + Fn-2 a1=0, a2=1  Pell number  
      

 

How to solve linear recurrence relation 
 
Suppose, a two ordered linear recurrence relation is: Fn = AFn-1 +BFn-2 where A and B are 

real numbers. 
 

The characteristic equation for the above recurrence relation is: 
 

x
2
 − Ax − B = 0 

Three cases may occur while finding the roots: 
 

Case 1: If this equation factors as (x- x1)(x- x1) = 0 and it produces two distinct real 

roots x1 and x2, then Fn = ax1

n
+ bx2

n
 is the solution. [Here, a and b are constants]  

Case 2: If this equation factors as (x- x1)
2
 = 0 and it produces single real root x1, then 

Fn = a x1

n
+ bn x1

n
 is the solution.  

Case 3: If the equation produces two distinct real roots x1 and x2 in polar form x1 = r ∠ θ and x2 = r ∠(- θ), then Fn = r
n
 (a cos(nθ)+ b sin(nθ)) is the solution.  
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Problem 1 
 

Solve the recurrence relation Fn = 5Fn-1 - 6Fn-2 where F0 = 1 and F1 = 4 

 

Solution 
 

The characteristic equation of the recurrence relation is: 

x
2
 – 5x + 6=0, 

 
So, (x-3) (x-2) = 0  
 

 

Hence, the roots are: 
 

x1 = 3 and x2= 2 
 

 

The roots are real and distinct. So, this is in the form of case 1 
 
Hence, the solution is: 
 

Fn = ax1

n
+ bx2

n 

 

Here, Fn = a3
n
+ b2

n
 (As x1 = 3 and x2=  

2) Therefore,  

1=F0 = a3
0

+ b2
0

 = a+b  
1

 
1 

 

Solving these two equations, we get a = 2 and b = -1 
 

Hence, the final solution is: 
 

Fn = 2.3
n
 + (-1) . 2

n
= 2.3

n
 - 2

n 

 

 

Problem 2 
 

Solve the recurrence relation Fn = 10Fn-1 - 25Fn-2 where F0 = 3 and F1 = 17 

 

Solution 
 

The characteristic equation of the recurrence relation is: 

x
2
 –10x -25 =0, 

 

So, (x – 5)
2
 = 0 

Hence, there is single real root x1 = 5 
 

As there is single real valued root, this is in the form of case 
 
2 Hence, the solution is:  

Fn = ax1

n
 + bnx1

n 
 

3 = F0= a.5
0
+ b.0.5

0
 = a 

17 = F1= a.5
1
 + b.1.5

1
 = 5a+5b 

Solving these two equations, we get a = 3 and b = 2/5 
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Hence, the final solution is: 
 

Fn = 3.5
n
 + (2/5) .n.2

n 

 

Problem 3 
 

Solve the recurrence relation Fn = 2Fn-1 - 2Fn-2 where F0 = 1 and F1 = 3 

 

Solution   
The characteristic equation of the recurrence relation is: 
 

x
2
 –2x -2 =0 

Hence, the roots are: 
 

x1 = 1+ i and 
 

In polar form, 

x1 = r ∠ θ and 

 

x2= 1- i 

 
x2 = r ∠(- θ), where r= √2 and θ= π / 4 

 

The roots are imaginary. So, this is in the form of case 3. 
 

Hence, the solution is: 
 

Fn = (√2 )
n
 (a cos(n. π / 4) + b sin(n. π / 4)) 

1 = F0 = (√2 )
0
 (a cos(0. π / 4) + b sin(0. π / 4) ) = a 

3 = F1 = (√2 )
1
 (a cos(1. π / 4) + b sin(1. π / 4) ) = √2 ( a/√2 

+ b/√2) Solving these two equations we get a = 1 and b = 2 
 
Hence, the final solution is: 
 

Fn = (√2 )
n
 (cos(n. π / 4)+ 2 sin(n. π / 4)) 

 

Particular Solutions 
 

A recurrence relation is called non-homogeneous if it is in the form 
 

Fn = AFn–1 + BFn-2 + F(n)  where F(n) ≠ 0 
 

The solution (an) of a non-homogeneous recurrence relation has two parts. First part is 

the solution (ah) of the associated homogeneous recurrence relation and the second part 

is the particular solution (at). So, an= ah + at 
 

Let F(n)  = cx
n
 and x1 and x2 are the roots of the characteristic equation: 

x
2
 = Ax+ B which is the characteristic equation of the associated homogeneous 

recurrence relation: 




If x ≠ x1 and x ≠ x2, then at = Ax

n


 n

 If x = x1, x ≠ x2, then at = Anx 

 If x= x1 = x2, then at = An
2
x
n
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Problem 
 

Solve the recurrence relation Fn = 3Fn-1 +10Fn-2 +7.5
n
 where F0 = 4 and F1 = 3 

 

Solution 
 

The characteristic equation is: 
 

x
2
 –3x -10 =0 

Or, (x - 5)(x + 2) = 0   
Or, x1= 5 and x2= -2 
 

Since, x= x1 and x ≠ x2, the solution is: 

at = Anx
n
 = An5

n 

 
After putting the solution into the non-homogeneous relation, we get: 
 

 An5
n
 = 3A(n – 1)5

n-1
 + 10A(n – 2)5

n-2
 + 7.5

n 

Dividing both sides by 5
n-2

, we get: 

 An5
2
 = 3A(n – 1)5 + 10A(n – 2)5

0
 + 7.5

2 

Or, 25An = 15An – 15A + 10An – 20A + 175 

Or, 35A = 175 

Or, A = 5 

So, Fn = n5
n+1 

Hence, the solution is: 
 

Fn = n5
n+1

 + 6.(-2)
n
  -2.5

n 

 

Generating Functions 
 

Generating Functions represents sequences where each term of a sequence 

is expressed as a coefficient of a variable x in a formal power series. 
Mathematically, for an infinite sequence, say 0, 1, 2, … … … … , , … … … , the generating function will be: 

∞  

= 0 + 1 + 2 2 + … … … + + … … … = ∑ =0 

 

Some Areas of Application: 
 
Generating functions can be used for the following purposes: 



 

 

 




 







 
For solving a variety of counting problems. For example, the number of ways to 
make change for a Rs. 100 note with the notes of denominations Rs.1, Rs.2, 
Rs.5, Rs.10, Rs.20 and Rs.50 
For solving recurrence relations



For proving some of the combinatorial identities


For finding asymptotic formulae for terms of sequences

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Problem 1 
What are the generating functions for the sequences { } with = 2 and = 3 ?  

 

Solution 
When 
When 
=
 
2

, generating function, G(x) = ∑∞ =0 2 = 2 + 2 + 2 2 + 2 3 + … … … = 3 , G( ) = ∑∞ =0 3 = 0 + 3 + 6 2 + 9 3 + … … … 

 

 

Problem 2   
What is the generating function of the infinite series; 1, 1, 1, 1, ……….? 

 

Solution 

 

Some Useful Generating Functions  



 

5. PROPOSITIONAL LOGIC
Discrete 

Mathematics
 

 
 
 
 
 
 
 
 

The rules of mathematical logic specify methods of reasoning mathematical statements. 

Greek philosopher, Aristotle, was the pioneer of logical reasoning. Logical reasoning 

provides the theoretical base for many areas of mathematics and consequently computer 

science. It has many practical applications in computer science like design of computing 

machines, artificial intelligence, definition of data structures for programming languages 

etc.  
 

Propositional Logic is concerned with statements to which the truth values, “true” and 

“false”, can be assigned. The purpose is to analyze these statements either individually 

or in a composite manner. 

 

Prepositional Logic – Definition 
 

A proposition is a collection of declarative statements that has either a truth value "true” 

or a truth value "false". A propositional consists of propositional variables and 

connectives. We denote the propositional variables by capital letters (A, B, etc). The 

connectives connect the propositional variables. 
 
Some examples of Propositions are given below: 


"Man is Mortal", it returns truth value “TRUE” 
 "12 + 9 = 3 – 2", it returns truth value “FALSE”



 
The following is not a Proposition: 
 

 "A is less than 2". It is because unlesswe give a specific value of A, we cannot say whether the statement 
is true or false.



 

Connectives 
In propositional logic generally we use five connectives which are: OR (V), AND (Λ), Negation/ NOT (¬), Implication / if-then (→), If and only if (⇔). 

 

OR (V): The OR operation of two propositions A and B (written as A V B) is true if 

at least any of the propositional variable A or B is true. 
 

The truth table is as follows: 
 

A B A V B 
   

True True True 
   

True False True 
   

False True True 
   

False False False 
   

 
 

AND (Λ): The AND operation of two propositions A and B (written as A Λ B) is true 

if both the propositional variable A and B is true. 
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The truth table is as follows: 
 

A B A Λ B 
   

True True True 
   

True False False 
   

False True False 
   

False False False 
    

 
 

Negation (¬): The negation of a proposition A (written as ¬A) is false when A is true 

and is true when A is false. 
 

The truth table is as follows: 

 

A ¬A 

 

True False 

 

False True  
 
 

 

Implication / if-then (→): An implication A →B is False if A is true and B is false. 

The rest cases are true.  
 

The truth table is as follows: 
 

A B A → B 
   

True True True 
   

True False False 
   

False True True 
   

False False True 
   

If and only if (⇔): A ⇔B is bi-conditional logical connective which is true when p and q are both false or both are true. 

 

The truth table is as follows: 
 

A B A ⇔ B 

   

True True True 
   

True False False 
   

False True False 
   

False False True 
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Tautologies  
 
A Tautology is a formula which is always true for every value of its propositional variables. 
 

Example: Prove [(A → B) Λ A] →B is a tautology 
 

The truth table is as follows: 
 

A B A → B (A → B) Λ A [(A → B) Λ A] →B 
     

True True True True True 
     

True False False False True 
     

False True True False True 
     

False False True False True 
      

 

As we can see every value of [(A → B) Λ A] →B is “True”, it is a tautology. 

 

Contradictions 
 

A Contradiction is a formula which is always false for every value of its 

propositional variables. 
 

Example: Prove (A V B) Λ [(¬A) Λ (¬B)] is a contradiction 
 

The truth table is as follows: 
 

A B A V B ¬A ¬B 
(¬A) Λ 

(A V B) Λ [(¬A) Λ (¬B)] 
(¬B)       

       

True True True False False False False 
       

True False True False True False False 
       

False True True True False False False 
       

False False False True True True False 
       

 

As we can see every value of (A V B) Λ [(¬A) Λ (¬B)] is “False”, it is a contradiction. 

 

Contingency 
 

A Contingency is a formula which has both some true and some false values for every 

value of its propositional variables. 
 

Example: Prove (A V B) Λ (¬A) a contingency 
 
The truth table is as follows: 
 

A B A V B ¬A (A V B) Λ (¬A) 
     

True True True False False 
     

True False True False False 
     

False True True True True 
     

False False False True False 
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As we can see every value of (A V B) Λ (¬A) has both “True” and “False”, it is 

a contingency. 

 

Propositional Equivalences  
 
Two statements X and Y are logically equivalent if any of the following two conditions hold:  




The truth tables of each statement have the same truth values.



 The bi-conditional statement X ⇔ Y is a tautology.


 
 
Example: Prove ¬ (A V B) and [(¬A) Λ (¬B)] are equivalent 

 

Testing by 1
st

 method (Matching truth table): 

A B A V B ¬ (A V B) ¬A ¬B [(¬A) Λ (¬B)] 
       

True True True False False False False 
       

True False True False False True False 
       

False True True False True False False 
       

False False False True True True True 
       

 
 

Here, we can see the truth values of ¬ (A V B) and [(¬A) Λ (¬B)] are same, hence the 

statements are equivalent. 

 

Testing by 2
nd

 method (Bi-conditionality): 
A B ¬ (A V B) [(¬A) Λ (¬B)] 

[¬ (A V B)] ⇔[(¬A) Λ (¬B)] 

     

True True False False True 
     

True False False False True 
     

False True False False True 
     

False False True True True 
As [¬ (A V B)] ⇔ [(¬A) Λ (¬B)] is a tautology, the statements are equivalent. 

 

Inverse, Converse, and Contra-positive 
 

A conditional statement has two parts: Hypothesis and Conclusion. 
 

Example of Conditional Statement: “If you do your homework, you will not be 

punished.” Here, "you do your homework" is the hypothesis and "you will not be 

punished" is the conclusion. 

 

Inverse: An inverse of the conditional statement is the negation of both the hypothesis 

and the conclusion. If the statement is “If p, then q”, the inverse will be “If not p, then 

not q”. The inverse of “If you do your homework, you will not be punished” is “If you do 

not do your homework, you will be punished.” 
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Converse: The converse of the conditional statement is computed by interchanging the 

hypothesis and the conclusion. If the statement is “If p, then q”, the inverse will be “If q, 

then p”. The converse of "If you do your homework, you will not be punished" is "If you 

will not be punished, you do not do your homework”. 
 

Contra-positive: The contra-positive of the conditional is computed by interchanging the 

hypothesis and the conclusion of the inverse statement. If the statement is “If p, then q”, the 

inverse will be “If not q, then not p”. The Contra-positive of " If you do your homework, you 

will not be punished” is" If you will be punished, you do your homework”.  

 

Duality Principle 
 

Duality principle set states that for any true statement, the dual statement obtained by 

interchanging unions into intersections (and vice versa) and interchanging Universal set 

into Null set (and vice versa) is also true. If dual of any statement is the statement 

itself, it is said self-dual statement. 
Example: The dual of (A ∩ B) ∪ C is (A∪ B) ∩ C  

 

Normal Forms 
 

We can convert any proposition in two normal forms: 





Conjunctive normal form 
 Disjunctive normal form



 

Conjunctive Normal Form 
 

A compound statement is in conjunctive normal form if it is obtained by operating AND 
among variables (negation of variables included) connected with ORs. 
 

Examples  


(P ∪Q) ∩ (Q ∪ R) 


   

 (¬P ∪Q ∪S ∪¬T)


 

Disjunctive Normal Form 
 

A compound statement is in conjunctive normal form if it is obtained by operating 
OR among variables (negation of variables included) connected with ANDs. 
 

Examples 
    




(P ∩ Q) ∪ (Q ∩ R) 


  (¬P ∩Q ∩S ∩¬T) 
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Predicate Logic deals with predicates, which are propositions containing variables. 

 

Predicate Logic – Definition  
 

A predicate is an expression of one or more variables defined on some specific domain. A 

predicate with variables can be made a proposition by either assigning a value to the 

variable or by quantifying the variable. 
 

The following are some examples of predicates: 

 



 





Let E(x, y) denote "x = y"


Let X(a , b, c) denote "a + b + c = 0"




 

 

Well Formed Formula 
 
Well Formed Formula (wff) is a predicate holding any of the following - 

 





 



 



 





All propositional constants and propositional variables are 

wffs


 If x is a variable and Y is a wff, ∀x Y and ∃x Y are also wff


Truth value and false values are wffs


Each atomic formula is a wff


All connectives connecting wffs are wffs


 

Quantifiers 
 

The variable of predicates is quantified by quantifiers. There are two types of 

quantifier in predicate logic: Universal Quantifier and Existential Quantifier. 

 

Universal Quantifier 
Universal quantifier states that the statements within its scope are true for every value of the specific variable. It is denoted by the symbol ∀.  
∀x P(x) is read as fo r every value of x, P(x) is true.   
Example: "Man is mortal" can be transformed into the propositional form ∀x P(x) where P(x) is the predicate which denotes x is mortal and the universe of discourse is all men. 

 

Existential Quantifier 
Existential quantifier states that the statements within its scope are true for some values of the specific variable. It is denoted by the symbol ∃.  
∃x P(x) is read as for some values of x, P(x) is true.  
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Example: "Some people are dishonest" can be transformed into the propositional form ∃x P(x) where P(x) is the predicate which denotes x is dishonest and the universe of discourse is some people. 

 

Nested Quantifiers  
 

If we use a quantifier that appears within the scope of another quantifier, it is called 

nested quantifier. 

 

Examples  

 ∀a ∃b P (x, y) where P (a, b) denotes a + b=0


 


 ∀a ∀b ∀c P (a, b, c) where P (a, b) denotes a + (b+c) = (a+b) +c


Note: ∀a ∃b P (x, y) ≠ ∃a ∀b P (x, y)  
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To deduce new statements from the statements whose truth that we already know, 

Rules of Inference are used.  

 

What are Rules of Inference for? 
 

Mathematical logic is often used for logical proofs. Proofs are valid arguments that 

determine the truth values of mathematical statements. 
 
An argument is a sequence of statements. The last statement is the conclusion and all its preceding statements are called premises (or hypothesis). The symbol “∴ ”, (read 
therefore) is placed before the conclusion. A valid argument is one where the conclusion follows from the truth values of the premises. 

 

Rules of Inference provide the templates or guidelines for constructing valid arguments 

from the statements that we already have. 

 

Addition 
 

If P is a premise, we can use Addiction rule to derive P V Q. 
 

P 
 

---------- 
∴ P V Q  

 

Example 
 
Let P be the proposition, “He studies very hard” is true 
 

Therefore: "Either he studies very hard Or he is a very bad student." Here Q is the 

proposition “he is a very bad student”. 

 

Conjunction 
 

If P and Q are two premises, we can use Conjunction rule to derive P Λ Q. 
 

P  
Q  

---------- 
∴ P Λ Q  

 
 
 

Example 
 
Let P: “He studies very hard” 
 

Let Q: “He is the best boy in the class” 
 

Therefore: "He studies very hard and he is the best boy in the class" 
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Simplification  
 

If P Λ Q is a premise, we can use Simplification rule to derive P. 
 

P Λ Q  
---------- 

∴ P  

 

Example 
 
"He studies very hard and he is the best boy in the  
 

class" Therefore: "He studies very hard" 

 

Modus Ponens 
 

If P and P→Q are two premises, we can use Modus Ponens to derive Q. 
 

P→Q  
P  

---------- 
∴ Q 

 

Example 

 

"If you have a password, then you can log on to facebook" 

 

"You have a password" 

 

Therefore: "You can log on to facebook" 

 

Modus Tollens 
 

If P→Q and ¬Q are two premises, we can use Modus Tollens to derive ¬P. 

 

P→  
Q  
¬Q  

---------- 
∴ ¬P  

 

Example 
 

"If you have a password, then you can log on to facebook" 
 

"You cannot log on to facebook" 

 

Therefore:  "You do not have a password " 
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Discrete Mathematics 
 

 

Disjunctive Syllogism  
 

If ¬P and P V Q are two premises, we can use Disjunctive Syllogism to derive  
Q. ¬P  

P V Q  
---------- 

∴ Q 

 

Example   
"The ice cream is not vanilla flavored" 
 

"The ice cream is either vanilla flavored or chocolate flavored" 

 

Therefore: "The ice cream is chocolate flavored” 

 

Hypothetical Syllogism 
 

If P → Q and Q → R are two premises, we can use Hypothetical Syllogism to derive P →  
R P → Q  
Q → R  

---------- 
∴ P →  R  

 

Example 
 

"If it rains, I shall not go to school” 
 

"If I don't go to school, I won't need to do homework" 

 

Therefore: "If it rains, I won't need to do homework" 

 

Constructive Dilemma 
 

If ( P → Q ) Λ (R → S) and P V R are two premises, we can use constructive dilemma to 

derive Q V S. 

 

( P → Q ) Λ (R → S)  
P V R  

---------- 
∴ Q V S  

 

Example 
 
“If it rains, I will take a leave” 
 

“If it is hot outside, I will go for a shower” 
 

“Either it will rain or it is hot outside” 

 

Therefore:  "I will take a leave or I will go for a shower" 
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Discrete Mathematics 
 

 

Destructive Dilemma  
 

If (P → Q) Λ (R → S) and ¬Q V ¬S are two premises, we can use destructive dilemma 

to derive P V R. 

(P → Q ) Λ (R → S)  
¬Q V ¬S  
---------- 

∴ P V R  

 

Example   
“If it rains, I will take a leave” 
 

“If it is hot outside, I will go for a shower” 
 

“Either I will not take a leave or I will not go for a shower” 

 

Therefore: "It rains or it is hot outside"  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


