MICROPROCESSORS AND MICROCONTROLLERS

MODULE -2
A AND L INSTRUCTIONS & INT 21H AND INT 10H PROGRAMMING
ARITHMETIC & LOGIC INSTRUCTIONS AND PROGRAMS
INTRUCTIONS SET DESCRIPTION:

UNSIGNED ADDITION AND SUBTRACTION:
Unsigned numbers are defined as data in which all the bits are used to represent data and no bits are set

aside for the positive or negative sign. This means that the operand can be between 00 and FFH (0 to 255
decimal) for 8-bit data, and between 0000 and FFFFH (0 to 65535 decimal) for 16-bit data.

Unsigned numbers Signed numbers
255 FFH +127 TFH
254 FEH +126 7EH
-_-’—___‘--__‘ -\-_-’—___i-.-_.
o e]
132 8dH +2 02H
131 B3H +1 14
130 82H +0 20H
129 81H -1 FFH
128 BOH -2 FEH
]
4 04H —124 84H
3 03H —125 BaH
2 o2H —126 B2H
1 01H =127 81H
4] o0H -128 80H

Addition of Unsigned Numbers:
ADD destination, source ;destination = destination + source
v The instructions ADD and ADC are used to add two operands. The destination operand can be a
register or in memory. The source operand can be a register, in memory, or immediate.
v" Remember that memory-to-memory operations are never allowed in x86 Assembly language.
v The instruction could change any of the ZF, SF, AF, CF, or PF bits of the flag register, depending

on the operands involved. The overflow flag is used only in signed number operations.

Show how the flag register is affected by

MO AL, 0F5H
ADD AL, 0BH
Solution:
F3H 11X1 0X01
DBH + 0000 1011
100H 0000 o000

After the addition, the AL register (destination) contains 00 and the flags are as follows:
CF = 1, since there is a carry out from D7
SF = 0, the status of D7 of the result

PF = 1. the number of 1s is zero (zero is an even number)
AF = 1, there is a carry from D3 to D4
ZF = 1, the result of the action i3 zero (for the 8 bits)

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

h-addition, two cases will be discussed:
CASEL: Addition of Individual Byte and Word Data:

Write a program to calculate the total sum of 5 bytes of data. Each byte represents the daily
wages of a worker. This person does not make more than 5255 (FFH) a day. The decimal data is

as follows: 125, 235, 197, 91, and 48.

TITLE PROG3-124 {EXE) ADDING 5 BYTES
PAGE 60,132
LMODEL SMALL
.STACK 54
. DATA
COUNT EQU ns
DATA DE 125,235,197, 91, 48
ORG 0D0OBH
S DwW ?
CODE

MAIN FROC FAR
MOV X, BDATA

MO Ne, AX

MOV CX,COUNT jCX is the loop counter

MO 5I,0FFSET DATA ;3I i= the data pointer

MOV AX,00 ;BX will hold the sum
BRCE: ADD AL, SI] ;jadd the next byte Lo AL

JNC OVER ;if no carry, continue

INC AH ;else accumulate carry in AH
OVER: INC 51 tincrement data pointer

DEC CX jdecrement loop counter

JHZ BACE ;1f not finished, go add next byte

MOV SUM, AX ;store sum

MOV AH,4CH

INT 21H ;go back to Q5
MAIN ENDFE

END MATIN

Program 3-1a
These numbers are converted to hex by the assembler as follows: 125 = 7DH, 235 = 0EBH, 197 = 0C5H,
91 = 5BH, 48 = 30H. This program uses AH to accumulate carries as the operands are added to AL
register. Three iterations of the loop are shown below:
1. In the first iteration of the loop, 7DH is added to AL with CF =0 and AH = 00. CX = 04 and ZF
=0.
2. In the second iteration of the loop, EBH is added to AL, which results in AL = 68H and CF = 1.
Since a carry occurred, AH is incremented. CX = 03 and ZF = 0.
3. In the third iteration, C5H is added to AL, which makes AL = 2DH. Again a carry occurred, so
AH is incremented again. CX = 02 and ZF = 0.
This process continues until CX = 00 and the zero flag becomes 1, which will cause JNZ to fall through.

Then the result will be saved in the word-sized memory set aside in the data segment.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Although this program works correctly, due to pipelining it is strongly recommended that the

following lines of the program be replaced:

Replace these lines With these lines

BACEKE: ADD AL,[5I BACE: ADD AL,[5I]
JHC OVER ADC AH, 00 ;add 1 to AH if CFP=1
INC AH INC Sl

OVER: INC SI
The instruction "JNC OVER" has to empty the queue of pipelined instructions and fetch the instructions
from the OVER target every time the carry is zero (CF = 0). Hence, the "ADC AH, 00" instruction is
much more efficient.
The addition of many word operands works the same way. Register AX (or CX, DX, or BX) could be
used as the accumulator and BX (or any general-purpose 16-bit register) for keeping the carries. Program

3-1b is the same as Program 3-1a, rewritten for word addition.

Write a program to calculate the total sum of five words of data. Each data value represents the
vearly wages of a worker. This person does not make more than $635,555 (FFFFH) a vear. The
decimal data is as follows: 27345, 28521, 29533, 30105, and 32375,

TITLE PROG3-1B (EXE) ADDING 5 WORDS
FAGE 00,132
LJMODEL SMALL
LSTACE 64
DATR
COUNT EQU 0h
[ATA oW 27345,28521,29533,30105,32375
ORG 0010H

M DW 2 DUPR(?)

.CODE

MAIN PROC FAR
MOV AX,@DATA
MOV DS, AX

MoV CH,COUNT jCX 13 the loop counter
MOV SI,0FFSET DATA $81 is the data pointer
MOV R¥,00 ;A¥ will hold the sum
MOV B¥,AX ;BX will hold the ecarries
EACHK: ADD A¥,[BT) tradd the next word teo AX
ADC BX,0 jadd carry to BX
INC 5I rinecrement data polinter twlce
INC SI ito point to next word
DEC CX jdecrement loop counter
JMNE BACK tif not finished, continue adding
MOV SUM, X ;store the sum
MoV SUM+2,BY istore the carries
MOV AH,4CH
INT £1H igo back to O3
MAIN ENDF
END MARIN

Program 3-1b

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

SE2: Addition of Multiword Numbers:

TITLE PROG3=2 (EXE) MULTIACRD ADDITION
PLGE 60,132
_MODEL SMALL
.STACK &4
.DATA
DATAL D0 S4BFBY9963CETH
ORG 0010H
DATAZ DO 3FCD4FAZ3BEDH
ORG 0020H
DATA3 DO 2
.CODE

MAIN FROC FAR
MOV RX,BDATA

MOV D5,AX
CLC sclear carry before first addition
MOV SI,OFFSET DATAL :5I is pointer for operandl
MOV DI,OFFSET DATAZ DI is pointer for coperand?
MOV BX,0FFSET DATA3 ;B¥ is pointer for the sum
MoV Cx,04 ;CH is the loop counter
BACK:MOV AX,[5I] imove the first operand to AX
ADC A¥,[DI] ;add the second operand to AX
MOV [B¥] ,AX ;store the sum
INC s8I ;point to next word of operandl
INC 5T
INC DI jpoint to next word of operandZ?
ING DI
ING BX ;jpoint to next word of sum
INC BX
LOOF BACKE ;if not finished, continue adding
MOV AH,4CH
INT 21H oo back to QS
MATN ENDFE
END MAIN

Program 3-2

0 Assume, a program is needed that will add the total Indian budget for the last 100 years or the
mass of all the planets in the solar system.

0 In cases like this, the numbers being added could be up to 8 bytes wide or even more. Since
registers are only 16 bits wide (2 bytes), it is the job of the programmer to write the code to break
down these large numbers into smaller chunks to be processed by the CPU.

o If a 16-bit register is used and the operand is 8 bytes wide, that would take a total of four

iterations. However, if an 8-bit register is used, the same operands would require eight iterations.

v In writing this program, the first thing to be decided was the directive used for coding the data in
the data segment. DQ was chosen since it can represent data as large as 8 bytes wide.
v In the addition of multibyte (or multiword) numbers, the ADC instruction is always used since the

carry must be added to the next-higher byte (or word) in the next iteration. Before executing

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

ADC, the carry flag must be cleared (CF = 0) so that in the first iteration, the carry would not be
added. Clearing the carry flag is achieved by the CLC (clear carry) instruction.

v’ Three pointers have been used: Sl for DATAL, DI for DATA2, and BX for DATA3 where the
result is saved.

v' There is a new instruction in that program, "LOOP xxxx", which replaces the often used "DEC
CX™ and "INZ xxxx".

LODP xxxx ;is equivalent to DEC CX
JMZ MMM

When "LOOP xxxx" is executed, CX is decremented automatically, and if CX is not 0, the microprocessor
will jump to target address xxxx. If CX is 0, the next instruction (the one below "LOOP xxxx") is

executed.

Subtraction of Unsigned Numbers:
SUB dest,source;dest = dest - source

The x86 uses internal adder circuitry to perform the subtraction command. Hence, the 2's complement
method is used by the microprocessor to perform the subtraction. The steps involved is —

1. Take the 2's complement of the subtrahend (source operand)

2. Add it to the minuend (destination operand)

3. Invert the carry.
These three steps are performed for every SUB instruction by the internal hardware of the x86 CPU. It is
after these three steps that the result is obtained and the flags are set. The following example illustrates

the three steps:

Show the steps involved in the following:

MOLT AT AR s YA AT =T1FH

MOV AL, 3FH ; Lload AL=3FH

MOV BH, Z£3H ; load BH=Z3H

SUB AL, BE ;subtract BH from AL. Place rezult in AL
. ¥
Solution:
AL 3F 0011 1111 0o 11
™ oy ART M i 1 a | = e
=BH :hi =" U1 1] U | i QML EmeaT

LC 1 0001 1100 CF=0 (step 3)

The flags would be set as follows: CF =0, ZF =0, AF = 0, PF = (, and SF = (.
The programmer must look at the carry flag (not the sign flag) to determine if the result is pos-
itive or negative,

v’ After the execution of SUB, if CF = 0, the result is positive; if CF = 1, the result is negative and

the destination has the 2's complement of the result.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o Normally, the result is left in 2's complement, but the NOT and INC instructions can be used to
change it. The NOT instruction performs the 1’s complement of the operand; then the operand is
incremented to get the 2's complement; as shown in the following example:

Analyze the following program:
sfrom the data segment:

CATAL DH 4CH
DATAZ DB BEH
DATA3 DB T

jfrom the code segment:
MOY DH, DATAL
SUB DH, DATAZ

:load DH with DATALl wvalue (4CH)
;subtract DATAZ (6E) from DH (4CH)
JHNC NEXT ;if CF=0 jump teo MNEXT target

NOT CH ;if CF=1 then take 1's complement
INC DH jand increment to get Z's complement

NEXT : MO DATAS, DH ;save DH in DATRZ
Solution:
Following the three steps for "SUB DH,DATA2":
4C 0100 1100 0190 1140

-EE 0110 1110 1001 g0l (2" 5 complement)
-22 01101 1110 CF=1 (step 3}result iz negative

SBB (Subtract with Borrow):

This instruction is used for multibyte (multiword) numbers and will take care of the borrow of the lower
operand. If the carry flag is 0, SBB works like SUB. If the carry flag is 1, SBB subtracts 1 from the result.
Notice the "PTR" operand in the following Example.

Analyze the following program:

DARTA A DL 6250 2FRH

DATE B Do 412953BH

RESULT Do ?
Mo AX, WORD BPTR DATAR A sAX=02FA
SUB AX,WORD FTE D.-“aII-.:E JEUE 963B from AX
MOV WORD PTE RESULT,AX ;save the result

MOV AX,WORD PTE i_.la'-'-.'j.fl._j-". +2 :r\Pi:DEE:'-_:.-
SEB AX,WORD PTR DATA B +2 ;50B 0412 with bhorrow
MO WORD PTR RESULT+Z,AX ;save the result
Solution:
After the SUB, AX = 62FA - 963B = CCBF and the carry flag is set. Since CF = 1, when SEB
is executed, AX =625 - 412 - | =212, Therefore, the value stored in RESULT is 0212CCBF.

The PTR (pointer) data directive is used to specify the size of the operand when it differs from the defined
size. In above Example; "WORD PTR" tells the assembler to use a word operand, even though the data is

defined as a double word.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

UNSIGNED MULTIPLICATION AND DIVISION:
One of the major changes from the 8080/85 microprocessor to the 8086 was inclusion of instructions for

multiplication and division. The use of registers AX, AL, AH, and DX is necessary.

Multiplication of Unsigned Numbers:
In discussing multiplication, the following cases will be examined: (1) byte times byte, (2) word times
word, and (3) byte times word.
8-bit * 8-bit AL *BL 16-bit * 16-bit AX* BX
16-bit AX 32-bit DX AX

byte x byte: In byte-by-byte multiplication, one of the operands must be in the AL register and the

second operand can be either in a register or in memory. After the multiplication, the result is in AX.

RESULT DW 3 sresult is defined in the data segment
MOV AL, 2EH ;a byte is moved to AL
MOV BL, 6EH rimmediate data must be in a register
MUL BL ;AL = 28 x 65H

MOV RESULT,AX ;the result is saved
In the program above, 25H is multiplied by 65H and the result is saved in word-sized memory named
RESULT. Here, the register addressing mode is used.
The next three examples show the register, direct, and register indirect addressing modes.

i from the data segment:

DATAL DE 25H
DATAZ DE o5H
RESULT D 2

;from the code segment:
MO AL, DATRI
MOV BL, DATAZ
MUL BL jregister addressing mode
MOV BRESULT;AX

or
MOV AL,DATAL
MUL DATRZ ;jdirect addressing mode
MoV RESULT,AX

or

MOV AL, DATAI

MoV S5I,0FFSET DATAZ

MOL BYTE PIR [§1I] ;jregister indirect addressing mode
MOV RESULT,AX

v In the register addressing mode example, any 8-bit register could have been used in place BL.

<

Similarly, in the register indirect example, BX or DI could have been used as pointers.
v'If the register indirect addressing mode is used, the operand size must be specified with the help

of the PTR pseudo-instruction. In the absence of the "BYTE PTR" directive in the example above,

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

the assembler could not figure out if it should use a byte or word operand pointed at by SI. This
confusion may cause an error.
word x word: In word-by-word multiplication, one operand must be in AX and the second operand can
be in a register or memory. After the multiplication, registers DX and AX will contain the result. Since

word-by-word multiplication can produce a 32-bit result, DX will hold the higher word and AX the lower

word.
DATAS D 2378H
DaATRA DWW 2F7%H
RESULT1 (B 2 DUF(Z)
MOV BX¥,DATAZ ;load first operand into AX
MOL DATA4 multiply i€ by the second operand

MOV BRESULT1,AX ;store the lower word result
MOV RESULT1+Z,DX ;stoce the higher word result

word x byte: This is similar to word-by-word multiplication, except that AL-contains the byte operand
and AH must be set to zero.

i from the data segment:

DATAS CB .6BH
DATAR Di¥ L2C3H
RESILT3 oW 2 DUPI?)
;from the code segment:
MOV AL, DATAS :Al. holds byte operand
SUB AH,AH FARH must be cleared
MUL DATAS jbyte in AL mult. by word operand
MOV BX,0FFSET RESULT3 ;BX points to product
MOV [BX] ,BX ;A% holds lower word
MOV [EX]}R,EK * ;DX holds higher word

Table: Unsigned Multiplication Summary

Multiplication Operand | Operand 2 Result
byie = byte AL regisier or memory AX
word x word AX register or memory DX AX

word x byte AL=byte, AH=0 registerormemory DX AX

Division of Unsigned Numbers:
In the division of unsigned numbers, the following cases are discussed:
1. Byte over byte
2. Word over word
3. Word over byte
4. Double-word over word

8-bit AL Q:AL 16-bit AX Q: AX

8-bit BL R: AH 16-bit BX R: DX

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

16-bit AX Q:AL 32-bit DA AX Q: AX
8-bit BL R: AH 16-bit BX R: DX

In divide, there could be cases where the CPU cannot perform the division. In these cases an interrupt is
activated. This is referred to as an exception. In following situations, the microprocessor cannot handle
the division and must call an interrupt:

1. If the denominator is zero (dividing any number by 00)

2. If the quotient is too large for the assigned register.
In the IBM PC and compatibles, if either of these cases happens, the PC will display the "divide error"

message.

byte/byte: In dividing a byte by a byte, the numerator must be in the AL register and AH must be set to
zero. The denominator cannot be immediate but can be in a register or memory. After the DIV instruction

is performed, the quotient is in AL and the remainder is in AH.

QOuUTl DB ?
REMAINL DB 'y
susing immediate addressing mode will give an error
MoW - AL, DATA7 imove data inte AL
3UB AH,AH ;clear AH
oIy 140 ;immed. mode not allowed!!

sallowable modes include:
jusing direct mode’

MOV AL, DATAT AL helds numerater

SUB AH,AE BH must be cleared

DIV DATASR ;idivide AX by DATAB

MOV QOUTI,AL ;ouotient = AL = (8

MOV REMAINL,AH jremainder = AH = 035
jusing register addressing mode*

MOV L, DATAY ;AL holds numerator

SUE AH,AE ;AH must be cleared

MoV BH,DATASR smove denom. to register

DIV BH jdivide AX by BH

MOV QOUTI1,AL ;jquotient = AL = (8

MOV REMAINL,AH jremainder = AH = 05
susing register indirect addressing mode

MOV AL, DATAT ;AL holds numerator

EUB AH,AH $2H must be cleared

MOV BX,0FFSET [CATAS ;BEX holds offset of DATRS

DIV BYTE PTE [BX] jdivide AX by DATAB

MOV QOUTZ, AX
MOV REMAINDZ, DX

word/word: In this case, the numerator is in AX and DX must be cleared. The denominator can be in a

register or memory. After the DIV; AX will have the quotient and the remainder will be in DX.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

MOV AX, 10030
SUB DX, DX

MoV BX, 100

DIV BX

MOV QOUTZ, AX
MOV REMAINMDZ, DX

;AX holds numerator
DX must be cleared
+BX used for denocminateor

A¥ = g4H = 100
D = 32H = 50

;quotient =
jremainder =

word/byte: Here, the numerator is in AX and the denominator can be in a register or memory. After the

DIV instruction, AL will contain the quotient, and AH will contain the remainder. The maximum quotient

is FFH.

The following program divides AX = 2055 by CL = 100. Then AL = 14H (20 decimal) is the quotient and

AH = 37H (55 decimal) is the remainder.

MOV AX, 2055
MOV CL, 100

DIV CL

MOV QUD, AL

MOV REMI,AH

holds numerator
used for denominator

holds guotient
‘holds remaindar

Double-word/word: The numerator is in DX and AX, with the most significant word in DX and the least

significant word in AX. The denominator can be in a register or in memory. After the DIV instruction; the

quotient will be in AX, and the remainder in DX. The maximum quotient is FFFFH.

i from the data segment:

DATAL DD 105432
DATRZ OW Logag
QuUaT oW ?
REMRIN oW 1
tfrom the code segment:
MOV
MO
DIV DATAZ
MOV QUOT, AX
MOV REMAIN, DX

AY,WORD PTR DATAL
DX, WoRD PTR DATAL+2;DX higher word of numerater

+A¥ holds lower word

jAX holds quotlent
;DX holds remainder

v"In the program above, the contents of DX: AX are divided by a word-sized data value, 10000.

v The 8088/86 automatically uses DX: AX as the numerator anytime the denominator is a word in

size.

v Notice in the example above that DATAI is defined as DD but fetched into a word-size register
with the help of WORD PTR. In the absence of WORD PTR, the assembler will generate an

error.
Table: Unsigned Division Summary
Division Numerator Denominator Qunﬂent Rem.
byte/byte AL =byte, AH=0 register or memory ALl AH
word/word AX =word, DX =0 register or memory AX? DX
word/byte AX =word register or memory AL! AH
doubleword'word DXAX = doubleword register or memory AX1 DX

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

LOGIC INSTRUCTIONS:
Here, the logic instructions AND, OR, XOR, SHIFT, and COMPARE are discussed with examples.

Inputs Output
AND A B | AANDB
BND destination, source 0 0 0
v’ This instruction will perform a logical AND on the operands and 0 1 0
place the result in the destination. The destination operand can be a 1 0 0
register or memory. The source operand can be a register, memory, 1 1 1

or immediate.
. . A —D_ A AND B
v" AND will automatically change the CF and OF to zero, and PF, B—

ZF, and SF are set according to the result. The rest of the flags are

either undecided or unaffected.

Show the results of the following:
MOV BL,35H
AND BL,0FH 'AND BL with 0FH. Place the result in BL.
Solution:
A5H g 1 X L. G 1
CEH -0.p o0 1 3.1 1
58 o o o T+ S i Bl o Flag settings will be; SF=0,ZF =0, PF = 1, CF=0F = Q.

v" AND can be used to mask certain bits of the operand. The task of clearing a bit in a binary

number is called masking. It can also be used to test for a zero operand.

¥Xx X ¥ xxxx LUnknown numbear AND DH,DH

= 00001111 Mask JE HEXX
0000 xxxx Result

HEXX:

v" The above code will AND DH with itself, and set ZF =1, if the result is zero. This makes the CPU
to fetch from the target address XXXX. Otherwise, the instruction below JZ is executed. AND

can thus be used to test if a register contains zero.

Inputs Output
OR A | B | AORB
OR destination, source 0 0 0
v' The destination and source operands are ORed and the result is 0 1 1
placed in the destination. 1 0 1
v' The destination operand can be a register or in memory. The 1 1 1
source operand can be a register, memory, or immediate. A j)_ AORE
v" OR will automatically change the CF and OF to zero, and PF, ZF, | B

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

and SF are set according to the result. The rest of the flags are either undecided or unaffected.

Show the results of the following:

MOV AY, 0504 ‘AY = (0504
OR' AX, ODAGEH {R¥ = DF6C
Solution:

0504 0000 0101 Q000 Q400 _
DAGBH 1101 1010 0110 1000 Flags will be: SF=1,ZF=0,PF=1, CF=0F =0.
DF6C 1101 1111 0110 1100 Notice that parity is checked for the lower 8 bits only.

v" The OR instruction can be used to test for a zero operand. For example, "OR BL, 0"will OR the
register BL with 0 and make ZF = 1, if BL is zero. "OR BL, BL" will achieve the same result.
v OR can also be used to set certain bits of an operand to 1.
XXX xXxxx Unknown number

+ 00001111 Mask
xxxx%x 1111 BResul

Inputs Output
XOR
A B A XORB
XOR dest,s

ast e O 0 0

v The XOR instruction will eXclusive-OR the operands and place the 5 1 1

result in the destination. XOR sets the result bits to 1 if they are 1 5 1

not equal; otherwise, they are reset to 0. 1 1 5

v' The destination operand can be a register or in memory. The

. .] A
source operand can be a register, memory, or immediate. B i— AXOR B

v OR will automatically change the CF and OF to zero, and PF, ZF,

and SF are set according to the result. The rest of the flags are either undecided or unaffected.

Show the results of the following:

MOV DE, 54H
XOR DE, 78H
Solution:
24H G Lro0ol1lol1lo0od
784 0 1 1 110900
2C 00101100 Flagsettingswillbe: SF=0,ZF=0,PF=0,CF=0F=0.

The XOR instruction can be used to clear the contents of a register by XORing it with itself.
Show how "XOR AH,AH" clears AH, assuming that AH = 45H.

Solution:
45H 01000101
45H p1000101

oo oooooaoo Flag settings will be: SF =0, ZF = 1, PF =1, CF = OF = (.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v~ XOR can be used to see if two registers have the same value. "XOR BX, CX" will make ZF = 1, if
both registers have the same value, and if they do, the result (0000) is saved in BX, the
destination.

v/ XOR can also be used to toggle (invert/compliment) bits of an operand. For example, to toggle bit
2 of register AL:

¥ KK NX XX Unknown number
@&@0000 1111 Mask
xXxx XXXX Hesult

¥OR AL, 04H ;¥OR AL with 0000 0100

v" This would cause bit 2 of AL to change to the opposite value; all other bits would remain

unchanged.

SHIFT
o Shift instructions shift the contents of a register or memory location right or left.
0 The number of times (or bits) that the operand is shifted can be specified directly if it is once
only, or through the CL register if it is more than once.
0 There are two kinds of shifts:
v" Logical — for unsigned operands

v" Arithmetic — signed operands.

SHR: This is the logical shift right. The operand is shifted right bit by bit, and for every shift the LSB
(least significant bit) will go to the carry flag (CF) and the MSB (most significant bit) is filled with 0.

v" SHR does affect the OF, SF, PF, and ZF flags.

v" The operand to be shifted can be in a register or in memory, but immediate addressing mode is

not allowed for shift instructions. For example, "SHR 25, CL" will cause the assembler to give an

error.
C
SHR 00—
Eg:
SHR BH, CL R/M Cy
0 — — |
Shift right Before After
BH 0100 0100 0001 0001
CL 02H
Cy 1 | 0 |

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Show the result of SHR in the following;
MOV AL, 9AH
MOV EL3 jset number of times to shift
SHR AL, CL

Solution:
9AH = 10011010
01001101 CF =0 (shifted once)
00100110 CF = 1 (shifted twice)
00010011 CF = 0 (shifted three times)

After shifting right three times, AL = 13H and CF = (.

v"If the operand is to be shifted once only, this is specified in the SHR instruction itself rather than

placing 1 in the CL. This saves coding of one instruction:

MoV BX, OFFFFE ;BA=FFFFH .
SHR BX,1 ;jshift right BX once only

v' After the above shift, BX = 7FFFH and CF = 1.

Show the results of SHR in the following:
sfrom the data segment:

DATAL oW T177H
;£rom the code segmant:
TIMES EQU 4
MOV CL, TIMES i CL=04

SHR DATARL, CL ;shift DATAl CL times

Solution:
After the four shifts, the word at memory location DATA1 will contain 0777. The four LSBs are
lost through the carry, one by one, and 0s fill the four MSBs.

SHL.: Shift left is also a logical shift. It is the reverse of SHR. After every shift the LSB is filled with 0
and the MSB goes to CF.
v SHL does affect the OF, SF, PF, and ZF flags.
v The operand to be shifted can be in a register or in memory, but immediate addressing mode is
not allowed for shift instructions. For example, "SHL 25, CL" will cause the assembler to give an

error.
Target register or memory
C
SHL -
Eg:
SHL BH, CL Cy R/M
\ le— e— 0
Shift left without Cy Before After
BH 0010 0010 | 1000 1000 |
CL 02H
Cy 1 | 0 |

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Show the effects of SHL in the following: Caalenbe podadise W
MOV ' DH, 6
Y CL.4 MOV DH, &
SHL ~ DH,CL sHL DH, 1
SHL DHE,1
SHL DH,1
Solution: SHL DH,1
00000110
CF=(QoooLLioe {shifted left once)
CF=0 g0011000
Ch={ 00110000
CFP=(01100000 (shifted four times)
After the four shifts left, the DH register has 60H and CF = (.

COMPARE of Unsigned Numbers:

CME destination,source :compare dest and src

v" The CMP instruction compares two operands and changes the flags according to the result of the
comparison. The operands themselves remain unchanged.

v The destination operand can be in a register or in memory and the source operand can be in a
register, memory, or immediate.

v The compare instruction is really a SUBtraction, except that the values of the operands do not
change.

v The flags are changed according to the execution of SUB. Although all the flags (CF, AF, SF, PF,
ZF, and OF flags) are affected, the only ones of interest are ZF and CF.

v It must be emphasized that in CMP instructions, the operands are unaffected regardless of the
result of the comparison. Only the flags are affected.

Table: Flag Settings for Compare Instruction

Compare Operands | CF | ZF Remark

destination > source | 0 0 | destination — source; results CF=0& ZF =0

destination = source | 0 1 | destination — source; resultsCF=0& ZF =1

destination < source | 1 0 | destination —source; results CF=1& ZF =0

CATAL DW 235FH

MOV AX,0CCCCH

CME AX,DATAL jcompare CCCC with 235F
JNCZ OVER ;jump if CF=(Q
SUB RAX,ARX

OVER: INC DATAl
v In the program above, AX is greater than the contents of memory location DATAL (OCCCCH >
235FH); therefore, CF = 0 and JNC (jump no carry) will go to target OVER.

MAHESH PRASANNA K., VCET, PUTTUR

v

MICROPROCESSORS AND MICROCONTROLLERS

MOV EX, 78E8H
MOV CX, 9FFFH
CMFE BX,Cx ;jcompare TB8BE with 9FFF
JWC NEXT
ADD BX, 40008
NEXT: ADD C¥, 250H

In the above code, BX is smaller than CX (7888H < 9FFFH), which sets CF = 1, making "JNC
NEXT" fall through so that "ADD BX, 4000H" is executed.

In the example above, CX and BX still have their original values (CX = 9FFFH and BX =7888H)
after the execution of "CMP BX, CX".

Notice that CF is always checked for cases of greater or smaller than, but for equal, ZF must be

used.
TEME LB 7
MoW AL, TEME smove the TEMP wvariable into AL
CMP AL, 99 scompare AL with %9
JZ HOT_HOT if ZF=1 (TEMP = 39} jump to HOIT HOT
INC B ;otherwise (EF=0) increment BX
HOT HOT: HLT jhalt the system

The above program sample has a variable named TEMP, which is being checked to see if it has
reached 99.

In the following Program the CMP instruction is used to search for the highest byte in a series of 5 bytes

defined in the data segment.

v

v

The instruction "CMP AL, [BX]" works as follows ([BX] is the contents of the memory location
pointed at by register BX).

o If AL <[BX], then CF = 1 and [BX] becomes the basis of the new comparison.

e If AL > [BX], then CF = 0 and AL is the larger of the two values and remains the basis of

comparison.

Although JC (jump carry) and JNC (jump no carry) check the carry flag and can be used after a
compare instruction, it is recommended that JA (jump above) and JB (jump below) be used
because,

e The assemblers will unassembled JC as JB, and JNC as JA.
The below Program searches through five data items to find the highest grade.
The program has a variable called "Highest" that holds the highest grade found so far. One by
one, the grades are compared to Highest. If any of them is higher, that value is placed in Highest.
This continues until all data items are checked. A REPEAT-UNTIL structure was chosen in the
program design.
The program uses register AL to hold the highest grade found so far. AL is given the initial value
of 0. A loop is used to compare each of the 5 bytes with the value in AL.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v If AL contains a higher value, the loop continues to check the next byte. If AL is smaller than the
byte being checked, the contents of AL are replaced by that byte and the loop continues.

Assume that there is a class of five people with the following grades: 69, 87, 96, 45, and 75.
Find the highest grade.

TITLE PROG3-3 (EXE) CMF EXAMPLE
PRGE 60,132
-MODEL SMALL
LSTACE 64
P e e s
DATA
GRADES DB 60,87,96,453,73
ORG RpO0E
HIGHEST DB E
. CODE
MAIHN PROC FAR

MO AX¥, (DATA
MO DS, AX

MOV C¥,; 5 jeset up loop counter

MOV EX,0FFSET GRADES BX points to GRADE data

SUER AL, LL ;AL holds highest grade found se far
AGATIN: CMP AaL,[BX] jcompare next grade to highest

JB HEXT sjump if AL still highest

MO aL,[BX] jelse AL helds new highest
MNEXT: TN B ;point to next grade

LOOP GAIN ;ocontinue search

MOV HIGEEST, AL jatore highest grade

MoV AH, 4CH

INT Z1H fg0 back to 08
MATIH ENDF

END MATH

Program 3-3

NOTE:
There is a relationship between the pattem of lowercase and uppercase letters, as shown below for A and
a:
A 0100 0001 41H
a 0110 0001 61H
The only bit that changes is d5. To change from lowercase to uppercase , d5 must be masked.

Note that small and capital letters in ASCII have the following values:

Letter Hex Binary Letter Hex Binary

A 41 0100 0001 a 61 0110 0001
B 42 0100 0010 b 62 0110 0010
C 43 01000011 C 63 0110 0011
X 59 0101 1001 v 79 0111 1001
Z 5A 0101 1010 z TA 0111 1010

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Count = §
Highest =

Count = 5
Highesi = 0

REPEAT
IF (Mext > Highest)
THEN
Highest = Next
ENDIF
Decrement Count
UNTIL Count = 0

yes

L

Store Highest

Highest = next

Decrement cournt
[ncrement pointer

!

no yes

L 3§

Store Highest

O 5 5 e e

Fig: Flowchart and Pseudocode for Program 3-3

The following Program uses the CMP instruction to determine if an ASCII character is uppercase or
lowercase.
v The following Program first detects if the letter is in lowercase, and if it is, it is ANDed wit h
1101 1111B = DFH. Otherwise, it is simply left alone.
v' To determine if it is a lowercase letter, it is compared with 61H and 7AH to see if it is in the
range a to z. Anything above or below this range should be left alone.
In the following Program, 20H could have been subtracted from the lowercase letters instead of ANDing

with 1101 1111B.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

TITLE F 5 EXE} LOWERCASE T0 UPPERCASE CONVERSION
PAGE g0, 132
.MODEL SMALL
.STACK &4
« DATA
CATAL DB ‘m¥ NAME is jOe'
ORG 00ZCH
DATAZ LB 14 DUEB(?)
.CODE

MAIN PROC FAR
MOV AX, BDATA
MOV DS, BX
Mow SI,OFFSET DATRAL 78I pointe to original data
MOV BX,0FFSET DATAZ ;BX points to uppercase data

MOV CX, 14 ;CH is loop counter
BACK:MOV AL,[5I] ;get next character
CMP AL, 61H tif lass than ‘a’ :
JB OVER ;then no need to convert
CHEP AL, TRH jif greater than "z’
JA OVER jthen no need to convert
AND AL,11011L11E jmask dS to convert to uppercase
CVER:MOV [BX] ,AL jstore uppercase character
InC SI ;increment pointer to original
INC BX rincrement peointer to uppercase data
LOOE BACK jcontinue locping if CK > O
MOV AH,4CH
INT 21H ;go back to G5
MAIN ENDP
END MAIM
Program 3-4
Digit | BCD
BCD AND ASCII CONVERSION: 0 | 0000
o BCD (binary coded decimal) is needed because we use the digits 0 to 9 for 1 | 0001
numbers in everyday life. Binary representation of 0 to 9 is called BCD. 2 | 0010
o In computer literature, one encounters two terms for BCD numbers: (1) unpacked 3 0011
BCD, and (2) packed BCD. 4 10100
5 0101
Unpacked BCD: 6 | 0110
o Inunpacked BCD, the lower 4 bits of the number represent the BCD number and 7 | 0111
the rest of the bits are 0. 8 | 1000
e Example: "0000 1001" and "0000 0101" are unpacked BCD for 9 and 5, 9 |1001

respectively.
0 In the case of unpacked BCD it takes 1 byte of memory location or a register of 8 bits to contain

the number.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Packed BCD:
0 In the case of packed BCD, a single byte has two BCD numbers in it, one in the lower 4 bits and
one in the upper 4 bits.
e For example, "0101 1001" is packed BCD for 59.
0 It takes only 1 byte of memory to store the packed BCD operands. This is one reason to use

packed BCD since it is twice as efficient in storing data.

ASCI1 Numbers:
o0 In ASCII keyboards, when key "0" is activated, for example, "011 0000" (30H) is provided to the

computer. In the same way, 31H (011 0001) is provided for key "1", and so on, as shown in the

following list:
Key ASCII (hex) Binaxy BCD {unpacked)
0 30 011 0000 0000 0000
1 31 011 0001 0000 0001
2 32 011 0010 0000 0010
3 33 gLl Q011 QooQ 0011
4 34 011 0100 0000 0100
5 35 011 0101 0000 0101
6 36 011 9110 ocoo 0110
7 37 011 0111 0000 0111
g 38 011 1000 oood 1000
g 39 311 1001 0000 1001

It must be noted that, although ASCII is standard in many countries, BCD numbers have universal

application. So, the data conversion from ASCII to BCD and vice versa should be studied.

ASCII to BCD Conversion:
To process data in BCD, first the ASCII data provided by the keyboard must be converted to BCD.

Whether it should be converted to packed or unpacked BCD depends on the instructions to be used.

ASCII to Unpacked BCD Conversion:

To convert ASCII data to BCD, the programmer must get rid of the tagged "011" in the higher 4 bits of
the ASCII. To do that, each ASCII number is ANDed with "0000 1111" (OFH), as shown in the next
example. These programs show three different methods for converting the 10 ASCII digits to unpacked

BCD. All use the same data segment:

ASC LB '9562481273"
ORG 0010H
UNEACE DB 10 DUE(?)

The data is defined as DB.
¢ In the following Program 3-5a; the data is accessed in word-sized chunks.

e The Program 3-5b used the PTR directive to access the data.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

¢ The Program 5-3c uses the based addressing mode (BX+ASC is used as a pointer.

MOV CX,5

MOV BX,0FFSET ASC ;BX points to ASCII datsa

MOV DI,QFFSET UMFACE DI peints to unpacked BCD data
AGRIN: MoV AX,.[BX] smove next 2 ASCII numbers to AX

AND AX,0FOFH jremowve ASCII 3s

MOY [DI] ,AX :store unpacked BCD

ADD 0I,2 spoint to next unpacked BCD data

ADD BX,2 ;point te next RBASCII data

LOOPF AGAIN

Program 3-5a

MOV CX, 5 ;CX 1s loop counter

MOV BX,0FFSET ASC iBH points to ASCII data

MOow DI,QFFSET UNEACK :DI points te unpacked BCD data
AGRIN: MOV AXN,WORD PTR [BX] ;move next 2 ASCII numbers to AX

AND A¥,0FQOFH sremove ASCII 3s

MOV WORD PTR [DI],AX jstore unpacked BCD

ADD DI, ?2 spoint to next unpacked BCD data

ADD BX, 2 ipoint to next ASCII data

LOOP AGAIN

Program 3-5b

MOV CX,;10 ;load the counter
SUB | BX,BX jclear BX

AGRIN: MOV AL, ASC] BY] ijmove to AL content of mem [BX+ASC
AND AL,0FH :mask the upper nibble
MOV UMNPACE] BX] , AL jnove to mem [BX+UNPACE] the AL
INC BX jpoint to next byte
LOCP AGAIN ;loop until it is finished

Program 3-5¢
ASCII to Packed BCD Conversion:
To convert ASCII to packed BCD, it is first converted to unpacked BCD (to get rid of the 3) and then
combined to make packed BCD.
For example, for 9 and 5 the keyboard gives 39 and 35, respectively. The goal is to produce 95H or"1001 0101",

which is called packed BCD. This process is illustrated in detail below:

Key ASCH Unpacked BCD Packed BCD
4 34 Qoono100
7 37 oooe01il 0LO0011L or 47H
ORG Qol0oR
VAL ASC CB -
VAL BCD DB ?
;reminder: DB will put 34 in 0010H location and 37 in 0011H
MOV AX,WORD PTR VAL ASC ;AH=37,AL=34
AND RX, 0FOFH imask 3 to get unpacked BCD
XCHG, AH, AL ;jewap AH and AL.
Mo CL, 4 ;CL=04 to shift 4 times
SHL AH,CL jshift left AH to get” AH=40H
OR AL, AH ;OR them to get packed BCD
MO VAL BCD, AL isave the result

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

After this conversion, the packed BCD numbers are processed and the result will be in packed BCD
format. There are special instructions, such as DAA and DAS, which require that the data be in packed

BCD form and give the result in packed BCD.

e For the result to be displayed on the monitor or be printed by the printer, it must be in ASCII

format. Conversion from packed BCD to ASCII is discussed next.

Packed BCD to ASCII Conversion:
To convert packed BCD to ASCII, it must first be converted to unpacked and then the unpacked BCD is
tagged with 011 0000 (30H).
The following shows the process of converting from packed BCD to ASCII:
Packed BCD Unpacked BCD ASCI

29H 02H & 03H 32H & 39H
goi0 1001 o000 0010 & QOOQOQ 1001 Q11 Q010 & D11 1001

VALL _ECD DE 29H
WVALZ-AEC oW ?

MOV AL,VAL1_BCD

MOV BH, AL fjcopy AL te AH. now AH=29,AL=29H
AND RX,0F00FH smask 9 from AH and 2 from AL

MOV CL, ;CL=04 for shift

SHE AH,CL ishift right AH te get unpacked BCD
oR BM,3030H jocombine with 30 teo get ASCII

XCHE AH,AL tewap for ASCII storage convention

MOV VAL3 ASC,nd jstore the ASCII

e After learning bow to convert ASCII to BCD, the application of BCD numbers is the next step.
e There are two instructions that deal specifically with BCD numbers: DAA and DAS.

BCD Addition and Correction:
In BCD addition, after adding packed BCD numbers, the result is no longer BCD. Look at this example:

MoV AL,17H
ADD AL,Z8H

Adding them gives 0011 1111B (3FH), which is not BCD! A BCD number can- only have digits from
0000 to 1001 (or 0 to 9). The result above should have been 17+ 28 = 45 (0100 0101).
v To correct this problem, the programmer must add 6 (0110) to the low digit: 3F + 06 = 45H.
The same problem could have happened in the upper digit (for example, in 52H + 87H = D9H).
v Again to solve this problem, 6 must be added to the upper digit (D9H + 60H = 139H), to ensure
that the result is BCD (52 + 87 = 139).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

DAA
The DAA (decimal adjust for addition) instruction in x86 microprocessors is provided exactly for the
purpose of correcting the problem associated with BCD addition. DAA will add 6 to the lower nibble or
higher nibble if needed; otherwise, it will leave the result alone.
The following example will clarify these points:

DATAL DB 47H

DATAZ DB Z5H
DATAZ oB?

MOV AL,DATAI ;AL holds first BCD operand

MOV BL,DATAZ :BL holds second BCD operand

ADD AL,BL ;BCD addition

DAM radjust for BCD addition

MOV DATA3, AL ;store result in correct BCD form

After the program is executed, the DATAZ field will contain 72H (47 + 25 =72).
v Note that DAA works only on AL. In other words, while the source can be an operand of any
addressing mode, the destination must be AL in order for DAA to work.
v" It needs to be emphasized that DAA must be used after the addition of BCD operands and that
BCD operands can never have any digit greater than 9. In other words, no A-F digit is allowed.
v"Itis also important to note that DAA works only after an ADD instruction; it will not work after
the INC instruction.

Summary of DAA Action:
1. If after an ADD or ADC instruction the lower nibble (4 bits) is greater than 9, or if AF = 1, add
0110 to the lower 4 bits.
2. If the upper nibble is greater than 9, or if CF = 1, add 0110 to the upper nibble.

In reality there is no other use for the AF (auxiliary flag) except for BCD addition and correction. For
example, adding 29H and 18H will result in 41H, which is incorrect as far as BCD is concerned.

See the following code:

Hex BCD Hex BCD

29 o010 1001 33 G010 Q011
+ + 01 1000 + 72 + [Q11L Q101

ﬁ %%Ug o001 Because AF = | D8 1101 1000 Because the upper nibble 15 greater than 9,
+ B + 0110 DAA adds 6 to fower nibble, | + &+ 0110 DAA adds 6 to upper nibble.

17 0100 01i1l The final result is BCD, 128 0010 1000 The final result is BCD.

The above example shows that 6 is added to the upper nibble due to the fact it is greater than 9.

Egl: ; AL=0011 1001 =39 BCD
; CL=0001 0010 =12 BCD
ADD AL, CL ; AL =0100 1011 =4BH
DAA ; Since 1011 > 9; Add correction factor 06.

; AL =0101 0001 =51 BCD

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Eg2: ; AL =1001 0110 =96 BCD
; BL=0000 0111 =07 BCD
ADD AL, BL ; AL=1001 1101 =9DH
DAA ; Since 1101 > 9; Add correction factor 06

; AL =1010 0011 = A3H
; Since 1010 > 9; Add correction factor 60
; AL = 0000 0011 =03 BCD. The result is 103.

More Examples:
1: Add decimal numbers 22 and 18.

MOV AL, 22H ; (AL)=22H

ADD AL, 18H ; (AL) = 3AH lllegal, incorrect answer!

DAA ; (AL) =40H Just treat it as decimalwith CF =0
3AH In this case, DAA same as ADD AL, 06H

+06H When LS hex digit in AL is >9, add 6 to it

=40H

2: Add decimal numbers 93 and 34.

MOV AL, 93H ; (AL)=93H

ADD AL, 34H ; (AL) =C7H, CF =0 lllegal & Incorrect!

DAA ; (AL) = 27H Just treat it as decimal with CF =1
C7H In this case, DAA same as ADD AL, 60H

+60H When MS hex digit in AL is >9, add 6 to it

=27H

3: Add decimal numbers 93 and 84.

MOV AL, 93H ; (AL)=93H

ADD AL, 84H ; (AL) =17H, CF =1 Incorrect answer!

DAA ; (AL) = 77H Just treat it as decimal with CF = 1 (carry generated?)
17H In this case, DAA same as ADD AL, 60H

+60H When CF =1, add 6 to MS hex digit of AL and treat

=77H Carry as 1 even though not generated in this addition

4: Add decimal numbers 65 and 57.

MOV AL, 65H ; (AL)= 65H

ADD AL, 57H : (AL) = BCH

DAA ; (AL) = 22H Just treat it as decimal with CF =1
BCH In this case, DAA same as ADD AL, 66H

+66H

=22H CF=1

5: Add decimal numbers 99 and 28.

MOV AL, 99H ; (AL)=99H

ADD AL, 28H i (AL)=C1H,AF=1

DAA ; (AL) = 27H Just treat it as decimal with CF =1
C1H In this case, DAA same as ADD AL, 66H

+66H 6 added to LS hex digit of AL, as AF =1

=27H CF=1 6 added to MS hex digit of AL, as it is >9

6: Add decimal numbers 36 and 42.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

MOV AL, 36H ; (AL)=36H

ADD AL, 42H ; (AL) = 78H

DAA ; (AL) = 78H Just treat it as decimal with CF =0
78H

+00H In this case, DAA same as ADD AL, 00H

=78H

The following Program demonstrates the use of DAA after addition of multibyte packed BCD numbers.

[Two sets of ASCII data have come in from the keyboard. Write and run a program to:
1. Convert from ASCII to packed BCD.
2. Add the multibyte packed BCD and save it.
3. Convert the packed BCD result to ASCIL
TITLE PROG3-6 [EXE) ASCII TO BCD CONVERSION AND ADDITION
PAGE 60,132
MODE SMALL
.STARCE B4
. DATA)
DATR1 ASC DB "DE4914781e"
ORG 0010H
DATRZ ASC DB "0072687188" .
ORG 0020H
DATAZ BCD DR & DUP (?)
ORG 0028H
DATRA BCD DB 5 DUER ()
ORG OD30H
DATAS RDD DB 5 DUE (7}
ORG 0040H
DATAE ASC DB 10 DUE (7}
. CODE
MATIN PROC FAR
MOV AX, @DATA
MOV DS, AX
MOV BX,OFFSET DATAL_ASC iBX points to Eirst ASCII data
Mo OI,OFFSET DATA3 BCD :DI points to first BCD data
MoV C¥,10 ;CX holds number bytes to convert
CALL COWNV_BCD joonvert ASCII te BCD
MOV B¥,0FFSET DATARZ ASC ;BX points to second ASCII data
MO DI, OFFSET DATA#:BCD :DI points to sacond BCD data
MOV C¥,10 ;C¥X holds number bhytes to convert
CALL CONV_BCD joconvert ASCII to BCD
CARLL BCD ADD ;add the BCD operands
MOV SI;0FFSET DATAS ADD iSI polints to BCD result
MOV DI, OFFSET DhThE:ﬁSC ;DI points to ASCII result
MOV CX.05 ;CX holds count for convert
CALL CONV_ASC jconvert result to ASCII
MOV AH, 4ACH
INT 21H igo back to OS5
MATN EMNDF

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

;THIS SUBROUTINE CONVERTS ASCII TO PACKED BCD
CoONV BCD FROC

AGAIN: MOV a¥,[BX) tBX=pointer for ASCII data
XCHG AH,AL ;
AND E¥, OFOFH ;mask ASCII 3s
PUSH CX ;save the counter
MOV cL, 4 ishift AH left 4 bits
SHL AH,CL yto get ready for packing
Ok AL, AH " jcombine to make packed BCD
MOV [DI] ;AL iDI=pointer for BCD data
ADD B¥, 2 ;point to next 2 ASCII bytes
INC DI fpoint to next BCD data
POP° CX ;restore loop counter
LODP AGCAIN
RET

CONV_BCD ENDP

;THIS SUBRQUTINE ADDS TWO NMULTIBYTE PACKED BCD OPERARNDS
BCD_ADD FROC

MOV BX,OFFSET DATA3_BCD sBX=pointer for operand 1
MOV DI,OFFSET DATA4 BCD ;DI=pointer for operand 2
MOV SXI,0FFSET DATAE:ADD i 8I=pointer for sum

MOV CX, 05

CLC

BACK: MOV BRL,[BX] +4 ;get next byte of operand L
ADC AL,[DI]+4 ;add next byte of operand 2

DA jcorrect for BCD addition

MOV [5I)] %4,AL j;save sum

DEC. BX ;point to next byte of coperand 1
DEC DI ipoint toc next byte of operand 2
DEC SI jpoint to next byte of sum

LOOP BACEK

EET

BCD_ADD ENLP

;THIS SUBROUTINE CONVERTS FROM PACKED BCD TO ASCII
COWV_ASC FROC

AGRINZ: MOV AL,[5I) :S3I=pointer for BCD data
MOV BH, AL jduplicate to unpack
BND - AX,0F00FH junpack
PUSH CX ;save counter
MOV CL, 04 ;jshift right 4 bits to unpack
SHR AH,CL jthe upper nibble
OR EY, 3030 smake it ASCII
XCHG AH,AL sewap for ASCII storage convention
MOV [DI] , AX retore ASCIT data
INC sI ;point to next BCD data
ADD DI, 2 jpoint to next ASCII data
BOPE CX ;restore loop counter
LOOP AGAINZ
RET
CONV_ASC ENDF
END MAIN
Program 3-6

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

BCD Subtraction and Correction:
The problem associated with the addition of packed BCD numbers also shows up in subtraction. Again,
there is an instruction (DAS) specifically designed to solve the problem.
Therefore, when subtracting packed BCD (single-byte or multibyte) operands, the DAS instruction is put
after the SUB or SBB instruction. AL must be used as the destination register to make DAS work.
Summary of DAS Action:

1. If after a SUB or SBB instruction the lower nibble is greater than 9, or if AF =1, subtract 0110

from the lower 4 bits.

2. If the upper nibble is greater than 9, or CF = 1, subtract 0110 from the upper nibble.
Due to the widespread use of BCD numbers, a specific data directive, DT, has been created. DT can be
used to represent BCD numbers from 0 to 10% — 1 (that is, twenty 9s).
Assume that the following operands represent the budget, the expenses, and the balance, which is the

budget minus the expenses.

BUDGET oT 87985141012
EXPENSES DT 31610840392
BALANCE DT ? ;balanca = budget - expenses
MOV CX,10 joountar=10
MOV B¥,00 ;pointer=0
CLC iclear carrcy for the 1st iteration

BACK: MOVAL,BYTE PTR BUDGET BX] ;get a byte of the BUDGET
S5B2 AL,BYTE FTE EXPENSES[BX] ;subtract a bvte from it

DAS jeorrect the result for BCD
Mo BYTE PTE BALANCEH BX] ,AL ;=zave it in BALANCE
INC BX tincrement for the next byte
LOOF BACK ;continue until CX=0

Notice in the code section above that,
v no H (hex) indicator is needed for BCD numbers when using the DT directive, and
v’ the use of the based relative addressing mode (BX + displacement) allows access to all three

arrays with a single register BX.

Egl: ; AL =0011 0010 =32 BCD
; CL=00010111=17 BCD

SUB AL, CL ; AL=0001 1011 = 1BH
DAS ; Subtract 06, since 1011 > 9.

; AL =0001 0101 =15 BCD

Eg2: ; AL =0010 0011 =23 BCD
; CL =0101 1000 =58 BCD
SUB AL, CL ; AL =1100 1011 =CBH
DAS ; Subtract 66, since 1100 >9 & 1011 > 9.

; AL =0110 0101 =65 BCD, CF=1.
: Since CF =1, answer is — 65.

MAHESH PRASANNA K., VCET, PUTTUR

More Examples:

MICROPROCESSORS AND MICROCONTROLLERS

1: Subtract decimal numbers 45 and 38.

MOV AL, 45H
SUB AL, 38H
DAS

ODH
-06H
=07H

; (AL)=45H
; (AL) = 0DH Illegal, incorrect answer!
; (AL) =07H Just treat it as decimal with Cy =0

In this case, DAS same as SUB AL, 06H
When LS hex digit in AL is >9, subtract 6

2: Subtract decimal numbers 63 and 88.

MOV AL, 63H
SUB AL, 88H
DAS

DBH
-66H
=75H

; (AL)=63H
; (AL) = DBH, Cy=1 lllegal & Incorrect!
; (AL) = 75H Just treat it as decimal with Cy = 1 (carry generated?)

In this case, DAS same as SUB AL, 66H

When Cy =1, it means result is negative

Result is 75, which is 10’s complement of 25

Treat Cy as 1 as Cy was generated in the previous subtraction itself!

3: Subtract decimal numbers 45 and 52.

MOV AL, 45H
SUB AL, 52H
DAS

F3H
-60H
=93H

: (AL)= 45H
; (AL)=F3H, Cy =1 Incorrect answer!
; (AL) = 93H Just treat it as decimal with Cy = 1 (carry generated?)

In this case, DAS same as SUB AL, 60H
When Cy =1, it means result is negative
Result is 93, which is 10’s complement of 07

4: Subtract decimal numbers 50 and 19.

MOV AL, 50H
SUB AL, 19H
DAS

37H
-06H
=31H

: (AL)= 50H
:(AL)=37H, Ac=1
; (AL) = 31H Just treat it as decimal with Cy =0

In this case, DAS same as SUB AL, 06H
06H is subtracted from AL as Ac =1

5: Subtract decimal numbers 99 and 88.

MOV AL, 99H
SUB AL, 88H
DAS

11H
-00H
=11H

; (AL)=99H
; (AL) = 11H
; (AL) = 11H Just treat it as decimal with Cy = 0

In this case, DAS same as SUB AL, 00H

6: Subtract decimal numbers 14 and 92.

MOV AL, 14H
SUB AL, 92H
DAS

82H
-60H
=22H

; (AL)= 14H
;(AL)=82H,Cy=1
; (AL) = 22H Just treat it as decimal with Cy =1

In this case, DAS same as SUB AL, 60H
60H is subtracted from ALasCy =1
22 is 10’s complement of 78

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

ROTATE INSTRUCTIONS:

In many applications there is a need to perform a bitwise rotation of an operand. The rotation instructions

ROR, ROL and RCR, RCL are designed specifically for that purpose. They allow a program to rotate an

operand right or left.

o In rotate instructions, the operand can be in a register or memory. If the number of times an

operand is to be rotated is more than 1, this is indicated by CL. This is similar to the shift

instructions.

0 There are two types of rotations. One is a simple rotation of the bits of the operand, and the other

is a rotation through the carry.

ROR (rotate right)

In rotate right, as bits are shifted from left to right they exit from the right end (LSB) and enter the left

end (MSB). In addition, as each bit exits the LSB, a copy of it is given to the carry flag. In other words, in

ROR, the LSB is moved to the MSB and is also copied to CF, as shown in the diagram.

c

L

If the operand is to be rotated once, the 1 is coded, but if it is to be rotated more than once, register CL is

used to hold the number of times it is to be rotated.

Eg:
ROR BH, 1 R/IM Cy
B o gl
Rotate right without Cy Before After
BH 0100 0010 0010 0001
Cy 1 0
MOV AL, 36H ;AL=0011 01190
EOR AL,1 FAL=0001 1011 CF=0
ROR AL, 1 JAL=1000 1101 CF=1
EOR AL,1 FAL=1100 0110 CF=1
ror
MO AL, 36H JAL=0011 0110
MO CL, 3 JCL=3 number of times to rotate
ROR AL, CL ;AL=1100 0110 CF=1
;the operand can be a word:
MOV BX, OCTESH JB¥=1100 0111 1110 0101
MOV CL, & iCL=6 number of times to rotate
BOR BX.CL ;B¥=1001 0111 0001 1111 CF=1

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

L (rotate left)

In rotate left, as bits are shifted from right to left they exit the left end (MSB) and enter the right end
(LSB). In addition, every bit that leaves the MSB is copied to the carry flag. In other words, in ROL the
MSB is moved to the LSB and is also copied to CF, as shown in the diagram.

c

L]

If the operand is to be rotated once, the 1 is coded. Otherwise, the number of times it is to be rotated is in

CL. Eg:
ROL BH, CL Cy R/IM
i —
Rotate left without Cy Before After
BH 0010 0010 | 1000 1000 |
CL 02H
Cy 1 | 0 \
MoV BH, 7T2H ;EH=0111 0QOLO
ROL EH,1 ;BH=1110 0100 CF=0
BOL BH, 1 ;EH=1100 1001 CF=1
ROL BH,1 ;EH=1001 0011 CF=1
ROL BH,1 ;EH=0010 0111 CF=1
Fors
MOV EBH, 72H fBH=0111 QOLO
MO CL,4 FCL=4 number of times Lo roLate
ROL BH, CL ;BH=0010 Q111 CF=1
! The operand can be a word:
MOV DK, 67280 ;DX=0110 0111 0010 1C10
MO CL,;3 ;CL=32 numbar of times to rotate

EOL L¥,CL ;Dx¥=0011 1001 0101 0011 CF=1

The following Program shows an application of the rotation instruction. The maximum count in Program
will be 8 since the program is counting the number of 1s in a byte of data. If the operand is a 16-bit word,

the number of 1s can go as high as 16.

Write a program that finds the number of 1s in a byte,
tFrom the data segmant:
DATAL DB 97H
COUNT DB 7
:From the code segmant:
5UB BEL,BL jeclear BL to keep the number of 1s
MOV DL, & jrotate total of 8 times
MOV AL,DATAL
AGAIN: ROL AL,1 jrotate it once
C HEXT ;check for 1
INC BL ;1f CF=1 then add one to count
MEXT: DEC DL fgo through this 8 times
JNE AGRIN ;if not finished go back
Mo COUNT,BL ;zsave the number of l1ls

Program 3-7
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

The Program is similar to the previous one, rewritten for a word-sized operand. It also provides the count
in BCD format instead of hex. Reminder: AL is used to make a BCD counter because the because, the

DAA instruction works only on AL.

Write a program to count the number of 15 in a word. Provide the count in BCD.
DATAW]1 oW 97F4H
COUNTZ ‘DB 7
SUB AL,AL fclear AL to keep the number of 1s in BCD
MOV bDL,1& :rotate total of 16 times
MOV BX,DATAW] ;move the operand to BX
AGARIN: BOL BX,1 ;rotate it once
JNC NEXT icheck for 1. If CF=0 then jump
ADD AL,1 ;if CF=1 then add one to count
DAR tadjust the count for BCD
NEXT: DEC DL tge through this 16 times
JHZ AGARIN i1f not finished go back
MOV COUNTZ,AL ;save the number of 13 in COUNTZ

Program 3-8

RCR (rotate right through carry)
In RCR, as bits are shifted from left to right, they exit the right end (LSB) to the carry flag, and the carry
flag enters the left end (MSB). In other words, in RCR the LSB is moved to CF and CF is moved to the
MSB. In reality, CF acts as if it is part of the operand. This is shown in the diagram.

C

If the operand is to be rotated once, the 1 is coded, but if it is to be rotated more than once, the register CL

holds the number of times.

Eg:
RCR BH, 1 R/IM Cy
|
Rotate right with Cy Before After
BH 0100 0010 1010 0001
Cy 1 0

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

clC imake CF=0
Mo AL, Z28H +AL=0010 C110
ECE AL, 1 +AL=0001 0011 CF=0
ECE AL,1 tBL=0000 1001 CF=1
RCR ALl ;AL=1000 Q100 CF=1
or: .
CLC jmake CF=0
MOV AL, 26H ;AL=0010 0110
MoV L3 ;CL=3 gumber of times to rotate
RCER AL,CL tAL=1000 Q0100 CF=1

;the cperand can be a word

STC imake CF=1

MoV BX, 37F1H ;BX=0011 0111 1111 0001

MOV 3 B 1CL=5 number of times to rotate
ECER BX,CL sBX=0001 1001 1011 1111 CF=0

RCL (rotate left through carry)

In RCL, as bits are shifted from right to left, they exit the left end (MSB) and enter the carry flag, and the
carry flag enters the right end (LSB). In other words, in RCL the MSB is moved to CF and CF is moved
to the LSB. In reality, CF acts as if it is part of the operand. This is shown in the following diagram.

-

If the operand is to be rotated once, the 1 is coded, but if it is to be rotated more than once, register CL

holds the number of times.

Eg:
RCL BH, CL Cy R/M
e «
Rotate left with Cy Before After
BH 0010 0010 | 1000 1010 |
CL 02H
Cy 1 | 0 |
5TC ijmake CEF=1
MoV BL, 15H ;BL=0001 0101
RCL BL,1 ' :0010 1011 CF=0
RCL EL,1 0101 QllO CF=(
ar:
STC ;make CF=1
Mo BL,15H ;BL=0001 0101
MOV CL, 2 ;CL=2 number of times for rotation
RCL BL,CL ;BL=0101 0110 CF=0
sthe cperand can be a word: :
CLC rmake CF=0
MOV RX,191CH FAX=0001 1001 Q001 1100
MO CL, S iCL=5 number of times to rotate
RCL LX,CL s BX=0010 0011 1000 0001l CF=l

MAHESH PRASANNA K., VCET, PUTTUR

8088/86

MICROPROCESSORS AND MICROCONTROLLERS

INTERRUPTS IN x86 PC

INTERRUPTS

(0]

(0}

An interrupt is an external event that informs the CPU that a device needs its service. In 8088/86,
there are 256 interrupts: INT 00, INT 01, ..., INT FF (sometimes called TYPES).

When an interrupt is executed, the microprocessor automatically saves the flag register (FR), the
instruction pointer (IP), and the code segment register (CS) on the stack; and goes to a fixed

memory location.

0 In x86 PCs, the memory locations to which an interrupt goes is always four times the value of the
interrupt number. For example, INT 03 will go to address 0000CH (4 * 3 = 12 = OCH). The
following Table is a partial list of the interrupt vector table.

Table: Interrupt Vector
Cs
— }INT FF
0003FC IP _j
INT Physical Logical :
Number | Address Address
INT 00 00000 0000 - 0000
INTOL | 00004 | 0000 — 0004) } INT 08
ooo1s | IP
INT 02 00008 0000 — 0008 . CSs }INT 05
00014 P
INT 03 0000C 0000 - 000C - cs
} INT 04 signed number overflow
INT 04 00010 0000 - 0010 00010 (':F'S
INTO5 | 00014 | 0000 - 0014 T P FINT 93 breatpolnt
= }INT 02 NMI
00008 L
INT FF 003FC 0000 - 03FC cs 3 INT 61 signad-step
00004 P
i) } INT 00 divide error
00000 1P

Interrupt Service Routine (ISR):

v
v

For every interrupt there must be a program associated with it.

When an interrupt is invoked, it is asked to run a program to perform a certain service. This
program is commonly referred to as an interrupt service routine (ISR). The interrupt service
routine is also called the interrupt handler.

When an interrupt is invoked, the CPU runs the interrupt service routine. As shown in the above
Table, for every interrupt there are allocated four bytes of memory in the interrupt vector table.
Two bytes are for the IP and the other two are for the CS of the ISR.

These four memory locations provide the addresses of the interrupt service routine for which the
interrupt was invoked. Thus the lowest 1024 bytes (256 x 4 = 1024) of memory space are set
aside for the interrupt vector table and must not be used for any other function.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Find the physical and logical addresses in the interrupt vector table associated with:
(a) INT 12H {b) INT 8

Solution;

(a) The physical addresses for INT 12H are 00048H~0004BH since (4 x 12H = 48H). That_
means that the physical memory locations 48H, 49H, 4AH, and 4BH are set aside for the CS
and IP of the ISR belonging to INT 12H. The logical address is 0000:0048H-0000:004BH.

(b) For INT 8, we have 8 x 4 = 32 = 20H; therefore, memory addresses 00020H,

00021H, 00022H, and 00023H in the interrupt vector table hold the CS:IP of the INT 8 ISR.
The logical address is 0000:0020H—0000;0023H.

Difference between INT and CALL Instructions:

The INT instruction saves the CS: IP of the following instruction and jumps indirectly to the subroutine
associated with the interrupt. A CALL FAR instruction also saves the CS: IP and jumps to the desired
subroutine (procedure).

The differences can be summarized as follows:

CALL Instruction

INT instruction

A CALL FAR instruction can jump to any
location within the 1M byte address range
of the 8088/86 CPU.

INT nn goes to a fixed memory location in
the interrupt vector table to get the address

of the interrupt service routine.

A CALL FAR instruction is used by the
programmer in the sequence of

instructions in the program.

An externally activated hardware interrupt
can come-in at any time, requesting the
attention of the CPU.

A CALL FAR instruction cannot be
masked (disabled).

INT nn belonging to externally activated

hardware interrupts can be masked.

A CALL FAR instruction automatically
saves only CS: IP of the next instruction

on the stack.

INT nn saves FR (flag register) in addition
to CS: IP of the next instruction.

At the end of the subroutine that has been
called by the CALL FAR instruction, the
RETF (return FAR) is the last instruction.
RETF pops CS and IP off the stack.

The last instruction in the interrupt service
routine (ISR) for INT nn is the instruction
IRET (interrupt return). IRET pops off the
FR (flag register) in addition to CS and IP.

Processing Interrupts:
When the 8088/86 processes any interrupt (software or hardware), it goes through the following steps:
1. The flag register (FR) is pushed onto the stack and SP is decremented by 2, since FR is a 2-byte

register.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

IF (interrupt enable flag) and TF (trap flag) are both cleared (IF = 0 and TF = 0). This masks
(causes the system to ignore) interrupt requests from the INTR pin and disables single stepping
while the CPU is executing the interrupt service routine.

The current CS is pushed onto the stack and SP is decremented by 2.

The current IP is pushed onto the stack and SP is decremented by 2.

The INT number (type) is multiplied by 4 to get the physical address of the location within the
vector table to fetch the CS and IP of the interrupt service routine.

From the new CS: IP, the CPU starts to fetch and execute instructions belonging to the ISR
program.

The last instruction of the interrupt service routine must be IRET, to get IP, CS, and FR back

from the stack and make the CPU run the code where it left off.

The following Figure summarizes these steps in diagram form.

@Am LINE w
PROGRAM INTERRUPT
SERVICE
PUSH FLAGS PROCEDURE

CLEAR IF / PUSH
CLEAR TF
PUSH CS REGISTERS
v PUSH IP
FETCH ISR ADDRESS
; \ POP IP
POP CS
Y POP FLAGS \r POP REGISTERS
G IRET)

Categories of Interrupts:
INT nn is a 2-byte instruction where the first byte is for the opcode and the second byte is the interrupt
number. We can have a maximum of 256 (INT 00 INT FFH) interrupts. Of these 256 interrupts, some are

used for software interrupts and some are for hardware interrupts.

1.

(0}

Hardware Interrupts:

There are three pins in the x86 that are associated with hardware interrupts. They are INTR
(interrupt request), NMI (non-maskable interrupt), and INTA (interrupt acknowledge).

INTR is an input signal into the CPU, which can be masked (ignored) and unmasked through the

use of instructions CLI (clear interrupt flag) and ST (set interrupt flag).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o If IF =0 (in flag register), all hardware interrupt requests through INTR are ignored. This has no
effect on interrupts coming from the NMI pin. The instruction CLI (clear interrupt flag) will make
IF=0.

0 To allow interrupt request through the INTR pin, this flag must be set to one (IF = 1). The STI
(set interrupt flag) instruction can be used to set IF to 1.

0 NMI, which is also an input signal into the CPU, cannot be masked and unmasked using

instructions CLI and STI; and for this reason it is called a non-maskable interrupt.

o0 INTR and NMI are activated externally by putting 5V on the pins of NMI and INTR of the x86
microprocessor.

0 When either of these interrupts is activated, the x86 finishes the instruction that it is executing,
pushes FR and the CS: IP of the next instruction onto the stack, then jumps to a fixed location in
the interrupt vector table and fetches the CS: IP for the interrupt service routine (ISR) associated
with that interrupt.

0 At the end of the ISR, the IRET instruction causes the CPU to get (pop) back its original FR and
CS: IP from the stack, thereby forcing the CPU to continue at the instruction where it left off

when the interrupt came in.

e Intel has embedded "INT 02" into the x86 microprocessor to be used only for NMI.

e Whenever the NMI pin is activated, the CPU will go to memory location 00008 to get the address
(CS: IP) of the interrupt service routine (ISR) associated with NMI.

e Memory locations 00008, 00009, 0000A, and 0000B contain the 4 bytes of CS: IP of the ISR
belonging to NMI.

e The 8259 programmable interrupt controller (PIC) chip can be connected to INTR to expand the

number of hardware interrupts to 64.

/ 8086

8259 \

e
————————
l—
«———— | INTERRUPT
«—— [INPUTS

l———————
* |
VT I PO AR Foa el

——d INTA INT
r+ INER o 10

INTERRUPT AND
TYPE TO 8086
0 < DO

A

o
T
o

e o e 0 2 0
A

* ® o o o @

e e o 0o e

5

INTA |——

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Software Interrupts:

If an ISR is called upon as a result of the execution of an x86 instruction such as "INT nn", it is
referred to as software interrupt, since it was invoked from software, not from external hardware.
Examples of such interrupts are DOS "INT 21H" function calls and video interrupts "INT 10H".
These interrupts can be invoked in the sequence of code just like any other x86 instruction.

Many of the interrupts in this category are used by the MS DOS operating system and IBM BIOS
to perform essential tasks that every computer must provide to the system and the user.

Within this group of interrupts there are also some predefined functions associated with some of
the interrupts. They are "INT 00" (divide error), "INT 01" (single step), "INT 03" (breakpoint),
and "INT 04" (signed number overflow). Each is described below.

The rest of the interrupts from "INT 05" to "INT FF" can be used to implement either software or

hardware interrupts.

Functions associated with INT 00 to INT 04:

Interrupts INT 00 to INT 04 have predefined tasks (functions) and cannot be used in any other way.

INT 00 (divide error)

v

This interrupt belongs to the category of interrupts referred to as conditional or exception
interrupts. Internally, they are invoked by the microprocessor whenever there are conditions
(exceptions) that the CPU is unable to handle.

One such situation is an attempt to divide a number by zero. Since the result of dividing a number
by zero is undefined, and the CPU has no way of handling such a result, it automatically invokes
the divide error exception interrupt.

In the 8088/86 microprocessor, out of 256 interrupts, Intel has set aside only INT O for the
exception interrupt.

INT 00 is invoked by the microprocessor whenever there is an attempt to divide a number by
zero.

In the x86 PC, the service subroutine for this interrupt is responsible for displaying the message
"DIVIDE ERROR" on the screen if a program such as the following is executed:

MO AL, 972 s BAL=92
EUB CL,CL : CL=0
DIV CL ;92 /0=undefined result

INT 0 is also invoked if the quotient is too large to fit into the assigned register when executing a

DIV instruction. Look at the following case:

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

MOW AX,OFFFFH fAX=FFFFH

MOV BL, 2 ;BL=2

DIV EL €5535/2 = 32767 larger than 255
smaximum capacity of AL

INT 01 (single step)

v

In executing a sequence of instructions, there is a need to examine the contents of the CPU's
registers and system memory. This is often done by executing the program one instruction at a
time and then inspecting registers and memory. This is commonly referred to as single-stepping,
or performing a trace.

Intel has designated INT 01 specifically for implementation of single-stepping. To single-step, the
trap flag (TF) (D8 of the flag register), must be set to 1. Then after execution of each instruction,
the 8088/86 automatically jumps to physical location 00004 to fetch the 4 bytes for CS: IP of the
interrupt service routine, which will dump the registers onto the screen.

Intel has not provided any specific instruction for to set or reset (unlike IF, which uses STI and
CLI instructions to set or reset), the TF; one can write a simple program to do that. The following

shows how to make TF = 0:

PUSHF

POP AX

AND AX,1111111011111111B
PUSH AX

POPF

Recall that, TF is D8 of the flag register.

To make TF = 1, one simply uses the OR instruction in place of the AND instruction above.

INT 02 (non-maskable interrupt)

v"All Intel x86 microprocessors have a pin designated NMI. It is an active-high input. Intel has set

aside INT 2 for the NMI interrupt. Whenever the NMI pin of the x86 is activated by a high (5 V)
signal, the CPU jumps to physical memory location 00008 to fetch the CS: IP of the interrupt
service routine associated with NMI.

The NMI input is often used for major system faults, such as power failures. The NMI interrupt
will be caused whenever AC power drops out. In response to this interrupt, the microprocessor

stores all of the internal registers in a battery-backed-up memory or an EEPROM.

INT 03 (breakpoint)
v' To allow implementation of breakpoints in software engineering, Intel has set aside INT 03.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

In single-step mode, one can inspect the CPU and system memory after the execution of each
instruction, a breakpoint is used to examine the CPU and memory after the execution of a group
of instructions.

INT 3 is a 1-byte instruction; where as all other “INT nn” instructions are 2-byte instructions.

INT 04 (signed number overflow)

4

MO
MOV
ADD
INTO

This interrupt is invoked by a signed number overflow condition. There is an instruction
associated with this, INTO (interrupt on overflow).

The CPU will activate INT 04 if OF = 1. In cases, where OF = 0, the INTO instruction is not
executed; but is bypassed and acts as a NOP (no operation) instruction.

To understand this, look at the following example: Suppose in the following program; DATA1=
+64 = 0100 0000 and DATAZ2 = +64 = 0100 0000. The INTO instruction will be executed and the
8088/86 will jump to physical location 00010H, the memory location associated with INT 04.
The carry from D6 to D7 causes the overflow flag to become I.

Now, the INTO causes the CPU to perform "INT 4" and jump to physical location 00010H of the

vector table to get the CS: IP of the service routine.

AL, DATAL + 64 0100 0000
BL, DATAZ + + 64 0100 0000)
AL, B;; add BL to AL +128 1000 0000 OF=1 and the result is not +128

Suppose that the data in the above program was DATAL = +64 and DATA2 = +17. In that case,
OF would become 0; the INTO is not executed and acts simply as a NOP (no operation)

instruction.

x86 PC AND INTERRUPT ASSIGNMENT:

(0}

Of the 256 possible interrupts in the x86;
v some are used by the PC peripheral hardware (BIOS)
v some are used by the Microsoft operating system

v'the rest are available for programmers of software applications.

.[For a given ISR, the logical address is FOO0:FF53. Verify that the physical address is FFF53H.

Solution:

Since the logical address is FOO0:FF53, this means that CS = FOOOH and [P = FF53H. Shifting
left the segment register one hex digit and adding it to the offset gives the physical address

FFF53H.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

INT 21H & INT 10H PROGRAMMING

The INT instruction has the following format:

INT =xx;the interrupt number xx can be 00 - FFH

Interrupts are numbered 00 to FF; this gives a total of 256 interrupts in x86 microprocessors. Of these 256

interrupts, two of them are the most widely used: INT 10H and INT 21H.

BI1OS INT 10H PROGRAMMING:
0 INT 10H subroutines are burned into the ROM BIOS of the x86-based IBM PC and compatibles

and are used to communicate with the computer's screen video. The manipulation of screen text

or graphics can be done through INT 10H.
0 There are many functions associated with INT 10H. Among them are changing the color of
characters or the background color, clearing the screen, and changing the location of the cursor.

0 These options are chosen by putting a specific value in register AH.

Monitor Screen in Text Mode:
v" The monitor screen in the x86 PC is divided into 80 columns and 25 rows in normal text mode
(see the following Fig). In other words, the text screen is 80 characters wide by 25 characters

long.

Decimal Hex

ﬁU,DU ['I['I_T‘?\ (/{]_ﬂﬁm ﬂﬂm

screen centler SCreen center
12, 39 0cz27

24,00 24.79 1&.00 18,4F
X A X i

Fig: Cursor Locations (row, column)

v Since both a row and a column number are associated with each location on the screen, one can
move the cursor to any location on the screen simply by changing the row and column values.

v" The 80 columns are numbered from 0 to 79 and the 25 rows are numbered O to 24. The top left
comer has been assigned 00, 00 (row = 00, column = 00). Therefore, the top right comer will be
00, 79 (row = 00, column = 79).

v Similarly, the bottom left comer is 24, 00 (row = 24, column = 00) and the bottom right corner of

the monitor is 24, 79 (row = 24, column = 79).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

INT-10H Function 06H: Clearing the Screen
To clear the screen before displaying data; the following registers must contain certain values before INT
10H is called: AH = 06, AL = 00, BH = 07, CX = 0000, DH = 24, and DL= 79. The code will look like

this:

Mo RH, OB ;AH=0& to select scroll function
MoV AL, 0D i AL=00 the entire page

Mo EH, Q7 ;BH=(7 for normal attribute

Mo CH, 0O JCH=00 row wvalue of start point
MoV CL, 00 JCL=00 column wvalue of start point
MoV OH, 24 ;DH=24 row wvalue of ending point
Mo 0L, 79 DL=T72 ecolumn value of ending point
INT 10H sinvoke the interrupt

Remember that DEBUG assumes immediate operands to be in hex; therefore, DX would be
entered as 184F. However, MASM assumes immediate operands to be in decimal. In that case
DH =24 and DL = 79.

In the program above, one of many options of INT 10H was chosen by putting 06 into AH.
Option AH =06, called the scroll function, will cause the screen to scroll upward.

The CH and CL registers hold the starting row and column, respectively, and DH and DL hold
the ending row and column.

To clear the entire screen, one must use the top left cursor position of 00, 00 for the start point
and the bottom right position of 24, 79 for the end point.

Option AH = 06 of INT 10H is in reality the "scroll window up" function; therefore, one could
use that to make a window of any size by choosing appropriate values for the start and end rows

and columns.

To clear the screen, the top left and bottom right values are used for start and stop points in order
to scroll up the entire screen. It is more efficient coding to clear the screen by combining some of
the lines above as follows:

Mow A¥, 0e00H jscroll entire screen

MOV BH, 07 snormal attribute

MOV CX, 0000 jatmrt at 00,00

MOV DX, 1B4FH jend at 24,79 thex = 18, 4F)
INT 10H iinvoke the lnterrupt

INT 10H Function 02: Setting the Cursor to a Specific Location

v
v

INT 10H function AH = 02 will change the position of the cursor to any location.

The desired position of the cursor is identified by the row and column values in DX, where DH =
row and DL = column.

Video RAM can have multiple pages of text, but only one of them can be viewed at a time. When
AH = 02, to set the cursor position, page zero is chosen by making BH = 00.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Write the code to set the cursor position to row = |5 = 0FH and column = 25 = |9H.

Solution:
MOV BH, 02 PE2Ll SUrSor option
MOV BH,00 ipage 0
MOV DL, 25 reolumn positicn
MOV DH,15 irow position
INT 10E jinvoke interrupt 10H

Write a program that (1) ¢lears the screen and (2) sets the cuisor at the center of the screen.

Solution:

The center of the screen is the point at which the middie row.and middle column meet. Row 12
15 at the middle of rows 0 to 24 and column 39 (or 409 15 at the middle of columns 0 to 79. By
setting row = DH = 12 and column = DL = 39, the cursor is set o the screen center.

relearing tha. scraen
MOV RX, 0600H :scroll the eatire page

MO EH, 07 rnormal aAttribote

MOV Cx, 0000 jrow and céldmn: of top. left

MOV Di, 184FH jrow and columm of bottom right
INT 10H jinvake the video BIGSE servic

;setting the cursor to the center of screen

MOV AH, 02 ;set cursoriepbtion

MOV EH, 00 rpaget O

MOV DL, 39 jeceniter column position
MOV DH 12 joenter row position
INT 10H finvoke dnterrupt 10H

INT 10H Function 03: Get Current Cursor Position
In text mode, it is possible to determine where the cursor is located at any time by executing the

following:
MOV AH,03 ;option 03 of BIOS INT 10H
MoV BH, 00 ipage 00
INT 10H sinterrupt 10H routine

v’ After execution of the program above, registers DH and DL will have the current row and column
positions, and CX provides information about the shape of the cursor.

v The reason that page 00 was chosen is that the video memory could contain more than one page
of data, depending on the video board installed on the PC.

v In text mode, page 00 is chosen for the currently viewed page.

Attribute Byte in Monochrome Monitors:
v" There is an attribute associated with each character on the screen.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

The attribute provides information to the video circuitry, such as color and intensity of the

character (foreground) and the background.
v The attribute byte for each character on the monochrome monitor is limited. The following Fig
shows bit definitions of the monochrome attribute byte.

D7 Do | DE | D4 | D3] D2 | D1 D

| R] PR | : .
—|fareground intensity I

0 = normal inteasity
1 = highlighted intensity

background intensity

0 = nonblinking
1 = blinking

Fig: Attribute Byte for Monochrome Monitors
The following are some possible variations of the attributes shown in the above Fig.

Binary Hex Result

0000 0000 00 white on white (no display)
Qoo 0111 07 white on black normal

0000 1111 oF white on black highlight
1000 0111 a7 white on black blinking
0111 0111 17 black on black (no display)
0111 0000 70 black on white

1111 Q000 FO black on white blinking

Write a program using INT 10H to:

(a) Change the video mode.

(b) Display the letter "D" in 200H locations with attributes black on white blinking (blinking
letters "D" are black and the screen background is white).

(c) Then use DEBUG to run and verify the program.

Solution:

(a) INT 10H function AH = 00 is used with AL = video mode to change the video mode. Use
AL =103.

MOV AH,00 ; 3ET MODE OPTION
MoV AL,03 ;CHANGE THE VIDED MODE
INT 10H tMODE OF B80X25 FOR ANY COLOR MONITOR

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

(b) With INT 10H function AH = 09, one can display a character a certain number of times with
specific attributes.

MOV AH,09 ; DISPLAY OPTION

MOV BH, 00 sPAGE. 0

MOV AL,44H :THE ASCII FOR LETTER "D"
MOV CX,200H sREPEAT IT 200H TIMES
MOV BL,OFOH’ ;BLACK ON WHITE BLINKING
INT 108

(c) Reminder: DEBUG assumes that all the numbers are in hex.

Crdebug

-A

1131:0100 MOV AH, 00

1131:0102 MOV AL,03 ;CHANGE THE VIDEO MODE

1131:0104 INT 10

1131:0106 MOV AH, 09

1131:0108 MOV BH, OO
. 1131:010A MOV AL, 44

1131:010C MOV CX, 200

1131:010F MOV BL,FOQ

1131:0111 INT 10

1131:0113 INT 3

1131:0114
Now see the result by typing in the command -G Make sure that IP = 100 befcre running it.
As an exercise, change the BL register to other attribute values given earlier. For example, BL
= (07 white on black, or BL = 87H white on black blinking,

Attribute Byte in CGA Text Mode:
The bit definition of the attribute byte in CGA text mode is shown in the following Fig.

D7 | D6 | DS | D4 | D3 | D2 | D1 | DO

B R G B I R G B
background foreground
B = blinking
I = foreground intensity
Blinking and intensity apply to foreground only.

From the bit definition, it can be seen that, the background can take eight different colors by combining
the prime colors red, blue, and green. The foreground can be any of 16 different colors by combining red,

blue, green, and intensity.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Binary Hex Color effect
0oo0 0000 (4] Black on black
0ooo0 0001 0l Blue on black

o001l 001d 12 Gresn on blue
0001 0100 14 Red on blue
0001 1111 1F High-intenaity white on bhlue

The following Program shows the use of the attribute byte in CGA mode.

Write a program that puts 20H (ASCII space) on the entire screen. Use high-intensity white on
4 blue background attnbute for any chamcters o be displayed.

Solution:

Graphics: Pixel Resolution and Color:

(0}

(0}

(0}

O O O O©

In the text mode, the screen is viewed as a matrix of rows and columns of characters.
In graphics mode, the screen is viewed as a matrix of horizontal and vertical pixels.
The number of pixels varies among monitors and depends on monitor resolution and the video
board.
There are two facts associated with every pixel on the screen:
v The location of the pixel
v’ Its attributes, color, and intensity
These two facts must be stored in the video RAM.
Higher the number of pixels and colors, the larger the amount of memory is needed to store.
The CGA mode can have a maximum of 16K bytes of video memory.
This 16K bytes of memory can be used in three different ways:
v Text mode of 80 x 25 characters: Use AL = 03 for mode selection in INT 10H option AH
= 00. In this mode, 16 colors are supported.
v Graphics mode of resolution 320 x 200 (medium resolution): Use AL = 04. In this mode,
4 colors are supported.
v Graphics mode of resolution 640 x 200 (high resolution): Use AL = 06. In this mode,
only 1 color (black and white) is supported.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o Hence, with a fixed amount of video RAM, the number of supported colors decreases as the
resolution increases.
Table: The 16 Possible Colors

I |R|G|B| Color I R|G|B Color
0({0|0|0| Black 1{0(0]|0 Gray
0({0|0]1 Blue 11001 Light Blue
0[{0| 1|0 Green 11010 Light Green
0/0|1]1] Cyan 110111 Light Cyan
0j1|0|0 Red 111010 Light Red
0({1|0]|1| Magenta 11101 Light Magenta
0/1]1]0]| Brown 11,110 Yellow
O(1|1]1| White 1|1 | 1] 1] High Intensity White

INT 10H and Pixel Programming:
To draw a horizontal line, choose values for the row and column to point to the beginning of the line and

then continue to increment the column until it reaches the end of the line, as shown in Example below:

Write a program to: (a) clear the screen, (b) set the mode to CGA of 640 * 200 resolution, and
(c) draw a horizontal line starting at column = 100, row = 50, and ending at column 200, row 50.
Solution:

MOV AX,0600H ;SCEOLL THE SCREEN

MOV BH,07 ;MOEMAL ATTREIBUTE

MOV CX,0000 ;FROM ROW=00, COLUMN=00

MOV D¥,134FH +T0 EOW=18H; COLUMN=4FH

LI 10H F INVORE INTERRUPRT: TO CLEAR SCREEN

MOW AH,00 +SET MODE

MOV AL, D08 JMOLDE = D& {CGA HIGH RESOIUTIOM)

INT 10H :INVOKE INTERROPT TO CHANGE MODE

MOV CX,100 JS8TART LINE AT COLUMN =100 AND

MOV DX, 50 ;ROW = 50
BACK: MOV = AH,OCH ;AH=0CH TO DRAW A LINE

MOV AL; 01 ;PIXELS = WHITE

INT 10H FINVOKE INTERRUPRT :TQO DEAW LINE

INC cx ;INCREMENT HORIZONTAL EOSITION

CMP CX,200 ;DRAW LINE-UNTIL COLUMN = 200

JNI BACK

DOS INTERRUPT 21H:
0 INT21H is provided by DOS, which is BIOS-ROM based.
0 When the OS is loaded into the computer, INT 21H can be invoked to perform some extremely

useful functions. These functions are commonly referred to as DOS INT 21H function calls.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

INT-21H Option 09: Outputting a String of Data to the Monitor

v" INT 21H can be used to send a set of ASCII data to the monitor. To do that, the following
registers must be set: AH = 09 and DX = the offset address of the ASCII data to be displayed.

v The address in the DX register is an offset address and DS is assumed to be the data segment.
INT 21H option 09 will display the ASCII data string pointed at by DX until it encounters the
dollar sign "$".

v In the absence of encountering a dollar sign, DOS function call 09 will continue to display any

garbage that it can find in subsequent memory locations until it finds "$".

DATE _ASC DB "The earth is but one country', 'S5’
MOV AH, 00 ;option 08 teo display string of data
MOV DX, OFFSET DATR ASC sD¥= offset address of data
INT Z1H ;invoke the interrupt

INT 21H Option 02: Outputting a Single Character to the Monitor
v To output a single character to the monitor, 02 is put in AH, DL is loaded with the character to be

displayed, and then INT 21H is invoked. The following displays the letter "J'.

MOV AH, 02 ;joption 02 displays cone character
MOV DL, "J! ;DL holds the character to be displayed
INT 21H ;invoke the interrupt

INT 21H Option 01: Inputting a Single Character, with Echo
This function waits until a character is input from the keyboard, and then echoes it to the monitor. After

the interrupt, the input character (ASCII value) will be in AL.

MOV AH,01 ;option 01 inputs eone character
INT 21H ;after the interrupt, AL = input character (ASCII)

The Program 4-1 does the following:
1. clears the screen
2. sets the cursor to the center of the screen, and
3. starting at that point of the screen, displays the message "This is a test of the display routine".

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

TIILE FROG4-1 SIMPLE DISPLAY EROGRAM
PAGE 60,132
.MODEL SMALL
- STACK &4
.DATA
MESSAGE DB 'This is a test of the display routine','S'
.CODE

MAIN PROC FAR
MOV AX,@DATA
MOV DS, AX j
CALL CLEAR yCLEAR THE SCREEN

CALL CURSCR ;SET CURSOR POSITION

CALL DISFLAY 7 DISFLAY MESSAGE

MOV AH,4CH

INT 21H ;GO BACK TO DOS
MAIN ENDP

§ THIS SUBROUTINE CLEARS THE SCREEN

CLERR PROC
MOV AX,0600H : ; SCROLL SCREEN FUNCTION
MoV BH,07 i NORMAL ATTRIBUTE
MoV Cx, 0000 § SCROLL FROM ROW=0(Q, COL=00
MOV DX, 184FH :TO ROW=1BH, COL=4FH
INT 10H # INVORE INTEREUPT T0 CLERR SCREEN
RET
CLEARR EWNDP

. B i i s " Pl e i B B P s e el

s THIS SUBRQUTINE SETS THE CURSOR AT THE CENTEE OF THE SCREEN

CURSOE FROC
MOV &H, 02 ; SET CURSDR FUNCTION
MoV BH, 00 ;FAGE 00
MoV DH, 12 { CENTER ROW
MoV DL, 3% i s CENTER COLUMN
INT 10H F INVOKE INTERRUFT T0 SET CURSOR POSITION
EET

CURSORE ENDP

s THIS SUBROUTINE DISPLAYS A STRING ON THE SCREEN
DISFLAY PROC

MOV AH,09 ;DISPLAY FUNCTION
MOV DX, QFFEET MESSAGE ;DM POINTE TO QUTEUT BUFFER
INT 21H INVOKE INTERRUPT TC DISFLAY STRING
EET
DISPLRY ENDE
END MRIN
Program 4-1

INT 21H Option OAH: Inputting a String of Data from the Keyboard
v Option 0AH of INT 21H provides a means by which one can get data from the keyboard and
store it in a predefined area of memory in the data segment.
v" To do this; the register options are: AH = 0AH and DX = offset address at which the string of

data is stored.

v" This is commonly referred to as a buffer area.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

DOS requires that a buffer area be defined in the data segment and the first byte specifies the size
of the buffer. DOS will put the number of characters that came in through the keyboard in the
second byte and the keyed-in data is placed in the buffer starting at the third byte.

For example, the following program will accept up to six characters from the keyboard, including
the return (carriage return) key. Six locations were reserved for the buffer and filled with FFH.

The following shows portions of the data segment and code segment:

ORG Qol10H
DATA]l DB 6,7,6 DUP (FF);0010H=06, 0012H to 0017H = FF
MOV BH, OAH ;string input option of INWT Z1H
. MOV D¥.0OFFSET DATAIL ;1load the offset address of buffer
INT 21H sinvoke interrupt 21H

The following shows the memory contents of offset 0010H:

0010 0011 90012 0013 0014 0013 001s Q017
06 o FF FF FF FFE EF FF

When this program is executed, the computer waits for the information to come in from the
keyboard.

When the data comes in, the IBM PC will not exit the INT 21H routine until it encounters the
return key.

Assuming the data that was entered through the keyboard was "USA" <RETURN>, the contents
of memory locations starting at offset 0010H would look like this:

o010 001X 0012 0013 0014 0015 001e 0017
06 03 55 53 41 0D FF FF
USACER

The step-by-step analysis is given below:

0010H = 06 DOS requires the size of the buffer in the first location.

0011H=03 The keyboard was activated three times (excluding the RETURN key) to
key in the letters U, S, and A,

0012H = 55H This is the ASCII hex value for letter U.

0013H = 53H This is the ASCII hex value for letter S.

0014H = 41H Ths is the ASCII hex value for letter A.

0015H = 0DH This is the ASCII hex value for CR (carriage return).

The OAH option of INT 21H accepts the string of data from the keyboard and echoes (displays) it
on the screen as it is keyed in.

Use of Carriage Return and Line Feed:

(0]

In the Program 4-2, the EQU statement is used to equate CR (carriage return) with its ASCII
value of ODH, and LF (line feed) with its ASCII value of OAH.
This makes the program much more readable. Since the result of the conversion was to be

displayed in the next line, the string was preceded by CR and LF.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o Inthe absence of CR the string would be displayed wherever the cursor happened to be.
0 In the case of CR and no LF, the string would be displayed on the same line after it had been

returned to the beginning of the line.

sProgram 4-2 performs the following: (1) clears ths screen, (2) sets
jthe cursor at the beginning of the third line from the top of the
;acreen, (3) accepts the message "IBM perSonal COmputer"™ from the
skevboard, (4) converts lowercase letters of the message to uppercase,
: (%) displays the converted results on the next line.

TITLE PROG4 -2
PAGE 60,132
CMODEL SMALL
. STACK 64
. DATA
BUFFER OB 22,2,22 DUP (?) ;BUFFER FOR KEYED-IN DATA
ORG 18H
DATAREA oB CR,LF, 22 DUP (7),'S’ ;DATA HERE AFTER CONVERSION
i DTSEG ENDS .

CE EQU ODH
LF EQU OAH

B e . s . e e s .

.CODE
MAIN FEOC FAR
MOV AX, 8DATA
MOV DS,AX

CALL CLEAR ;CLEAR THE SCREEN
CALL CURSOR ;SET CURSOR POSITION
CALL GETDATA ;INPUT & STRING INTO BUFFER
CALL CONVERT ; CONVERT STRING TO UPPERCASE
CALL DISPLAY ;DISPLAY STRING DATAREA
MOV AH,4CH
INT 21H ;GO BACK TO DOS
MAIN ENDP

¢ THIS SUBROUTINE CLEARS THE SCREEN

CLEAR PROC
MOV r¥,0600H ;3CROLL SCREEW FUNCTION
MOV BH, 07 sNORMAL ATTRIBUTE
MO Cx, 0000 :ECROLL FROM ROW=00, COL=00
MO D¥,184FH ;10 ROW=18H, 4FH
INT 10H :INVOKE INTERRUPT TO CLEAR SCREEN
RET

CLEARENDF

i THIS SUBROUTINE SETS THE CURSOR TO THE BEGINNING OF THE 3RD LINE
CURSOR EROC

MO AH,02 ;5ET CURSOR FUNCTION
MOV BH,DO ;PAGE 0O
MO DL, 01 sCOLUMN 1
MOV DH, 03 ;ROW 3
INT 10H ; INVOKE INTERRUPT TO SET CURSOR
RET
CURSOR ENDFE

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

JTHIS SUBROUTINE DISPLAYS A STRING ON THE SCREEN
DISFLAY FROC

MOV RH,09 ;DISPLAY STRING FUNCTION
MOV DX,0FFSET DATAREA ;DX POINTS TO BUFFER
INT 21H i INWOKE INTERRUFT TO DISPLAY STRING
RET
DISFLAY ENDFE

;TH1IS EUBROUTINE PUTS DATAR FROM THE EEYBOARD INTO A BUFFER
GETDATA FROC

MOV AH,ORH i INPUT STRING FUNCTION

MOV DX, 0FFSET BUFFER ;DX POINTS TO BUFFER

INT 214 ; INVOKE INTERRUPT TO INPUT STRING
RET

GETDATA ENDP

CONVERT FROC
MOV BEX,0FFSET BUFFER
MoV CL,[B¥] +1 ;GET THE CHAR COUNT
SUB CH,CH " JCH = TOTAL CHARARCTER COUNT
MOV DI,CX ;INCEXING INTO BUFFER
MOV BYTE PTR[BX+DI] +2,20H ;EEPLACE CR WITH SPARCE
MOV SI,OFFSET DATARER+2 ;STRING ADDRESS

AGRIN: MOV AL,[BX] +2 ;GET THE KEYED-IN DATA
CMP LL,&1H JCHECE FOR 'a!
JB NEXT : ;1IF BELOW, GO TO NEXT
CMP AL, TAH jCHECK FOR 'z
JA NEXT ;IF ABOVE GO TO NEXT
AND AL,11011111B ;CONVERT TC CAPITAL

NEXT: MOV [5I] ;AL ;PLACE IN DATA AREA
INC =1 ; INCREMENT PBOINTERS
INC BX
LODP AGAIN ;LOOP IF COUNTER NOT ZERD
RET

CONVERT EMNDE
END MAIN

Program 4-2

0 The Program 4-3 prompts the user to type in a name. The name can have a maximum of eight
letters.

0 After the name is typed in, the program gets the length of the name and prints it to the screen.

TITLE PROG4E-3 READS IN LAST NAME AND DISPLAYS LENGTH
PARGE 60,132
MODEL SMALL

.STACH &4 (?)

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

-DATA
MESSAGEL CB '"What is your last name?','§'
ORG 20H
BUFFER1 CB 9,7,9 DUP (O)
ORG 30
MESSAGEZ DR CR,LF, "The number of letters in your name is: ', 'S’
ROW EQU 08
COLUMN EQU Q5
CR EQU ODH ;EQUATE CR WITH ASCII CODE FOR CARRIACE RETURN
LF EQU QAH ;EQUATE LF WITH ASCII CODE FOR LINE FEED
.CODE
MATH FROC FAR

MoV AX, BDATA
MCAS Ds, AX
CARLL CLEAR
CALL CURSOR

MCY AH, 02 ;DISPLRY THE FROMPT
MOV DX,0FFSET MESSAGEL
INT 21H
MoV AH, ORH ;GET LAST NAME FROM KEYBORRD
MOV DX, OFFSET BUFFER1
INT 21H
MoV BX,QFFSET BUFFER1 ;FIND QUT NUMBER OF LETTERE IN NAME
MOV CL,[BX+1] {GET NUMBER OF LETTERS
CE CL, 30H MAREE IT ARSCII
MCV MESSAGEZ2+40,CL tPLACE AT END COF STRING
MOV AH,089 +DISPLARY SECOND MESSAGE
Mo DX, OFFSET MESSAGEZ
INT 218
MOV AHL, 4CH
INT 214 ;GO BACK TO DOS
MAIN ENDF
CLEAR PROC +CLERR THE SCREEN
MOV RX,0600H
MOV BH, 07

MOV CX,0000
MOV DX, 184FH

INT 104
RET

CLEAR ENDP

CURSOR PROC ;SET CURSOR POSITION
MOV AH, 02
MOV BH, 00
MOV DL, COLUMN
MOV DH, ROW
INT 104
RET

CURSOR ENDP
END MAIMN

Program 4-3

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o Program 4-4 demonstrates many of the functions described:

Write a program to perform the following: (1) clear the screen, (2) set the cursor at row 5 and
column 1 of the screen, (3) prompt "There is a message for you from Mr. Jones. To read it enter,
Y ". If the user enters "Y" or 'y’ then the message "Hi! I must leave town tomorrow, therefore I will
not be able to see you" will appear on the screen. If the user enters any other key, then the prompt
"No more messages for you" should appear on the next line.

TITLE FROGRAM 4-4
PALGE &0, 132

.MODEL SMALL
.ETACK &4
-DATA
FROMPT1 OB '"There is a message for you from Mr. Jones. !
CB '"To read it enter Y','s!
MESESAGE CB CR,LF,'Hi! I must leave town tomorrow, '
LB 'therefore I will not bhe able to see you','s'
FROMPTZ2 LB CR,LF, "No more messages for you','§'
;DTSEG ENDS
CR EQU QLH
LF ECQU 0AH
. CODE

MAIN FROC FAR
MOV RAX,BDATA

MoV DE, AX
CALL CLEAR ; CLEAR THE SCEREEN .
CARLL CIRSOR +SET CURSOR POSITION
MoV &H, 09 + DISPLAY THE PROMPT
MOV DX¥,0FFSET PROMPT1
INT 21H
MW AH, 07 fGET OMNE CHAR, HO ECHO
INT 21H
CMP AL,'Y" i IF "Y', COHTINUE
JE OVER
CME AL, "y’
JZ OVER :
MOV AH,09 s DISPLAY SECCHND PROMPT IF NMOT 7Y
MOV D¥,0FFSET PROMPTZ
INT 214
JME EXIT
OVEE = MOV AH,09 +DISFLAY THE MESSAGE
MoV D¥,0FFSET MESSAGE
INT 21H
EXIT:MOV AH,4CH
INT 21H ;G0 BACK TO DOS
MAIN EMDE
CLEAR FROC ;CLEARE THE SCREEM

MOV AX,0600H
MOV BH,07
MOV CX,0000
MOV DX¥,184FH
INT 10H

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

CURSOR PROC iSET CURSOR FDSITION
MOV RH,02
MOV BH,00
MOV DL,05 fCOLUMH 5
MOV DH, 0B ;ROW 8
INT 10H
RET -
CURSOR ENDP
END MAIN
Program 4-4

INT 21H Option 07: Keyboard Input without Echo
v" Option 07 of INT 21H requires the user to enter a single character but that character is not
displayed (or echoed) on the screen.

v’ After execution of the interrupt, the PC waits until a single character is entered and provides the

character in AL.

MOV
INT

AH,07 :keyboard input without echo
21H

Using the LABEL Directive to Define a String Buffer:

0 A more systematic way of defining the buffer area for the string input is to use the LABEL

directive.

0 The LABEL directive can be used in the data segment to assign multiple names to data. When

used in the data segment it looks like this:

name LABEYL attribute

0 The attribute can be BYTE, WORD, DWORD, FWORD, QWORD, or TBYTE.

JOE LABEL BYTE
TOM DB 20 DUP(0)

By: MAHESH PRASANNA K.,
DEPT. OF CSE, VCET.

*khkkkkkkik

*khkkkkhkikkx

MAHESH PRASANNA K., VCET, PUTTUR

	MODULE – 2
	A AND L INSTRUCTIONS & INT 21H AND INT 10H PROGRAMMING
	Before
	 After
	 BH

	 After
	BH

	 Before
	After
	BH

	 Before
	 After
	BH

	 Before

