MICROPROCESSORS AND M

ICROCONTROLLERS

MODULE -3

SIGNED NUMBERS AND STRINGS & MEMORY INTERFACING & 8255

SIGNED NUMBERS

& STRINGS

SIGNED NUMBER ARITHMETIC OPERATIONS:

o0 Ineveryday life, numbers are used that could be positive or negative. For example, a temperature

of 5 degrees below zero can be represented as -5,

o0 Computers must be able to accommodate such

and 20 degrees above zero as +20.

numbers. To do that, an arrangement for the

representation of signed positive and negative numbers is made:

v The most significant bit (MSB) is set asid

v The rest of the bits are used for the magni

e for the sign (+ or -)
tude.

0 The sign is represented by 0 for positive (+) numbers and 1 for negative (-) humbers.

o0 Note that, entire 8-bit or 16-bit operand will be treated as magnitude in the case of unsigned

number representation.
Byte-sized Signed Numbers:
0 In signed byte operands, D7 (MSB) is the sign a
the number.
v If D7 =0, the operand is positive
v If 07 = 1, the operand is negative.

nd D6 to DO are set aside for the magnitude of

D7 | Do | D5 | D4 | D3

D2 | DI | DO

sign magnitude

0 The range of positive numbers that can be represented by the format above is 0 to + 127.

0 0000
+1 0ooo
+5 0000
+127 o111

o0 If a positive number is larger than +127, a word si

o0o0aQ
0001
0101

1111

zed operand must be used.

0 For negative numbers D7 is 1, but the magnitude is represented in 2's complement.

0 Although the assembler does the conversion,

it is still important to understand how the

conversion works. To convert to negative number representation (2's complement), follow these

steps:
v Write the magnitude of the number in 8-b
v"Invert each bit

v Add1ltoit.
MAHESH PRASANNA K., VCET, PUTTUR

it binary (no sign).

MICROPROCESSORS AND MICROCONTROLLERS

Decimal Binary ~ Hex

-128 1000 Q000 80
o, ¥ 1000 0001 Bl
~126 1000 0010 B2
=2 1111 1110 FE
| 1111 1111 FF
] 0000 0000 00
+1 0oo0 0001 01
2 Qoo0 0010 02
+127 1 O 1

Show how the computer would represent 35,

Solution:
1. 0000 0101 5§ 1in E=bit binary
N L invert each bit
3, 11111011 add 1 (hex = FBH)

This is the signed number representation in 2's complement for -5,

Show —34H as it is represented intemally.

Soluation:
i, 0011 0100
2. 1E0Q I01L
3. 1100 1100 {which iz CCH)

Show the representation for — 128,

Solution:
1. 1000 003
ol T B o R
] 1000 0000 Notice that this is not negative zero (—0).

Word-sized Signed Numbers:
0 In x86 computers a word is 16-bits in length. Setting aside the MSB (D15) for the sign leaves a
total of 15 bits (D14 — DO) for the magnitude. This gives a range of -32,768 to +32,767.
o If a number is larger than this, it must be treated as a multiword operand and be processed chunk
by chunk the same way as unsigned numbers.

DI5S D14 D13| D12 | D11 | D10 D’?IDE D7 | Dé | D5 | D4 D3|D2 D1 | DO

| sign magnitude

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Decimal Binary Hex
o uishpn g - 1000 0000 0000 0000 anon
-32, 767 1000 0000 Q000 0001 q001
-32, ThRE 1000 00Q0 QO0OQ 0010 goo02
-2 1111 1111 1111 1110 EFFE
-1 11131 1111 1111 1111 FFFF
0 QOO0 0000 Q00O 0000 Qo000
+1 0000 0000 C0ODO 0001 onol
+2 o000 Q000 0000 0010 ooz
+32, 766 0111 1111 13111 1119 7FFE
+32, 767 Gllilllll I1LYE E114 ITFF

Overflow Problem in Signed Number Operations:

What is an overflow? If the result of an operation on signed numbers is too large for the register, an

overflow occurs and the programmer must be notified. Look at following Example:

Look at the following code and data segments:

DATAL DE + 96

DATAZ LE + /)

(0}

In the example above; +96 is added to +70 and the result according to the CPU is =90 (5AH).
Why?

The reason is that, the result was more than what AL could handle. Like all other 8-bit registers,
AL could only contain up to +127. The designers of the CPU created the overflow flag
specifically for the purpose of informing the programmer that the result of the signed number

operation is erroneous.

Hence, when using signed numbers, a serious problem with regarding overflow arises that must be dealt

with. The CPU indicates the existence of the problem by raising the OF (overflow) flag, but it is up to the

programmer to take care of it. The CPU understands only 0s and 1s and ignores the human convention of

positive and negative numbers.

When Overflow Flag is Set in 8-bit Operations?

In 8-hit signed number operations, OF is set to 1, if either of the following two conditions occurs:

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

1. Thereis a carry from D6 to D7, but no carry out of D7 (CF = 0)
2. There s a carry from D7 out (CF = 1), but no carry from D6 to D7.

Observe the results of the following:

MOV DL,- 128 +DL=1000 0000 (DL=80H)
MOV . CH,-2 ;CH=1111 1110 (CH=FEH)
ADD DL, CH ;DL=0111 1110 (DL=TEH=+126 invalid!)
—-128 1000 0000
* -2 1111 1110
=130 0111 1110 oF=1, SF=0 (positive], CF=1
According to the CPU, the result is +126, which is wrong. The error is indicated by the fact that
OF =1.
Chserve the results of the following:
MOV AL,-2 sAL=1111 1110 (AL=FEH)
MOV CL,- 5 ;CI=1111 1011 (CL=FBH)
ADD CL, AL PCI=1111 1001 (CL=F9H=7 which is correct).

-2 1111 1110

+-5

1111 1011 3
-7 1111 1001 OF =0, CF=0, and 5F = | (negative); the result is correct since OF = (.

Observe the results of the following:

MOV DH, +7 +DH=0000 0111 (DH=0TH)
MO BH, +18 fBEH=0001 0010 (BEH=12H}
ADD BH, DH ;BE=0001 1001 {(BEH=19H=+25h, correct)
+7 0000 0111
+ +18 001 Q010
+25 0001 1001 OF = 0, CF = 0, and SF = 0 {positive).

When Overflow Flag is Set in 16-bit Operations?

In 16-bit signed number operations, OF is set to 1, if either of the following two conditions occurs:
1. Thereis a carry from D14 to D15, but no carry out of D15 (CF = 0)
2. There s a carry from D15 out (CF = 1), but no carry from D14 to D15.

Observe the results in the following;

MoV AX,6E2FH - ; 28,207

MOV C¥,13DdH i+ 5,076

ADD BX, CH j= 33,283 is the expected answer
BE2F 0110 1110 0010 1111
+13D4 0001 00131 1101 0100
Bz03 1000 0010 0000 0011 = -32,253 incorrect!

OF=1,CF=0,8F=1

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Observe the results in the following:

MOV DX, 542FH ; 21,551
MOV BX,1Z2EQH ; 44,832

ADD DH,BX i=26,383
543F 0101 0100 0010 1111
+12E0 0001 0010 1110 0000
6707 0110 0111 0000 1111 =26,383 (correct answer), OF =0, CF =0, §F =0

Avoiding Erroneous Results in Signed Number Operations:
0 To avoid the problems associated with signed number operations, one can sign extend the
operand.
0 Sign extension copies;
v' the sign bit (D7) of the lower byte of a register into the upper bits of the register, or
v'the sign bit of a 16-bit register into another register.
0 The instructions used to perform the sign extension are;
0 CBW (convert signed byte to signed word) — will copy D7 (the sign flag) of AL to all bit
positions of AH register.

MOV AL,+96 +AL=0110 Qo000
7 1] 7] CBW ;now AH=0000 0000 and AL=0110 0000
- or: :
MOV AL,-2 ;AL=1111 1110
AH AL . CEW +AH=1111 1111 and AL=1111 1110

o CWD (convert signed word to signed double word): will copy D15 of AX to all bot positions of
DX register.

15 0 15 . 0

-

DX AX

example:

MoV ¥, 4280 sRAX=0000 Q001 0000 0100 or AX=0104H
CHWD DX=0000H and AX=0104H

example:

MoV A¥,-32766 ;R=1000 O000 0000 DO10B er AX=EODZH
CHWD ;D¥=FFFF and AX=B002Z

In the following Example (program for addition of any two signed bytes);
v If the overflow flag is not raised (OF = 0), the result of the signed number is correct and JNO

(jump if no overflow) will jump to OVER.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v If OF = 1, (which means that the result is erroneous), each operand must be sign extended and
then added. That is the function of the code below the JNO instruction.

Rewrite Example 6-4 to provide for handling the overflow problem.
Solution:
DATAL D3 +96
CATAZ 85 +10
RESULT)
SUB AH,AH i B=0
MOV AL, DATAI GET OPERAND 1
MOV BL, DATA “
ADD AL,BL
JNO OVER N G) TO OVER
MOV AL, DATA2 HERWISE GET OPERAND 2 TO
can ;SIGN EXTEND IT
MD BY,AX AVE IT IN BX
MON AL,DATA] BACE QFERAND 1 TO
Caw
ADD AX,;BX
QVER: MOV RESULT ; AX]
5 AR AL
0 o0 0000 0110 Q000 +26 after sign extension
a Qoo Qoco 100 Ollo +70 afker aign extension
0 oo o000 1910 QL1 +166

IDIV (signed number division):

The Intel manual says that IDIV means "integer division"; it is used for signed number division. In
actuality, all arithmetic instructions of 8088/86 are for integer numbers regardless of whether the
operands are signed or unsigned. To perform operations on real numbers, the 8087 coprocessor is used.
Remember that real numbers are the ones with decimal points such as "3.56".

Division of signed numbers is very similar to the division of unsigned numbers (already discussed).

Division Numerator Denominator Quotient Rem.
byte/byte AL = byte CBW register or memory AL AH
word/word AX = word CWD register or memory AN DX
word/byte AX = word register or memory ALl AH
doubleword/'word DXAX = doubleword register or memory AX2 nx
Notes:

1. Divide error interrupt if —127 = AL = +127.
2. Divide errar interrupt if -32,767 > AL > +31,767.

Egl:
IDIV CH Before After
FOH =-10H CH FOH EE =-12H
AL 25H EEH Quotient
AH 01H 05H Remainder

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Eg2:
IDIV BL Before After
FOH = -3H BL FDH FB =-5H
AL 10H EBH Quotient
AH 00H 01H Remainder

An application of signed number arithmetic is given in the following Program. It computes the average of
the Celsius temperatures: +13, -10, + 19, +14, -18, -9, +12, -19, and + 16.

[TITLE PEOG 6-1 FIND THE AVERAGE TEMPERATUERE
BAGE e0,132
.MDDEL STMALL
LSTARCK 64
.DATA
SIGN DAT DB +13,-10,+19,+14,-18,-9,+12,-13,+16
DRG 0010H
AVERAGE DwW 72

REMAINDER DW ?
.CODE

MAIN PROC FAR
MOV AX,BDATA
MOV DS, AX

MOV CX,9 ; LOAD COUNTER
SUB BX,BY ;CLEAR BX, USED AS ACCUMULATOR
MoV 31,0FFSET EIGN_D&T s 8ET UFP POINTER
BACK :MOV ARL,[511 ;MOVE BYTE INTO AL
CBW ;SIGN EXTEND INTC AY
ADD BX,AX :2DD TO BX
INC 21 ; INCREMENT FOINTER
LOOP BACK 1 100F IF HOT FINISHED
MOV AL, 9 ;MOVE COUNT TO AL
CEW ;SIGN EXTEND INTO AX
MOV X, AX ; EAVE DENOMINATOR IN CX
MOV RX,BX ;MOVE SUM TO RX
CWD ;SICN EXTEND THE SO0M
IDIV CX :FIND THE AVERAGE
MOW BVERAGE AX ;ESTORE THE AVERAGE (QUOTIENT)
MOV REMAINDER,DX :STCORE THE REMAINLDER
MOV AH,d4CH
INT 21H :G0 BACK TO DOS

MAIN ENDP
) END MATIN

Program 6-1

IMUL (signed number multiplication)
Signed number multiplication is similar in its operation to the unsigned multiplication. The only
difference between them is that the operands in signed number operations can be positive or negative;

therefore, the result must indicate the sign.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Multiplication Operand 1 Operand 2 Result
byte x byte AL register or memory AX!
word = word AX register or memory DX AXZ
word = byte AL = bytc CBW rcgister or memory DX AX?
Notes:

I CF=1 and OF = | if AH has part of the result, but if the result is not large enough to need the AH,
the sign bit is copied to the unused bits and the CPU makes CF = 0 and OF = 0 to indicate that.

2. CF=1 and CF = | if DX has part of the result, but if the result is not large enough to need the
DX, the sign bit is copied to the unused bits and the CPU makes CF = 0 and OF =0 to indicate that.
Oz can use the J condition to find out which of the conditions above has ecourmed. The rest of the

flags are undefined,
Egl:
IMUL CH Before After
FEH =-02 CH FEH
AL 02H FCH FFFCH =-04
AH [34H FFH
Arithmetic Shift:

The arithmetic shift is used for signed numbers. It is basically the same as the logical shift, except that the
sign bit is copied to the shifted bits. SAR (shift arithmetic right) and SAL (shift arithmetic left) are two
instructions for the arithmetic shift.

SAR (shift arithmetic right)

SAR destinatiocn,count

Sign
bit
Eg:
SAR BH, CL R/IM Cy
—>| —> |
Shift right Before After
1100 0000 = -40H BH 1100 0000 1111 0000
11110000 =-10H CL 02H
Cy 1 | 0 |

As the bits of the destination are shifted to the right into CF, the empty bits are filled with the sign bit.

One can use the SAR instruction to divide a signed number by 2, as shown next:

MO AL, =10 FAal=-10=FEE=1111 0110

SAR AL,1 ;AL is arithmetic shifted right once
;AL=1111 1011=FDH=-5

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Using DEBUG, evaluate the results of the following:

MoV A¥,-9
MOV BL,2
IDIV BL jdivide -9 by 2 results in FCH
MD‘F H;-g
SAR F. ¥ Pl idivide -2 by 2 with arithmetic shift
ijresults in FBH
Solution:

The DEBUG trace demonstrates that an IDIV of -9 by 2 gives FCH (- 4), whereas SAR -9
gives FBH (-5). This is because SAR rounds negative numbers down but IDIV rounds up.

SAL (shift arithmetic left)
SAL & SHL (shift left) do exactly the same thing.

Target register or memory
C

SHL -}

SAL = -0

Signed Number Comparison

CMPE dest, scurce

Although the CMP (compare) instruction is the same for both signed and unsigned numbers, the J
condition instruction used to make a decision for the signed numbers is different from that used for the
unsigned numbers.
o In unsigned number comparisons, CF and ZF are checked for conditions of larger, equal, and
smaller.
0 Insigned number comparison, OF, ZF, and SF are checked.

destination > source OF=3F or ZF=0
deatination = =source 2P=1
destination < source OF=negation of SF

o The memories used to detect the conditions above are as follows:

JG Jump Greater jump if OF=5F or ZF=0

JGE Jump Greater or Egual Jump if OF=SF

JL Jump Less jump if OF=inverse of SF

JLE Jump Less or Egual jump if OF=inverse of S5F or ZF=1
JE Jump if Egqual jump of ZF = 1

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

TITLE FROGG-/ ;FIND THE LUWEST IEMFERATURE
PAGE 60,132
.MODEL SMALL
LSTACK 64
DATA
SIGN DAT DB +13,-10,+19,+14,-18,-9,+12,-19, +16
ORG BOL0H
1LOWEST DB 7

- CODE
MAIN PROC FAR
MOV AX, BDATA

MO D5, AX

MOV Cx,B s LOAD COUNTER (NUMEEE ITEMS - 1)

MOV S5I,0FFSET SIGN DAT :5ET UF POINTER

MOV AL,[SI] ;AL HOLDS IOWEST VALUE FOUND SO FAR
BACE :THNC SI ; INCREMENT FOINTER

CMF AL,[8I] ; COMPARE NEXT BYTE TD LOWEST

JLE SEARCH ;IF AL IS LOWEST, CONTINUE SEARCH

MOV AL,[5I] ;OTHERWISE SAVE NEW LOWEST
SEARCH:ILOOF BACEK ;LOOP IF WOT FINISHED

MoV LOWEST, AL 5AVE LOWEST TEMPERATURE

MOV AH, 1CH

INT 21H + G50 BACE TO DOS
MAIN ENDF

END MAIN

Program 6-2

STRING & TABLE OPERATIONS:
0 There is a group of instructions referred to as string instructions in the x86 family of

MiCroprocessors.

0 They are capable of performing operations on a series of operands located in consecutive memory
locations.

0 For example, while the CMP instruction can compare only 2 bytes (or words) of data, the CMPS
(compare string) instruction is capable of comparing two arrays of data located in memory
locations pointed at by the Sl and DI registers. These instructions are very powerful and can be
used in many applications,

Use of Sl and DI, DS and ES in String Instructions:

o For string operations to work, designers of CPUs must set aside certain registers for specific
functions. These registers must permanently provide the source and destination operands.

o In 088/86 microprocessor, the SI and DI registers always point to the source and destination
operands, respectively.

0 To generate the physical address, the 8088/86 always uses Sl as the offset of the DS (data
segment) register and DI as the offset of ES (extra segment).

0 The ES register must be initialized for the string operation(s) to work.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Byte-and Word Operands in String Instructions:

0 Ineach of the string instructions, the operand can be a byte or a word.

0 Operands are distinguished by the letters B (byte) and W (word) in the instruction mnemonic.
DF, the Direction Flag:

0 To process operands located in consecutive memory locations; it requires that, the pointer be
incremented or decremented.

0 In string operations this is achieved by the direction flag. Of the 16 bits of the flag register (DO -
D15), bit 11 (D10) is set aside for the direction flag (DF).

0 ltis the job of the string instruction to increment or decrement the SI and DI pointers; but it is the
job of the programmer to specify the choice of increment or decrement by setting the direction
flag to high or low.

o0 The instructions CLD (clear direction flag) and STD (set direction flag) are specifically designed
for the purpose.

0 CLD (clear direction flag) will reset (put to zero) the DF, indicating that the string instruction
should increment the pointers automatically. This is referred to as auto-increment.

0 STD (set the direction flag) sets DF to 1, indicating to the string instruction that the pointers Sl
and DI should be decremented automatically. This is referred to as auto-decrement.

Table: Summary of String Operations

Instruction Mnemonic | Destination | Source Prefix
Move string byte MOVSB ES: DI DS: Sl REP
Move string word MOVSW ES: DI DS: Sl REP
Store string byte STOSB ES: DI AL REP
Store string word STOSW ES: DI AX REP
Load string byte LODSB AL DS: Sl None
Load string word LODSW AX DS: Sl None

Compare string byte CMPSB ES: DI DS: SI | REPE/REPNE
Compare string word | CMPSW ES: DI DS: SI | REPE/REPNE

Scan string byte SCASB ES: DI AL REPE/REPNE
Scan string word SCASW ES: DI AX | REPE/REPNE
REP/REPZ/REPNZ Prefix:

0 REP (repeat) prefix allows a string instruction to perform the operation repeatedly.
0 REP assumes that CX holds the number of times that the instruction should be repeated.
o0 In other words, the REP prefix tells the CPU to perform the string operation and then decrements

the CX register automatically. This process is repeated until CX becomes zero.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o REPZ (repeat zero)/REPE (repeat equal) repeat the string operation as long as source and
destination operands are equal (ZF = 1) or until CX becomes zero.
0 REPNZ (repeat not zero)/REPNE (repeat not equal) repeat the string operation as long as
source and destination operands are not equal (ZF = 0) or until CX becomes zero.
Instruction Code Condition for Exit
REP CX=0
REPE/REPZ CX=00rZF=0
REPNE/REPNZ CX=0orzZF=1

Using string instructions, write a program that transfers a block of 20 bytes of data.

Solution:

;in the data segment:

DATAL DB ' ABCDEFGHIJKLMNOPQRST'
(JRG FOK
DATAZ DB 20 DUP (?)

:in the code segment:
MOV AX, @DATA

W 5 ;INITIALIZE THE DATA EFGMEET
ﬁ%& ;%:?E :INITIALIZE THE EXTRA BEGMLﬁEleCRE”ENm
éLD ;CLEAR DIRECTION FL%Q FOR DLUTOLN M
MOV S1,0FFSET DATAL ; LOAD THE SOUBCE“PO;ETER a B
MOV DI,OFFSET DRTR2 s LOAD THE DE?IINnTIOh POLN
MOV cx, 20 : LORD THE COUNTER g T
REP MOWVIE : REPEAT UNTIL CX BECOMES ZE

v’ After the transfer of every byte by the MOVSB instruction, both the SI and DI registers are

incremented automatically once only (notice CLD).
v' The REP prefix causes the CX counter to be decremented and MOVSB is repeated until CX
becomes zero.
v An alternative solution for above Example would change only two lines of code:
MOV CX, 10
REP MOVSB
v In this case the MOVSW will transfer a word (2 bytes) at a time and increment the Sl and DI

registers each twice. REP will repeat that process until CX becomes zero. Notice that, the CX has
the value of 10 in it; since 10 words is equal to 20 bytes.
STOS and LODS Instructions:
STOSB - stores the byte in the AL register into memory location pointed at by ES: DI and then
increment DI once (if DF = 0) or decrement DI once (if DF = 1).
STOSW - stores the content of AX in memory locations ES: DI and ES: DI+1 (AL into ES: DI and AH
into ES: DI+1) then increments DI twice (if DF = 0) or decrements DI twice (if DF = 1).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

SB - loads the contents of memory location pointed at by DS: Sl into AL and increments Sl once (if
DF = 0) or decrements Sl once (if DF =1).
LODSW - loads the content of memory locations pointed at by DS: Sl into AL and DS: SI+l into AH.
The Sl is incremented twice if DF = 0 or Sl is decremented twice if DF = 1.

e LODS is never used with a REP prefix.

Testing Memory using STOSB and LODSB:

v The following Example uses string instructions STOSB and LODSB to test an area of RAM

memory.

First AAH is written into 100 locations by using word-sized operand AAAAH and a count of 50.
In the test part, LODSB brings in the contents of memory locations into AL one by one, and each
time it is eXclusive-ORed with AAH (the AH register has the hex value of AA).

o If they are the same, ZF = | and the process is continued.

o0 Otherwise, the pattern written there by the previous routine is not there and the program
will exit.

| Write a program that: _ _

| {1) Uses STOSB to store byte AAH in 100 memory lccatmps. ‘ :

| {7 Uses LODS to test the contents of each location to see if AAH is there. If the test fails, the
system should display the message "bad memory”.

solution:

| Assuming that ES and DS have been assigned in the ASSUME directive, the following is from

the code segment:
;PUT PATTERN AARAAH IN TO 50 WORD LOCATIONS
MOV ~ AX,DTSEG ; INITIALIZE
MOV DS, AX ;DS REG
MOV ES,AX ;AND ES REG
LD ;CLEAR DF FOR INCREMENT
MOV C¥, 50 :LOAD THE COUNTER (50 WORDS)
MOV~ DI,OFFSET MEM AREA ;LOAD THE POINTER FOR DESTINATION
MOV AX,OAAARH ; LOAD THE PATTERN
REP STOSW ; REPEAT UNTIL CX=0
;BRING IN THE PATTERN AND TEST IT ONE BY ONE
MOV . SI,OFFSET MEM AREA ;LOAD THE POINTER FOR SOURCE
MOV CX, 100 - ;LOAD THE COUNT (COUNT 100 BYTES)
AGAIN:, LODSB ; LOAD INTO AL FROM DS:5I
¥OR AL, AH ;IS PATTERN THE SAME? _
JNZ OVER ;IF NOT THE SAME THEN EXIT
LOOP AGAIN ;CONTINUE UNTIL CX=0
JMP EXIT ;EXIT PROGRAM
OVER: MOV RH,09 :{. DISPLAY
MOV DY, OFFSET MESSAGE { THE MESSAGE
INT 21H ;{ ROUTINE
EXIT:

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

CMPS (Compare String):
o CMPS allows the comparison of two arrays of data pointed at by the Sl and DI registers.
0 One can test for the equality or inequality of data by the use of REPE or REPNE prefixes,
respectively.
0 The comparison can be performed a byte at a time or a word at time by using CMPSB or
CMPSW forms of the instruction.
For example, if comparing "Euorop” and "Europe" for equality, the comparison will continue using the

REPE CMPS as long as the two arrays are the same.

Assuming that there is a spelling of "Europe” in an clectronic dictionary and a user types in
"Euorope", write a program that compares these two and displays the following message,
depending on the result: , '

1. If they are equal, display "The spelling is correct”.

2. If they are not equal, display "Wrong spelling".

Solution:

DRT DICT DB 'Europe’

DAT TYPED DB 'Euorope’

MESSAGEL DB 'The spelling is correct','s'
MESSAGEZ DB 'Wirong spelling','$'

i from the code segment:

CLD ;DF=0 FOR IMNCREMENT

MGV SI,OFFSET DAT DICT s SI=DATA] OFFSET

MOV DI,OFFSET DAT TYEPED ; DI=DATAZ OFFSET

MOV CX, 08 ; LOAD THE COUNTER

REEPFE CMP3IB sREPEAT A5 LONG AS EQUAL OR UNTIL CX=0
JE OVER ;IF ZF=1 THEN DISPLAY MESSAGE]

MOW DX, QFFSET MESSRAGEZ :1F ZF=0 THEN DISFLAY MESSAGE2
JME DISPLAY

QOVER: MOV DX,OFFSET MESSAGEI]
DISFLAY: MOV AH, 09
INT 21H

v' Here, the two arrays are to be compared letter by letter.

v’ The first characters pointed at by Sl and DI are compared. In this case they are the same ("E"), so
the zero flag is set to 1 and both SI and DI are incremented.

v" Since ZF = 1, the REPE prefix repeats the comparison.

v" This process is repeated until the third letter is reached. The third letters “0” and "r" are not the

same; therefore, ZF = 0, and the comparison will stop.

SCAS (Scan String):
0 SCASB - compares each byte of the array pointed at by ES: DI with the contents of the AL

register, and depending on which prefix, REPE or REPNE, is used, a decision is made for

equality or inequality.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o For example, in the array "Mr. Gones", one can scan for the letter "G" by loading the AL register

with the character "G" and then using the "REPNE SCASB" operation to look for that letter.

then displays the corrected name.
Solution:

:in the data segment:
DATAL DB 'Mr. Gones','Ss'

rand in the code segment:

MOV AX,BDATA

MOV DS, hrX

MO ES, AX

CLD

MOV DI,OFFSET DATAI]
MOV CX, 09

MOV AL, 'G'

REPNE SCASH

rorr
JNE OVER
DEC DI
MOV E¥TE FTR { DI],'Jd'
OVER: MOW AH,09
MOV DX,OFFSET DATAlL
INT 21H

Write a program that scans the name "Mr. Gones" and replacesthe "G" with the letter "J",

;DF=0 FOR INCREMENT

;ES5:DI=ARRAY QFFSET

; LENGTH OF ARPAY

; SCANNING FOR THE 'LETTER 'G'
;REPEAT THE SCANNING IF NOT EQUAL

;UNTIL CX IS ZERO. JUMP IF Z=0
; DECREMENT TO POINT AT 'G'
;REPLACE 'G' WITH 'J°

; DISPLAY

; THE

; CORRECTED NAME

v' Here, the letter "G" is compared with "M".

v" Since they are not equal, DI is incremented and CX is decremented, and the scanning is repeated
until the letter "G™ is found or the CX register is zero. In this example, since "G" is found, ZF =1,
indicating that there is a letter "G" in the array.

Replacing the Scanned Character:
0 SCASB can be used to search for a character in an array, and if it is found, it will be replaced
with the desired character. (See Example given above).
o0 In string operations the pointer is incremented after each execution (if DF = 0). Therefore, in the
example above, DI must be decremented, causing the pointer to point to the scanned character
and then replace it.

XLAT Instruction and Look-Up Tables:
0 There is often a need in computer applications for a table that holds some important information.

To access the elements of the table, 8088/86 microprocessors provide the XLAT (translate)
instruction.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o To understand the XLAT instruction, one must first understand tables. The table is commonly
referred to as a look-up table.

o Assume that one needs a table for the values of x2, where x is between 0 and 9. First the table is
generated and stored in memory:

SQUR TABLE DB 0,1,4,9,16,25,36,49,64,81

0 Itis possible to access the square of any number from 0 to 9 by the use of XLAT instruction.
v' To do that, the register BX must have the offset address of the look-up table, and the
number whose square is sought must be in the AL register.
v Then after the execution of XLAT, the AL register will have the square of the number.
0 The following shows how to get the square of 5 from the table:
MOV BX,0FFSET SQUR_TABLE ;lcad the offset address of table
MOV AL,05 ;AL=05 will retrieve 6th element
KLAT ;pull the element out of table
;and put in AL
0 After execution of this program, the AL register will have 25 (19H), the square of 5.
0 It must be noted that, for XLAT to work the entries of the look-up table must be in sequential
order and must have a one-to-one relation with the element itself. This is because of the way
XLAT work.

o0 Inactuality, XLAT is one instruction, which is equivalent to the following code:

SUBE hH, AH ; BH=(
MO 81, nX ;5I=000X _
MOV AL,[BX+5TI] :GET THE SIth ENTRY FROM BEGINNING

:0F THE TABLE POINTED AT BY BX

Code Conversion using XLAT:
o0 In many microprocessor-based systems, the keyboard is not an ASCII type of keyboard.
0 One can use XLAT to translate the hex keys of such keyboards to ASCII.

0 Assuming that the keys are 0-F, the following is the program to convert the hex digits of 0-F to
their ASCII equivalents.

;data segment:

PLSC II..I':‘.EI_ DB IDI;.lIfHET;.S“J'4Iplr5lpl5'rl-lr';.8l
- DB '9','&','B','C','B’;'E';’F'

HEX VALU DB ?

ASC VALU DB ?

jcode segment:
MOV BX,0FFSET ASC TABL ;B¥= TAELE OFFSET
MOV AL, HEX VALU sAL=THE EEX DATA
®LAT :GET THE ASCII EQUIVALENT
MO ASC WALU, AL sMOVE IT TO MEMORY

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

MEMORY & MEMORY INTERFACING

SEMICONDUCTOR MEMORIES

»

»

»

In the design of computers, semiconductor memories are used as primary storage for code and
data. Semiconductor memories are connected directly to the CPU. For this reason, semiconductor
memories are referred to as primary memory. Most widely used semiconductor memories are
ROM and RAM.

Read-only memory (ROM) contains system software and permanent system data.

Random access memory (RAM) or read/write memory contains temporary data and application

software.

Memory Organization:

»

»

»

»

»

The number of bits that a semiconductor memory chip can store is called its capacity. It can be in
the units of K bits (kilobits)/M bits (megabits).

Memory chips are organized into a number of locations within the IC. Each location can hold 1
bit, 4-bits, 8-bits, or even 16-bits.

Each memory chip contains 2* locations, where x is the number of address pins on the chip.

Each location contains y bits, where y is the number of data pins on the chip.

The entire chip will contain 2* x y bits — the capacity of the chip.

The pin connections common to all memory devices are —

»

»

Address Connections. All memory devices have address inputs that select a memory location
within the memory device. Address inputs are always labeled from A, to A, (Note, ‘n’ is one less
than the total number of address pins). The number of address pins found on a memory device is
determined by the number of memory locations found within it.

Data Connections. All memory devices have a set of data outputs or input/outputs. The device

illustrated in the following Figure has a common set of I/O (input/output) connections.

An oy
Ay oy Cutput
Address Aa O, or
connections input/output
: connection
A Oy

WE fp——mon Write

A pseudo- Cs OE
memeory component illustrat-
ing the address, data, and

control connections

MAHESH PRASANNA K., VCET, PUTTUR

»

»

MICROPROCESSORS AND MICROCONTROLLERS

As shown in the Fig. above; the memory chips have CS (chip select) pin that must be activated
for memory contents to be accessed. That means, no data can be written into or read form the
memory chip unless CS is activated.

Sometimes, OE (output enable)/RD (read)/WR (write) pins may also be present along with CS
pin.

Examples: 1] A given memory chip has 12 address pins and 8 data pins. Find the memory

organization and the capacity.

Solution:

=
=
=

Memory chip has 12 address lines < 2 = 4,096 locations.
Memory chip has 8 data lines «» Each location hold 8 bits of data.
Thus, the memory organization is 4,096 x 8 = 4K x 8 = 32K bits capacity.

Examples: 2] A 512K memory chip has 8 data pins. Find the organization.

Solution:

=

4 4 4 3

The memory chip has 8 data lines <> Each location within the chip can hold 8 bits of data.
Given, the capacity of the memory chip = 512K.

Hence, the locations within the memory chip = 512K / 8 = 64K.

Since, 2'° = 64K; the memory chip has 16 address lines.

Hence, the memory organization is: 64K x 8 = 512K bits capacity.

MEMORY ADDRESS DECODING:

(0}

(0}

(0}

(0}

Consider a 32K x 8 capacity memory chip. This chip has 15 (2'° = 32K) address lines and 8 data
lines.

Suppose, this memory chip is to be interfaced to x86 microprocessor, which is having 20 address
lines and 16 data lines.

This means that, the microprocessor sends out a 20-bit memory address whenever it reads or
writes data. Hence there is a mismatch that must be corrected.

The decoder corrects the mismatch by decoding the address pins that do not connect to the

memory component.

Simple Logic Gates as Address Decoder:

v

v

The CS (chip select) input pin (in any memory chip) is usually active low and can be activated
using some simple logic gates; such as NAND gate and Inverters.
The following Fig. shows some simple NAND gate decoding for memory chips, along with the

address range calculations.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

LA

D7 DO
= A0
— 2K % 8
’ Alk : 1 s
Al o=
oo S
AlE i e
Al9 —P= OE _WR
MF.MR_J L MEMW
AlY Al

5000 1 1000 | 0000 | o000 | oooo | =08000H address of the first location

0000 1 111 111 1111 = OFFFFH address of the last location

Fig: Simple Logic Gates as Decoder (1)

D7 DO
—— K = B

Al ——1Ald

AlT ol ES_

Al18 %
" OE
MEMRJ
Al9 AD

w001 | 0000 | 0000 | oooo | oooo | =90000H address of the first location

1001 | 111 1111 | 1111 1111 — OFFFFH address of the last location

Fig: Simple Logic Gates as Decoder (2)
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o Notice that, the output of the NAND gate is active low and that the CS pin is also active low. That
makes them a perfect match.

0 Also notice that Al9-A16 must equal 1001 in order for CS to be activated. This results in the
assignment of addresses 9000H to 9FFFFH to this memory block.

Referring to above Fig, we see that the memory chip has 64K bytes of space. Show the cal-
culation that verifies that address range 90000 to 9FFFFH is comprised of 64K bytes.
Solution:

To calculate the total number of bytes for a given memory address range, subtract the two
addresses and add | to get the total bytes in hex. Then the hex number is converted to decimal
and divided by 1024 to get K bytes.

SFFFF FFFF
—90000 + 1
OFFFF 10000 hex = 65,536 decimal = 64K

Using the 74L.S138 as Decoder:
0 The 74LS138 has 8 NAND gates in it; therefore, a single chip can control 8 blocks of memory.
0 In 74LS138 decoder; the three inputs A, B, C generates eight active low outputs YO to Y7.

Function Table

Block Diagram I
nputs
Enable | Select | Outputs
s 7 YOP— GIG2 |[CBA| YOYIY2Y3YAYSY6YT
4 YI'P— XH |XXX HHHHHHHH
AT B Téf % L L X |XXX HHHHHHHH
1 vilb— H L |LLL|LHHHHHHH
; vsl— H L |LLH| HLHHHHHH
S : vélo— H L |LHL| HHLHHHHH
Y7fo— H L |LHH| HHHLHHHH
il H L |HLL|l HHHHLHHH
@A GIB Gl H L |HLH HHHHHLHH
? H L |HHLl HHHHHHLH
1 H L |HHH| HHHHHHHL
L
Enable

o0 Each Y output can be connected to the CS of memory chip, allowing control of 8 memory blocks
by a single 74L.S138.

v Consider the following memory decoding diagram. We have, A0-A15 from the CPU, directly
connected to A0-A15 of the memory chip.

v' A16-Al8 are used for the A, B, and C inputs of 74LS138; A19 is controlling G1 pin. G2A and
G2B are grounded.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Address range CO000—CFFFF is assigned to Y4. ””””
' D7 Di
Alo
Al7 | AD
T AILS 64K11 = 8
ROM
ALY AlS
Vpp
OF
CE
Each Y controls

one block.
v" Toenable 74LS138; G2A =0, G2B =0; and G1 = 1.
v Toselect Y4; CBA = 100.

v" This gives the address range (for the memory chip controlled by Y4): CO000H to CFFFFH.

i

Al4 A Yo lo PR (Y
AlS B Yijo —_— 16K * 8
Al6———C Y2 — ROM
AlT——— G2 Y3 o e
Alg—Po— G2B Al3
_ Gl

Al9 Vpp

OE

| CE

Each Y controls
one block.

Looking at the designin ~ ahove Fig. , find the address range for (a) Y4, (b) Y2, and (c) Y7, and.
verify the block size controlled by each Y.

Solution:

(a) The address range for Y4 is calculated as follows.

A19 AlS Al7 Alé al15 Ald Al3 R12 All AlQ A9 A8 AT A6 A5 A4 A3 A2 Al AO
1 10 1y 0~ =0* 0= "d" 0 -0 8st58 5020 201 20040 liell
T R L Lo B} daa syt 81 REC RUTES | S IO e G 0 I 0 o = S DR CF ST

The above shows that the range for Y4 is FOOO0H to F3FFFH. In Figure 10-13, notice that A19,
A18, and A17 must be | for the decoder to be activated. Y4 will be selected when A16 A15 Al4
= 100 (4 in binary). The remaining A13-A0 will be 0 for the lowest address and [for the high-
est address.

(b) The address range for Y2 is E8000H to EBFFFH.

ALS AlS A17 Al6é Al15 Al4 Al13 AlZ All AlO A9 A8 AT A6 AS A4 A3 A2 Al AD
g - SETRM R T sl 1T depe g g S O0meng TiE e sy oSSR A A =R SETUE T
SRR A Gl A Bl i e PR e [P S W T L

(¢) The address range for Y7 is FCO00H to FFFFFH. Notice that FFFFF — FC000H = 3FFFH,
which is equal to 16,383 in decimal. Adding | to it because of the 0 location, we have 16,384.
16,384/1024 = 16K, the block (chip) size.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Ao -
Adidress b t ——
Ay]

Ou 3764 T
[z 1]
0,]
RD ——o OF
Ayl A o b FDO0 - FIFEF CE
A B b F2uMen - FAFFF
Age C 1 | FA0MM - FSFEF
Y S E600 - FTFFF
: 4 o FBO00 - FYFEF
= G2A > FAlOD - FBEFF
= G2B ip -
AL L_o Gl s b FOCOKY - FDFFF
7 b_FEO0D - FEFFE
A
A 110
A

(L1}

A cireuit that uses eight 2764 EPROMs for a 64K x 8 section of memory in an 8088 microprocessor
-pbased system. The addresses selected in this circult are FQO00H-FFFFFH.

DATA INTEGRITY IN RAM & ROM:
0 When storing data, one major concern is maintaining data integrity — ensuring that, the data

retrieved is the same as the data stored.

0 The same principle applies when transferring data from one place to another — ensuring that, the
data received is the same as the data transmitted.

0 There are many way to ensure data integrity depending on the type of storage.

0 The checksum method is used for ROM and the parity bit method is used for DRAM.

0 For mass storage devices such as hard disks and for transferring data on the Internet, the CRC
(cyclic redundancy check) method is employed.

Checksum Byte:

o0 During the current surge, or when the PC is turned on, or during operation, the contents of the
ROM may be corrupted.

0 To ensure the integrity of the contents of ROM, every PC must perform a checksum calculation.
The process of checksum will detect any corruption of the contents of ROM.

0 The checksum method uses a checksum byte. This checksum byte is an extra byte that is tagged
to the end of a series of bytes of data.

0 To calculate the checksum byte of a series of bytes of data, the following steps can be taken .
1. Add the bytes together and drop the carries.
2. Take the 2's complement of the total sum, and that is the checksum byte, which becomes the

last byte of the stored information.
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o To perform the checksum operation, add all the bytes, including the checksum byte. The result
must be zero. If it is not zero, one or more bytes of data have been changed (corrupted).

Assume that we have 4 bytes of hexadecimal data: 25H, 62H, 3FH, and 52H.

ia) Find the checksum byte.

(b} Perform the checksum operation to ensure data integrity.

{c) If the second byte 62H had been changed to 22H, show how checksum detects the error.

Solution:
(a) The checksum is calculated by first adding the bytes.

25H
+ BZH
+ 3FH
X o2H
1 18H

The sum is 118H, and dropping the carry, we get 18H. The checksum byte is the 2's
complement of 18H, which is E8H,

by Adding the series of bytes including the checksum byte must result in zero. This
indicates that all the bytes are unchanged and no byte is corrupted.

25H
62H
3FH
52H
E8H
QO0H (dropping the carry)

+ =+ +

%]

() Adding the series of bytes including the checksum byte shows that the result is not zero,
which indicates that one or more bytes have been corrupted.

25H
+ 22H
+ 3FH
+ 52H
+ E8H
1 COH dropping the carry, we get COH.

Assuming that the last byte of the following data is the checksum byte, show whether the data
has been corrupted or not: 28H, C4H, BFH, 9EH, 87H, 65H, 83H, 50H, ATH, and S1H.

Solution:

The sum of the bytes plus the checksum byte must be zero; otherwise, the dara is corrupted
28H + C4H + BFH + 9EH + 87H + 65H + 83H + 50H + ATH + 51H = 500H

By dropping the accumulated carries (the 5), we get 00. The data is not corrupted. See Figure
10-17 for a program that performs this verification.

Checksum Program:
v" When the PC is turned on, one of the first things the BIOS does is to test the system ROM. The
code for such a test is stored in the BIOS ROM.

v The following Figure shows the program using the checksum method.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

v Notice in the code how all the bytes are added together without keeping the track of carries. Then,

the total sum is ORed with itself to see if it is zero. The zero flag is expected to be set to high
upon return from this subroutine. If it is not, the ROM is corrupted.

EC4C

EC4C B90020
ECAF

EC4F 32C0
ECS1

EC51 0207
ECE3 43
EC54 EZFB
ECH56 QACD
ECHE C3

2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424

ROS CHECKSUM PROC
MOV
ROS CHECKSUM_CNT
= ¥OR
C26:
ADD
INC
LOOP
OR
RET
ROS CHECKSUM ENDE

SUBROUTIHNE
MWEAR ;WEXT ROS_MODULE
C¥,B192 ;NUMBER OF BYTES TO ADD
SENTRY PT. FOR OPTIOWAL ROS TEST
AL, AL

AL, DS :[BX]

BX JEOINT TO MEXKT BYTE

C26 ;ADD ALL BYTES IN ROS MODULE
AL,AL ; SUM = 07

Fig: PC BIOS Checksum Routine

Use of Parity Bit in DRAM Error Detection:

0 System boards or memory modules are populated with DRAM chips of various organizations,

depending on the time they were designed and the availability of a given chip at a reasonable

cost.

o0 The memory technology is changing so fast that DRAM chips on the boards have a different look
every year or two. While early PCs used 64K DRAMSs, current PCs commonly use 1G chips.

0 To understand the use of a parity bit in detecting data storage errors, we use some simple

examples from the early PCs to clarify some very important design concepts.

DRAM Memory Banks:

v The arrangement of DRAM chips on the system or memory module board is often referred to as a
memory bank. For example, the 64K bytes of DRAM can be arranged as one bank of 8 IC chips
of 64K x 1 organization, or 4 bank of 16K x 1 organization.

v The first IBM PC introduced in 1981, used memory chip of I6K x | organization.

v The following Figure shows the memory banks for 640K bytes of RAM using 256K and 1M
DRAM chips.

v"Notice the use of an extra bit for every byte of data to store the parity bit.

v With the extra parity bit every bank requires an extra chip of x 1 organization for parity check.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

d7 ... d4 d3- d Parity
Bank 3: 64K = 9 64K % & 64K * 4 64K % 1
i 64K = 4 64K = 4 B4k = |
: |
e 256K * 4 256K * 4 256K * |
Bl G 236K = 4 256K % 4 256K = |
Mote: 04K = 4 is a single 256K-bit chip
V56K x4 1% a4 Singlll 1 M-bit Ehlp

v" The following Figure shows DRAM design and parity bit circuitry for a bank of DRAM.

& multiplexed addresses

MAD to MA7 to all banks . to all banks
\ Bank 4 . l WE
- —] } }
AO-A3_ i A ——[AD 5P
As-a1l ! B jo—ww 5 IR W -
Py S o "l'.r -"Ill.z WE' e
K =1

TP P — s
7

Ad
415158 A5 DRAM
A4-AT =[] A "— A6
."\]1-.&15_= F E o—W AT
— O——M— D

el
Address ‘Fﬂ G Jo———ti

[D 0
— p|?[5]!
select BEASD ——0IRAS p [P D 4 .H_E_' T
CAs0 —OCAS 6 3T arity bit
7418245 THT S
DO —— 745280
__ A
f— r B
= MD7 . —|3—
D7 e = {0 all banks s g aven
DIR G| MDOMD? MD F 1=
= to all banks G odd |—
; | 741874 = H
RAMADDRscet ——0])—{B— Ql—pc arRiss I
P Ofs—PCK to NMI
Enable RAM PCR | VEMR %}LR MEMR—[>o—-
from PB4 of 8255 L
PRE \
(] MEMW —>o —|'>c~ AN

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

First, note the use of the 74LS158 to multiplex the 16 address lines A0-A15, changing them to the
8 address lines of MAO-MATY (multiplexed address) as required by the 64K x | DRAM chip.

The resistors are for the serial bus line termination to prevent undershooting and overshooting at
the inputs of DRAM. They range from 20 to 50 ohms, depending on the speed of the CPU and the
printed circuit board layout.

A few additional observations above Figure should be made. The output of multiplexer addresses
MAO-MA7 will go to all the banks. Likewise, memory data MDO-MD7 and memory data parity
MDP will go to all the banks.

The 74L.S245 not only buffers the data bus MDO-MD?7 but also boosts it to drive all DRAM
inputs. Since the banks of the DRAMSs are connected in parallel and the capacitance loading is

additive, the data line must be capable of driving all the loads.

Parity Bit Generator/Checker in IBM PC:

o

(0}

There are two types of errors that can occur in DRAM chips:

Hard error — some bits or an entire row of memory cell inside the memory chip get stuck to high
or low permanently, thereafter always producing | or O regardless of what you write into the
cell(s).

Soft error — a single bit is changed from 1 to 0 or from 0 to 1 due to current surge or certain kinds
of particle radiation in the air. Parity is used to detect soft errors.

Including a parity bit to ensure data integrity in RAM is the most widely used method; since, it is
the simplest and cheapest.

This method can only indicate if there is a difference between the data that was written to
memory and the data that was read.

It cannot correct the error as is the case with some high-performance computers. In those
computers and some of the x86-based servers, the EDC (error detection and correction) method is
used to detect and correct the error bit.

The early IBM PC and compatibles use the 74S280 parity bit generator and checker to implement
the concept of the parity bit.

745280 Parity Bit Generator & Checker:
v The 745280 chip has 9 inputs and 2 outputs. Depending on whether an even or odd number of

ones appear in the input, the even or odd output is activated (according to following Table).

v' As can be seen from Table, if all 9 inputs have an even number of 1 bits, the even output goes

high (as in cases 1 and 4). If the 9 inputs have an odd number of high bits, the odd output goes
high (as in cases 2 and 3).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

PR Inputs Outputs
191 Case

B pp 7 A-H |1 | Even| ODD

c

o 11 ; i5} + 1 Even | 0 1 0

g 12 2 E”":"“ 2 | Even [1] 0 1
13} (6)

P X S~ oo 3 | odd [0] 0 | 1

z 2) 4 |odd |[1] 1 | 0

o

The way the IBM PC uses this chip is as follows:

v Notice that in above Figure (DRAM design and parity bit circuitry for a bank of DRAM), inputs
A — H are connected to the data bus, which is 8 bits, or one byte. The | input is used as a parity bit
to check the correctness of the byte of data read from memory. When a byte of information is
written to a given memory location in DRAM, the even-parity bit is generated and saved on the
ninth DRAM chip as a parity bit with use of control signal MEMW . This is done by activating the
tri-state buffer using MEMW . At this point, | of the 745280 is equal to zero, since MEMR high.

v" When a byte of data is read from the same location, the parity bit is gated into the | input of the
745280 through MEMR. This time the odd output is taken out and fed into a 74LS74. If there is a
difference between the data written and the data read, the Q output (called PCK, parity bit check)
of the 74LS74 is activated and Q activates NMI, indicating that there is a parity bit error,
meaning that the data read is not the same asthe data written. Consequently, it will display
a parity bit error message.

v For example, if the byte of data written to a location has an even number of Is, A to H has an even
number of Is, and | is zero, then the even-parity output of 74S280 becomes 1 and is saved on
parity bit DRAM. This is case 1 shown in the above Table. If the same byte of data is read and
there is an even number of Is (the byte is unchanged), | from the ninth bit DRAM, which is 1, is
input to the 745280, even becomes low, and odd becomes high, which is case 2 in the above
Table. This high from the odd output will be inverted and fed to the 74LS74, making Q low.
This means that Q is high thereby indicating that the written byte is the same as the byte read and
there is no errors occurred.

v" If the number of 1s in the byte has changed from even to odd and the 1 from the saved parity
DRAM makes the number of inputs even (case 4 above), the odd output becomes low, which is
inverted and passed to the 74LS74 D flip-flop. This makes Q = 1 and Q = 0, which signals the

NMI to display a parity bit error message on the screen.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

16-BIT MEMORY INTERFACING:

In this section, memory interfacing for 16-bit CPUs will be discussed. 80286 is taken as an example, but

the concepts can apply to any 16-bit microprocessor.

ODD & EVEN Banks:
In a 16-bit CPU such as the 80286, memory locations 00000-FFFFF are designated as odd and even bytes
as shown in the following Fig. This Figure shows only 1M byte of memory; the concept of odd and even

banks applies to the entire memory space of a given processor with a 16-bit data bus.

0Odd Bank Even Bank
(BHE =) (AD=10)
D13 D& D7 Do
00001 00000
00003 00002
00005 CO004
FEFFF FFFFE

Fig: ODD & EVEN Banks of Memory

To distinguish between odd and even bytes, the CPU provides a | BHE | A0 Memory Selection
signal called BHE (bus high enable). BHE in association with A0 0 0 | Even Word | DO - D15
is used to select the odd or even byte according to following 0 1 | OddByte | D8-D15
Table. 1 0 | EvenByte | DO-D7
1 1 None -
The following Figure shows 640KB of DRAM for 16-bit buses.
Parity dls d)2 dil ds Parity d7 d4 d3 do
256K = | 256K x 4 256K * 4 256K = | 256K x 4 256K x 4
64K =] G4K x 4 64K = 4 4K =] 64K = 4 64K * 4

Fig: 640K Bytes of DRAM with ODD & EVEN Banks Designation

The following Figure shows the use of A0 and BHE as bank selectors. Here, the 74L.S245 chip is used as
a data bus buffer.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

to other even banks

7418245 /i/\'\ 256K = 8
Do i AD |=—a Al
47 Al -———a A2
D7 D7 A2 le——q A3
A —QIG CS A17le—dal7
MEMR ——DIR
chip seleet
decoding circuitry to other odd banks
T4LS245 /‘\|\ 256K % 8
D8 e D0 AOle—d Al
Al fe——g A2
I = D7 . Axle A3
SEE—G |_Oﬂ Al7 A17
MEME DIR
AlT Al

Fig: 16-bit Data Connection in the Systems with 16-bit Data Bus

Memory Cycle Time and Inserting Wait States:

0 To access an external device such as memory or 1/O, the CPU provides a fixed amount of time
called a bus cycle time. During this bus cycle time, the read and write operation of memory or 1/O
must be completed.

0 The bus cycle time used for accessing memory is often referred to as MC (memory cycle) time.
The time from when the CPU provides the addresses at its address pins to when the data is
expected at its data pins is called memory read cycle time.

0 The processors such as the 8088/86, the memory cycle time takes 4 clocks, and from 286 to
Pentium, the memory cycle time is only 2 clocks.

o If memory is slow and its access time does not match the MC time of the CPU, extra time can be

requested from the CPU to extend the read cycle time. This extra time is called a wait state (WS).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

ONE BUS CYCLE |
|
J

I
]

I | |

f T | T, 1 Ty

—r
« ./ ./ /S \
ADDRESS _(VALID ADDRESS)_‘
ADDRESS/DATA DATA FROM MEMURY)*
ﬁﬁ \ /

Simplified 8086/8088 read bus cycle

» It must be noted that, memory access time is not the only factor in slowing down the CPU. The
other factor is the delay associated with signals going through the data and address path.
» Delay associated with reading data stored in memory has the following two components:

1. The time taken for address signals to go from CPU pins to memory pins, (going through
decoders and buffers (e.g., 74LS245)); plus the time taken for the data to travel from memory
to CPU, is referred to as a path delay.

2. The memory access time to get the data out of the memory chip. This is the larger (80% of the
read cycle time) of the two components.

» The total sum of these two (path delay + memory access time) must equal the memory read cycle
time provided by the CPU.

Calculate the memory cycle time of a 20-MHz 8386 system with
{a) O WS,

{b) 1 WS, and

(c) 2 WS.

Assume that the bus speed is the same as the processor speed.

Solution:

1/20 MHz = 50 ns is the processor clock period. Since the 386 bus cycle time of zero wait states
15 2 clocks, we have;

80386 20 MHz
Memory cycle time with 0 WS 2% 50 =100 ns
Memory cycle ime with 1 WS 100 + 50 = 150 ns
Memory cycle time with 2 WS 100 + 50 + 500 = 200 ns

[t is preferred that all bus activities be completed with 0 WS. However, if the read and write
operations cannot be completed with (0 WS, we request an extension of the bus cycle time. This
extension 15 in the form of an integer number of WS, That is, we can have 1, 2, 3, and so on
WS, but not 1.25 W5,

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

A 20-MHz 80386-based system 15 using ROM of 150 ns speed. Calculate the number of wait
states needed if the path delay is 25 ns.

Solution:

If ROM access time is 130 ns and the path delay is 25 ns, every time the 80386 accesses ROM
it must spend a total of 175 ns to get data into the CPU. A 20-MHz CPU with zero WS provides
only 100 ns (2 x 50 ns = 100 ns) for the memory read cycle time. To match the CPU bus speed
with this ROM we must insert 2 wait states. This makes the cycle time 200 ns (100 + 50 + 50
= 200 ns). Notice that we cannot ask for 1.5 WS since the number of WS must be an integer.
That would be like going to the store and wanting to buy half an apple. You must get one or
more complete WS or none at all.

Accessing EVEN & ODD Words:

0 Intel defines 16-bit data as a word. The address of a word can start at an even or an odd number.

0 For example, in the instruction "MOV AX, [2000]" the address of the word being fetched into AX
starts at an even address. In the case of "MOV AX, [2007]" the address starts at an odd address.

o0 In systems with a 16-bit data bus, accessing a word from an odd addressed location can be
slower.

0 As shown in the following Fig, in the 8-bit system, accessing a word is treated like accessing two
bytes regardless of whether the address is odd or even. Since accessing a byte takes one memory

cycle, accessing any word will take 2 memory cycles.

MC (Memory Cycle)

D7 Do
Assume that DS = FOOO
FFF31 “MOV AL,[FF51]" Odd byte takes | MC
FFF52 “MOV AL [FF32]" Even byte takes | MC

FFF70 B e =
“MOV AX,[FF70]" Even word takes 2 MC
FFF71
FFF9I ‘
= “MOV AX,[FF91]" Odd word takes 2 MC
FFF92

Fig: Accessing EVEN & ODD Words in 8-bit CPU
o0 In the 16- bit system, accessing a word with an even address takes one memory cycle. That is

because; one byte is carried on D0-D7 and the other on D8-DI5 in the same memory cycle.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o But, accessing a word with an odd address requires two memory cycles. For example, see how

accessing the word in the instruction "MOV AX, [F617]" works as shown in following Fig.

D15 D& D7 DO DS = FODO
MOV AX,[F617]

FF617 FF616

Ist Memory Cycle (MC)
FFal9 FFal8

Znd MC

Fig: Accessing an Odd-Addressed Word in 16-bit Processor
Assuming that DS = FOOOH in this instruction, the contents of physical memory locations FF6
I7H and FF6I8H are being moved into AX.
In the first cycle, the 286 CPU accesses location FF617H and puts it in AL.
In the second cycle, the contents of memory location FF618H are accessed and put into AH.
Hence, it will be wise to put any words on an even address if the program is going to be run on a
16-bit system.
A pseudo-instruction is specifically designed for this purpose. It is the EVEN directive and is
used as follows:

EVEN

VALUEL D

This directive ensures that, the VALUEL, a word-sized operand, is located in an even address
location. Hence, an instruction such as “MOV AX, VALUE1” will take only a single memory

cycle.

Bus Bandwidth:

»

»

The main advantage of the 16-bit data bus is; doubling of the rate of transfer of information
between the CPU and the outside world. The rate of data transfer is generally called bus
bandwidth. In other words, bus bandwidth is a measure of how fast buses transfer information
between the CPU and memory or peripherals. The wider the data bus, the higher the bus
bandwidth.

But, the advantage of the wider external data bus comes at the cost of increasing the size of the
printed circuit board. Bus bandwidth is measured in MB (megabytes) per second and is calculated
as follows:

bus bandwidth = (1/bus cycle time) x bus width in bytes

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o In the above formula, bus cycle time can be either memory or 1/0 cycle time.

Calculate memory bus bandwidth for the following microprocessors if the bus speed is 20 MHz.

(a) 286 with 0 WS and | WS (16-bit data bus)
(b) 386 with 0 WS and 1 WS (32-bit data bus)

Solution:

The memory cycle time for both the 286 and 386 is 2 clocks, with zero wait states. With the 20
MHz bus speed we have a bus clock of 1/20 MHz = 50 ns.

(a) Bus bandwidth = (1/(2 x 50 ns)) x 2 bytes = 20M bytes/second (MB/s)
With 1 wait state, the memory cycle becomes 3 clock cycles ‘
3 % 50 = 150 ns and the memory bus bandwidth is = (1/150 ns) x 2 bytes = 13.3 MB/S

(b) Bus bandwidth = (1/(2 x 50 ns)) x 4 bytes = 40 MB/s
With 1 wait state, the memory cycle becomes 3 clock cycles :
3 x 50 = 150 ns and the memory bus bandwidth is = (1/150 ns) x 4 bytes = 26.6 MB/S

From the above it can be seen that the two factors influencing bus bandwidth are:

|. The read/write cycle time of the CPU
2. The width of the data bus

Notice in this example that the bus speed of the 286/386 was given as 20 MHz. That
means that the CPU can access memory on the board at this speed. 1f this 286/386 is used on a
PC board with an ISA expansion slot, it must slow down to 8 MHz when communicating leth
the ISA bus since the maximum bus speed for the ISA bus is 8 MHz. This is done by the chipset
circultry.

0 There are two ways to increase the bus bandwidth:
v Use a wider data bus.
v' Shorten the bus cycle time.

o While the data bus width has increased from 16-bit in the 80286 to 64-bit in the Pentium, the bus
cycle time is reaching a maximum of 133 MHz.

8255 1/0 PROGRAMMING
8088 INPUT/OQUTPUT INSTRUCTIONS:

o All x86 microprocessors, from the 8088 to the Pentium, can access external devices called ports.
This is done using 1/O instructions.

0 The x86 CPU has I/O space in addition to memory space. While memory can contain Opcode and
data, 1/0 ports contain data only.

0 There are two instructions for this purpose: OUT and IN. These instructions can send data from
the accumulator (AL or AX) to ports or bring data from ports into the accumulator.
0 Inaccessing ports, we can use an 8-bit or 16-bit data port.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

8-bit Data Ports:

0}
(0}

(0]

The 8-bit 1/0 operation of the 8088 is applicable to all x86 CPUs from the 8088 to the Pentium.
The 8-bit port uses the DO-D7 data bus to communicate with 1/0 devices.

In 8-bit port programming, register AL is used as the source of data, when using the OUT
instruction; and as the destination, for the IN instruction. This means that to input or output data
from any other registers, the data must first be moved to the AL register.

Instructions OUT and IN have the following formats:

Inputting Data Cutputting Data

Format: IN dest, source oUT dest, source

{1} - IN AL,port# OUT porté#, AL

(2} MOV D¥,port# MOV DX, port#
IN AL, DX ouT DX,AL

In format (1) —

v

port# is the address of the port and can be from 00 to FFH, allowing up to 256 input and 256
output ports.
In this format, the 8-bit port address is carried on address bus A0-A7.

No segment register is involved in computing the address.

In format (2) -

v

»

»

»

port# is the address of the port and can be from 0000 to FFFFH, allowing up to 65,536 input and
65,536 output ports.

In this format, the 16- bit port address is carried on the address bus A0-A15.

The use of a register as a pointer for the port address has an advantage in that the port address can
be changed very easily, especially in. cases of dynamic compilations where the port address can
be passed to DX.

I/0 instructions are widely used in programming peripheral devices such as printers, hard disks,
and keyboards.

The port address can be either 8-bit or 16-bit. For an 8-bit port address, we can use the immediate
addressing mode.

The following program sends a byte of data to a fixed port address of 43H:

MOV AL, 36H ;al=36H
ouT 43H, AL rgend value 36H to port address 43H

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

The 8-bit address used in immediate addressing mode limits the number of ports to 256 for input

plus 256 for output. To have a larger number of ports we must use the 16-bit port address
instruction.

» To use the 16-bit port address, register indirect addressing mode must be used. The register used
for this purpose is DX.

» The following program sends values 55H and AAH to I/O port address 300H (a 16-bit port

address).
BACK: MOV DX, 300H ;DX = port address 300H
MOV AL, 55H
00T DX, &L ;toggle the bits
MOV AL, ORRH
QuUT DX, AL itoggle the bits

JHMP BACK

» We can only use register DX for 16-bit 1/0 addresses; no other register can be used for this

purpose. Also, notice the use of register AL for 8-bit data:

MOV DX, 37BH ;DX=378 the port address
MOV AL, BL ;load data into accumulator
QUT DX, AL ;write contents of AL to port

;whose address is in DX

» Just like the OUT instruction, the IN instruction uses the DX register to hold the address and AL
to hold the arrived 8-bit data. In other words, DX holds the 16-bit port address while AL receives
the 8-bit data brought in from an external port.

» The following program gets data from port address 300H and sends it to port address 302H.

MOV D, 3008 iload port address
IH AL, DX ;bring in data
MOV DX, 302H

ouT 0¥, AL ;send it out

In a given 8088-based system, port address 22H is an input port for monitoring the temperature.
Write Assembly language instructions to monitor that port continuously for the temperature of
100 degrees. If it reaches 100, then BH should contain "Y".

Solution:

BACK: IN aAL,22H ;get the temperature from port # 22H
CMP AL, 100 }is temp = 1002
JNZ BACK ;if not, keep monitoring
MOW BH, 'Y rtemp = 100, load '¥Y' into BH

1/0 ADDRESS DECODING & DESIGN:
The decoding of 1/0 ports is done by using TTL logic gates 74LS373 and 74LS244. The following are the

steps:

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

1. The control signals IOR and IOW are used along with the decoders.

2. For an 8-bit port address, A0-A7 is decoded.

3. If the port address is 16-bit (using DX), A0-A15 is decoded.

Using 74LA373 in an Output Port Design:

o0 In every computer, whenever data is sent out by the CPU via the data bus, the data must be
latched by the receiving device. While memories have an internal latch to grab the data, a latching
system must be designed for simple 1/O ports.

0 The 74LS373 can be used for this purpose. Notice in the following Fig. that in order to make the
741.S373 work as a latch, the OC pin must be grounded.

a o
Voo GND
é::; D Q L\;, lf'-' o—— Function Table
— =t CLK ._Q e {_}u[pm Enahle
== ig — Conitrol G D Oufput
.= = = L H H H
pt —_— L H L L
= fg == T L X Q0
8D G ocl| 80— H A X %
Enable -

Output control

Fig: 74LS373 D Latch

0 For an output latch, it is common to AND the output of the address decoder with the control

signal IOW to provide the latching action as shown in Figure.
T4LS373

Do DO —ﬂl 3— Qo
system i
data LEDs
bus _
I e)7
AD _ ——
8 oC
) ¥V
AT
[OW

Fig: Design for “OUT 99H, AL”

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

f Show the design of an output port with an /O address of 31FH using the 74L8373.

Solution:

31F9H is decoded, then ANDed with IOW to activate the G pin of the 74LS373 latch. This is
shown in Figure pelow.

T4L5373
DO DO —0| a—— QU
system o
data LEDs
bus
D7 Q7
Al —
— G oc
=0 —
{ v
—.
AT ——
A9
1OW

Fig: Design for Output Port Address of 31FH

IN Port Design Using the 74LA244:

0 When the data is coming in by way of a data bus, it must come in through a three-state buffer.

This is referred to as tri-stated. See the following Fig for the internal circuitry of 74L.S244.

Vee IE
1A-1 N 1Y
1A-2 N 1Y-2
|
14-3 N 1¥-3
1A-4 N 1¥-4
1 - 2Y-1
2A- [-
Mo
2A-2 N 2Y-2
2A-3 N 2Y-3
2A-4 N 2v-4
GND
| -
2G

Fig: 74LS244 Octal Buffer
MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o Here, since 1G and 2G each control only 4 bits of 74LS244, both must be activated for 8 bits
input. The following Fig shows the use of 74LS244 as an entry port to the system data bus. In the
following Figures, the address decoder and IOR control signal together activate the tri-state input.

T4LS244
S0 > DO
i - to system
switches it s
57
ﬁu =l -
system = ™
address —_____| D__Do—_
bus — Lt
A7T——C
IOR

Fig: Input Port Design for “IN AL, 5FH”

Show the design of “IN AL,9FH” using the 7415244 as a tri-state buffer.

Solution:

9FH is decoded, then ANDed with IOR. To actiw.lratc OC of the 7418244, it must be inverted
since OC is an active-low pin. This is shown in Figure elow.

T4L.5244
I~
S0 D0
O to DO-D7
switches of system
data bus
S7 D7
AD L ——
Sy 1G 26

system
address ——— Do——c:)0
oS ——@ |_C

A7

IOR
Fig: Design for “IN AL, 9FH”

Memory-Mapped 1/O:

» Communicating with the 1/0O devices using IN and OUT instructions is referred to as peripheral

1/0. Some designers also refer to it as isolated 1/0.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

» Some new RISC processors do not have IN and OUT instructions; they use memory-mapped I/O.

» In memory-mapped 1/O, a memory location is assigned to be an input and output port.

Memory

FFFFF

IM o= 8

MO0

Memory + 11D
FFFFF

FFFF

Ak = 8

The mamory
and /O maps for the 8086/
B088 microprocassors.
(a) Isolated I¥O (b) Memory-
mapped /0

» The following are the differences between peripheral 1/0 and memory-mapped 1/O in x86 PC:

Isolated (Peripheral) 1/0

Memory-Mapped 1/0

The IN and OUT instructions | 1. Instructions that access memory locations are used
transfer data between the instead of IN and OUT instructions: MOV AL, [2000]
microprocessors accumulator or will access the input port & MOV [2000], AL will access
memory and the 1/0 device. the output port.

2. Entire 20-bit address, A0-A19, must be decoded
Only AQ-A15 are decoded; Hence, (decoding circuitry is expensive); Hence DS must be
DS initialization is not required; loaded before accessing memory-mapped 1/0:
decoding circuitry may be less MOV AX,3000H ;load the segment value
expensive. MOV DS, AX

MOV AL,[5000] ;get a byte from loc. 350008

IOR and IOW control signals are]

3. MEMR and MEMW control signals are used.
used.
Limited only to 65,536 input ports | 4. The number of ports can be as high as 2° (1,048,576).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

and 65,536 output ports.

5. Data should be moved to))))
) 5. Arithmetic and logic operations can be performed
accumulator for any kind of]])
) directly, without moving data to accumulator.
operations.

6. The user can expand the memory to)
)) .) 6. Uses memory address space, which could lead to
its full size without using any)
] memory space fragmentation.
memory space for 1/0 devices.

1/0 ADDRESS MAP OF x86 PCs:
Any system that needs to be compatible with the x86 IBM PC must follow the 1/0 map of the following
Table:

Table: 1/0 Map for x86 PC

Hex Range Device

000-01F DMA controller 1, 8237A-5
020-03F Interrupt controller 1, 8259A, Master
040-05F Timer, §254-2

060-06F 8042 (keyboard)

070-07F Real-time clock, NMI mask
080-09F DMA page register, 7418612
0AO-0BF Interrupt controller 2, 8237A-5
0CO-0DF DMA controller 2, 8237A-5
OF0 Clear math coprocessor busy
OF1 Reset math coprocessor
OF8—0FF Math coprocessor

1FO-1FR8 Fixed disk

200-207 Game /0

20C-20D Reserved

21F Reserved

278-27F Parallel printer port 2
2B0-2DF Alternate enhanced graphics adapter
2E1 GPIB (adapter ()

2E2 & 2E3 Data acquisition (adapter 0)
2F8-2FF Serial port 2

300-31F Prototype card

360-363 PC network (low address)
364-367 Reserved

368368 PC network (high address)
36C-36F Reserved

378-37F Parallel printer port |

380-38F SDLC, bisynchronous 2
390393 Cluster

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

3A0-3AF Bisynchronous 1

3B0-3BF Monochrome display and printer adapter
3C0-3CF Enhanced graphics adapter
3D0-3DF Color/graphics monitor adapter
3F0-3F7 Disk controller

3F8-3FF Serial port 1

6E2 & 6E3 Data acquisition (adapter 1)
790-793 Cluster (adapter 1)

AE2 & AE3 Data acquisition (adapter 2)
B90-B93 Cluster (adapter 2)

EEZ & EE3 Data acquisition (adapter 3)
1390-1393 Cluster (adapter 3)

22E1 GPIB (adapter 1)

2390-2393 Cluster (adapter 4)

42E1 GPIB (adapter 2)

62E1 GPIB (adapter 3)

82E1 GPIB (adapter 4)

A2E1 GPIB (adapter 5)

C2EI GPIB (adapter 6)

E2E1 GPIB (adapter 7)

Absolute vs. Linear Select Address Decoding:
0 Indecoding addresses, either all the address lines or a selected number of them are decoded.
o If all the address lines are decoded, it is called absolute decoding.
o If only selected address pins are used for decoding, it is called linear select decoding —
This is cheaper due to the less number of input and the fewer the gates needed for
decoding. The disadvantage is that it creates what are called aliases, the same port with

multiple addresses. Hence, port address documentation is necessary.

Portable Addresses 300 — 31FH in x86 PC:
In the x86 PC, the address range 300H — 31FH is set aside for prototype cards to be plugged into the
expansion slot. These prototype cards can be data acquisition boards used to monitor analog signals such
as temperature, pressure, and so on. Interface cards using the prototype address space use the following
signals on the 62-pin section of the ISA expansion slot:

1. IOR and IOW. Both are active low.

2. AEN signal: AEN = 0 when the CPU is using the bus.

3. AO0-A9 for address decoding.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

of Simple Logic Gates as Address Decoders:
The following Fig shows the circuit design for a 74LS373 latch connected to port address 300H of an x86
PC via an ISA expansion slot. Notice the use of signals A0-A9 and AEN. AEN is low when the x86
microprocessor is in control of the buses. Here, we are using simple logic gates such as NAND and
inverter gates for the I/O address decoder. These can be replaced with the 74LS138 chip because the
74L.S138 is a group of NAND gates in a single chip.

xD0 T4L8373 p——
from
buffered LEDs
data bus
‘ Al xXD7 G oc —
trom !
expansion
slot AT DG 47
B |
AR -9 g

Fig: Using Simple Logic Gates for 1/0 Address Decoder (1/0 Address 300H)

Use of 74L.S138 as Decoder:
The following Fig shows the 74L.S138.

Function Table

Block Diagram

Inputs

Enable | Select | Cutputs
s 7 YOP— GIG2 [CBA| YOYIY2Y3Y4Y5Y6YT
4 Yip— X H |XXXHHEHHHHHH
T vib— L X [XXX HHHHHHHH
) vilb— H L |LLL|LHHHHHHH
; vskbb— H L |[LLH| HLHHHHHH
— C : v6lb— H L |LHL|HHLHHHHH
Y7b— H L |LHH| HHHLHHHH
— = HL |HLLlHHHHLHHH
@A G2B Gl HL |HLH HHHHHLHH
' r | H L |HHL| HHHHHHLH
| H L |HHH| HHHHHHHL

Enable

The following Fig is an example of the use of a 74LA138 for an 1/0 address decoder.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

AL
! == cf= == XDO
7415138 m 2 Feaiw
o A - data bus
Al B o
AZ C OC OC |—— XD7
AEN Q {_E'_Eﬁ* LJ
A3 o| G2B
A4 —— v ———— |
G1 |_°
AQ Port Address 304H

IOR

Fig: Using 74L.S138 for 1/0O Address Decoding
v This is an address decoding for an input port located at address 304H.

v The Y4 output, together with the IOR signal, controls the 74L.S244 input buffer.
v Note that, each Y output can control a single 1/O device.

IBM PC 1/0O Address Decoder:
The following Fig shows a 74L.S138 chip used as an I/O address decoder in the original IBM PC.

74L5138
AS——— A 0 o—————— to 8237 CS (00-0FH)
Ab—— B v1 lo——— t0 8259 CS_U{J—IFH)
Al—1C v2 lo————— to 8253 CS (40-4FH)
v1 jo——— to 8255 C5 (60-6FH) writing to
o Y410 :@——[}0- DMA page
e G2B register

A9—0| G2A

J -l o—1 G1 ysjo———=~C ‘j)U writing 11_110
- J Y6 [0 not used "—OD NMI register
Y710 not used

ow —

AEN = 0 when CPU in charge of buses

Fig: Port Address Decoding in the Original IBM PC

v Notice that, while A0 to A4 go to individual peripheral input addresses, A5, A6, and A7 are

responsible for the selection of outputs YO to Y7.

v In order to enable the 74LS138, pins A8, A9, and AEN all must be low. While A8 and A9 will

directly affect the port address calculations, AEN is low only when the x86 is in control of the
system bus (see the following Table).

Table: Port Address Decoding Table on the Original PC

Gl GZA|[G2B |[C B A

AEN| A9 Al AT A6 AS A4ATA2ATAD
0 0 0 o0 00 0 0 0 0 00 Lowest port address
0 (0 0 S T T Y R A FF Highest port address

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Port 61H and Time Delay Generation:
0 In order to maintain compatibility with the IBM PC and run operating systems such as MS-DOS

and Windows, the assignment of I/O port addresses must follow the standard.

0 Port 61H is a widely used port. We can use this port to generate a time delay which will work in
any PC with any type of processor from the 286 to the Pentium.

0 1/O port 61H has eight bits (D0-D7). Bit D4 is of particular interest to us. In all 286 and higher
PCs bit D4 of port 61H changes its state every 15.085 microseconds (us) (stays low for 15.085
Ks and then changes to high and stay high for the same amount of time before it goes low again).

0 This toggling of bit D4 goes on indefinitely as long as the PC is on.

e The following program shows how to use port 61H to generate a delay of 1/2 second. In this

program all the bits of port 310H are toggled with a 1/2 second delay in between.

TOGGLING ALL BITS OF PORT 310H EVERY 0.5 SEC
MOV D¥,310H

HERE: MOV AL, 55H ;toggle all bits
ouT DX, AL
MoV Cx,33144 ;delay=33144x15.085 us=0.5 sec

CALL TDELAY
MOV AL, 0AAH
ouT D, AL
MOV Cx, 33144
CALL TDELAY
iR GRS

sCH=COUNT OF 15.0853 MICROSEC

TDELAY FROC HMNEAR
PUSH AX i save AKX
Wl: IH AL, BLH

AND &L, 000100008
CMP AL, AR

JE Wl ;wait for 15.085 usec
MO AH, AL '
LOOP W1 janother 15.085 usec
POP 4 rrestore AX
EET

TDELAY EWNDFP

Notice that, when port 61H is read, all the bits are masked except D4. The program waits for D4 to

change every 15.085 s before it loops again.

PROGRAMMING & INTERFACING THE 8255:
The 8255 is -
» awidely used 40-pin DIP 1/O chip.
» Having three separately accessible ports, A, B, and C, which can be programmed to be input or

output port, hence the name PPI (programmable peripheral interface).

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

» They can also be changed dynamically, in contrast to the 74LS244 and 74LS373, which are hard-
wired.
Port A (PAO-PA7):
» This 8-bit port A can be programmed all as input or all as output.
Port B (PB0-PB7):
» This 8-bit port B can be programmed all as input or all as output.
Port C (PCO-PC7):
» This 8-bit port C can be programmed all as input or all as output.
» It can also be split into two parts; CU (upper bits PC4-PC7) and CL (lower bits PC0-PC3). Each
can be used as input or output.

» Any bit of Port C can be programmed individually.

3 1 PAS RIC5%
O 2 PA2
34 I'pp PAD 32—
] 3 PAI —334 pi PAl |——
d 4 pao 321 p2 PA2 —2—
PAL 3l p3 PA3 L
cl5RD —30 1 pg Pas 20
RD 20 pe pas |39
C16CS 28] pe pag 38
4 7 GND —211 p7 pa7 31
_5l®E
- ’_LII'L] —30 WR pRO L&
9 AD —21 An PBI _LLEE
10 PC? —5 Al PB2
35 | RESET pE3 2L
111 PCé —61Cs PB4 |24
o 12 pCs Pha 2~
, | 23
= 13 PC4 PB7
1 14 PCO poy Hé—
115
] 15 PC e 6
O 16 PC2 ﬁ_ﬂ_ﬁ
317 PC3 PCs Hd—
peg L
] 18 PBO PCS 0
19 PBI
O 20 PB2

Fig: 8255 PPI Chip
RD and WR:
» Active low input signals to 8255.
» If 8255 is using peripheral 1/O design, IOR and IOW of the system bus are connected to these two
pins.
» If 8255 is using memory-mapped I/0, MEMR and MEMW of the system bus will activate these
two pins.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

RESET:
» Active high signal input to 8255.
» Used to clear the control register.
» When RESET is activated, all the ports are initialized as input ports.

» This pin must be connected to the RESET output of the system bus, or grounded, making it

inactive.
CS| Al | A0 Selects
0 0 0 Port A
0 0 1 Port B
0 1 0 Port C
0| 1|1 Control Register
1 X X | 8255 is not selected
A0, Al, and CS:

» CS (chip select) selects the entire chip.
» Address pins A0 and A1l selects specific port within the 8255.

» These three pins are used to access ports A, B, C, or the control register; as shown in the table:

D7 — b0
Uz o
34| Do PAD 4
'_.ié (5] PAl 3
~22 1 po PA2 [
2l b3 PA3
\% D4 PAd ‘;g Port A
\;T D3 PAS |32
~2£ De PAS (2
2T oy PAT |-
IORC 5 18
RD PBQ
1OWC 36 WR PBI 19
:,5 — 2 A PB2 i{’
RESET ‘2 Al Fa3 2; Port B
=SE 2> RESET PB4 |— ort
5 cs PBS ;j
PB6 |2
PB7 |23
pCo |ld
pCi |3
PC2 :?
PC3
PC4 13 Port C
FCs |2
pce L1
pc7 |10

T4ALSI38 B2C S5

Mode Selection of the 8255A:

The ports (A, B, and C) of the 8255 can be programmed in various modes, as shown in the following Fig.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

or [os Jos | od Joa o2 |1 [oo
| I

Group A Group B
Port & T— :
fpgsr PCT - LA FLowen, PC3 - PO |
1w g © 8wl 1-.-.,...;;.,.“].
(Poth | Pt B o
1 & g, De Skmd -'-_1|‘¢u-_|:|lm
) = hoaie 0 I | e
O = Ko 1 f = R 1
1= adn T k
1 8 D R
0= BER M

Fig: Control Word Format

Mode 0, the simple I/O mode, is the most widely used mode. In this mode, any of the ports A, B, CU, and
CL can be programmed as input or output. In this mode, all bits are out or all are in. In other words, there
is no control of individual bits.

(a) Find the control word if PA = out, PB = in, PCO—PC3 = in, and PC4—PIC_'? = out.
(b) Program the 8255 to get data from port A and send it to port B. In addition,
data from PCL is sent out to the PCU.

Use port addresses of 300H-303H for the 8255 chip.

Solution:
(a) From Figure 11-12 we get the control word of 1000 0011 in binary or 83H.
(b) The code is as follows:

BB255C EQU 300H ;Base address of 82533 chip

CHNTL EQU E3H ;PA=gut, PB=in, FCL=in, PCU=out

MOV DX,BE255C+3; locad control reg. address
;(300H + 3 = 303H)

MO AL, CHNTL ;load contreol byte

ouT DX, AL ;send it to control register
MoV D¥,BB255C+1 ;load PB address

IN AL, DX ;get the data from FB
MOV DX,BB255C jload PA address

ouT DX, AL ;jsend it to FA

MOV DX, B8255C+2 ;load PC address

IN AL, DX ;aget the bits from PCL
AND &L, OFH smask the upper bits
ROL AL, 1

ROL AL, 1 ;shift the bits

ROL AL,1 ;to upper positicn

ROL AL, 1

QuT DX, AL ;send it to BCU

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

The 8255 shown in Figure 11-13 is configured as follows: pert A as input, B as output, and all
the bits of port C as output.

(a) Find the port addresses assigned to A, B, C, and the control register,

(b} Find the control byte (word) for this configuration.

(¢) Program the ports to input data from port A and send it to both ports B and C.

Solution:
{a) The port addresses are as follows:

cs Al A0 Address Port

11 0001 OO 0 0 310H Port A

11 0001 00 0 1 31IH Port B

11 0001 00 1 0 312H Port C

11 0001 00 1 1 313H Control register

(b} The control word is 90H, or 1001 0000
(c) One version of the program is as follows:

MOV AL, 90H :control byte Ph=in,. PB=out, PC=out
MoV DX, 313H :load control reg address

ouT D, AL :sand it to control register

MOV DX, 310H ; load PR address

IN AL, DX jget the data from PA

Mo D¥,311H $load PB address

ouT 0¥, AL ;send it to EB

L)k ¥, 3120 i load PBC address

ooT DX, AL jyand to PC

Using the EQU directive one can rewrite the above program as follows:
CNTLEYTE EQU a0H ;PA=in, PB=out, PC=out

PORTA EQU 310H
FORTE EQU 311H
BORTC EQU 31EH
CNTLREG EQT 313H

MOV AL, CNTLEBYTE
MDA DX, CHTLREG
QoT DX, AL

MOV DX, PORTA

IH AL, DX

rand so on.

D0 R ——— DO
D7 D7 af— A
{DW—E{ ——l |
A2 TOR RD
e —-
aﬁ A0— AD
:;_ Al Al —- 1
AEN —0 olcs

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Show the address decoding where port A of the 8255 has an /O address of 300H, then write a
program to toggle all bits of PA continuously with a 1/4 second delay. Use INT 16H to exit if
there is a keypress.

Solution:

The address decoding for the 8255 is shown in Figure 11-14. The control word for all ports as
| output is 80H. The program below will toggle all bits of PA indefinitely with a delay in between.

To prevent locking up the system, we press any key to exit to DOS.

MOV DX, 3034 jCONTROL REG ADDRESS
MoV AL, 80H ;ALL PORTS AS OQUTEUT
oIT 0¥, AL

AGATN: MOV DX, 300H
MO AL, 55H
our DX, AL
CALL QSDELAY ;1/4 SEC DELAY

MOV AL, DRAH ; TOGGLE BIT
OUT DX, AL : .
CALL QSDELAY

MOV AH, 01

INT 16H :CHECKE EKEYFRESS
J 5 AGATN sPRESS ANY KEY TO EXIT
MOV RH, 4CH
IHT 21H EXIT
QSDELAY FROC HEAR
MOV CcX, 16572 ;16,572x15.065 usec=1/4 sec
PUSH AKX
Wl IN AL, &1H

AND AL, DOQD10O00B
CMP AL, AH

JE W1l
MOV AH, AL
LoOF Wl
FOF AX
RET

QSDELAY EMDE

Notice the use of INT 161 option AH = 01 where the keypress is checked. If there is no key-
press, it will continue. We must do that to avoid locking up the x86 PC.

DGH DO |

D7 D7 |—b~ A
ow— W —

A2 OR RD
j— (L

A0—— AD
AT Al— Al — |

AY =

AEN ——q o| CS

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

ering 300 — 31FH Address Range:

0 When accessing the system bus via the expansion slot; we must make sure that the plug-in card
does not interfere with the working of system buses on the motherboard.

To do that we isolate (buffer) a range of I/O addresses using the 74L.S245 chip.

In buffering, the data bus is accessed only for a specific address range, and access by any address
beyond the range is blocked.

0 The following Fig shows how the 1/0 address range 300H-31FH is buffered with the use of the
74L.S245.
74158245
[p] i
System buffered
data bus {from -
expansion slot
—_— —— XD7
B D7 G DIR XD
AT | |
AEN A2 IOR

o0 The following Fig shows another example of 8255 interfacing using the 74L.S138 decoder. As
shown in the Fig., YO and Y1 are used for the 8255 and 8253, respectively. The Table shows the
74LS 138 address assignment.

Selector Address Assignment
Y0 300-303 Used by 8255
Y1 304-307 Used by 8253
Y2 308-30B Available
Y3 30C—30F Available
Y4 310-313 Available
B155
e ST
D7 D7 PA7 :>
Jie p o PBO
WR—WR ppy :
L AD—] A0 [D
LS8 L 1 PCT 8253
A2—— A - BV} D0 CLED —
sM—IC Fijo— . OUTO [—
AS—G2A y2l0],, 47 RD—{RD GATI |—
Ab Y3 |o— "—-; Al Al OUTI |—
ié% >—B valo |2 Al—JAl cLk2|—
AE . [15 e
T4L804 T4LS520 Gl oles T Lo
A9

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

o The following Fig shows the circuit for buffering all the buses. The 74LS244 is used to boost the
address and control signals.

TALS245
T,
[N e [}
D1) ————— DI
D2 D1 To
Ei E; Cable
05 D5 Connector
[Ha m— B
D7 DIR OC e 7
| | i
T4L5244
IOR [OR
1YW . T
A —— A0 To
o — Cable
h: X Connector
Ad Ad
AS 16 IG AS
11 g
T4L5244
Ab Ak
A7 e AT
AR |—— AR Ta
AY —— ﬁ'n Cable
AEN RS TR Connector
16 16
ry 171
. L = = T4LS138
e To Voo of all IC chips of the add- A5 A
GND ini board Af——IB
Tao Cable Connector iﬁ . Elﬁ. Y410
= AEM DGR
o Ay—1G1

GND = pins Bl, B31

Fig: Design of 8-bit ISA PC Bus Extender

» The following shows a test program to toggle the PA and PB bits. Notice that in order to avoid

locking up the system, INT 16H is used to exit upon pressing any key.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Write a program to toggle all bits of PA and PB of the 8255 chip on the PC Trainer, Puta 1/2
second delay in berween “on™ and “off” states, Use INT 16H to exit if there is a keypress.
Solution:
The program below toggles all bits of PA and PB indefinitely. Pressing any key exits the pro-
gram. :

MOW DX, 303H ;CONTROL REG ADDRESS

MOW AL, B0H fALL PORTS AS QUTPRUT

OUT DX, AL
AGRIN: MOV DX, 300H :FPA RDDRESS

MOW AL, 35H

OUT DX, AL

INC DX ; BB ADDRESS

QUT DX,AL

CALL HSDELAY ;1/2 SEC DELAY

MOV DX, 300H i PA ADDRESS

MOW AL, QARH

OUT DX, AL -

INC DX i PB ADDRESS

OUT DX, AL

CALL HSDELAY $1/2 SEC DELAY

MOV AH,01

INT 1&H s CHECK KEYFRESS

JE AGAIN tPRESS ANY KEY TO EXIT

MOW AH, 4CH :

INT Z1H fEXIT
HSDELRY FROC NEAR

MO CX,33144 F33144%15,085 usec=1/2 seac

PUSH AX

Wl: IN AL, 61H

AND AL, Q00100008

CMF AL,AH

JE Wl

MOV AH, AL

LOOP | Wl

BOP AX

RET
HSDELRY ENDE
Notice the use of INT 16H option AH = 01 where the keypress is checked. If there is no key-
press, it will continue.

Visual C/C++ 1/O Programming:

0 Microsoft Visual C++ is a programming language widely used on the Windows platform.

o Since Visual C++ is an object-oriented language, it comes with many classes and objects to make
programming easier and more efficient.

o But, there is no object or class for directly accessing 1/0 ports in the full Windows version of
Visual C++.

0 The reason for that is that Microsoft wants to make sure the x86 system programming is under
full control of the operating system. This prevents any hacking into the system hardware.

o This applies to Windows NT, 2000, XP, and higher.

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Hence, none of the system INT instructions such as INT 21H and I/O operations are applicable in
Windows XP and its subsequent versions.

To access the 1/0 and other hardware features of the x86 PC in the XP environment you must use
the Windows Platform SDK provided by Microsoft.

The situation is different in the Windows 9x (95 and 98) environment.

While INT 21H and other system interrupt instructions are blocked in Windows 9x, direct 1/0
addressing is available.

To access I/O directly in Windows 9x, you must program Visual C++ in console mode.

The instruction syntax for 1/O operations is shown in the following Table.

x86 Assembly Visual C++
OUT port#, AL | _outp (port#, byte)
OUT DX, AL | _outp (port#, byte)
IN AL, port# _inp (port#)
IN AL, DX _inp (port#)

Notice the use of the underscore character (_) in both the _outp and _inp instructions.

Also note that, while the x86 Assembly language makes a distinction between the 8-bit and 16-bit
I/O addresses by using the DX register, there is no such distinction in C programming. In other
words, for the instruction "outp (port#, byte)" the port# can take any address value between 0000
and FFFFH.

Write a Visual C++ program for Windows 98 to toggle all bits of PA and PB of the 8255 chip.
Use the kbhit function to exit if there is a keypress.

Solution:

//Tested by Dan Bent

#include<conioc.h>

#include<stdio.h>

$include<iostream.h>

$include<icmanip.h>

#include<windows.h>

vold main/()

{

cout<<setiosflags{iocs::unitbuf); // clear screen buifer
cout<<"This program toggles the bits for Port A and rPort B.";
outp {0x303, 0x80); J/MAEE PA,PB of 8255 ALL OUTFUT
do

_outp (0x300, 0x33) ¢ S /SEND 55H TQ PORT A

outp {0x301, 0x55) ; /S /SEND 55H TO PORT B

_sleepiﬁﬂﬂ}: J/DELAY of 500 msec.

“outp (0x300, OxAR) ; //HOW SEND ARH TO PA, and PB

_outp (0x301, OxAR) 7

sleep(500) ;

}

while {(!'kbhit({)):

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Write a Visual C++ program for Windows 98 to get a byte of data from PA and send it to both
PB and PC of the 8255 chip in PC Trainer.

Solution:
#¥include<conio.h>
#include<stdio.h>
#include<iostream.h>
$include<iomanip.h>
#include<windows.h>
tinclude<process.h>
{//Tested by Dan Bent
void main()
{
unsigned char ﬁybyte;
cout<<setiosflags (ios::unitbuf);// clear screen buffer
system("CLS") ;

_outp (0x303, 0x90) ; //PA=in, PB=out, PC=ocut
_sleep(5); {/wait 5 milliseconds
mybyte= inp (0x300); {/get byte from PA

_outp (0x301, mybyte); //send toc FB

_sleap(5);

_outp (0x302, mybvyte); //send to Port C
_sleep(5);

cout<<mybyte; //send to PC screen also

cont<<™\ n\n":

1/0 Programming in Linux C/C++:
0 Linux is a popular operating system for the x86 PC.
0 The following Table provides the C/C++ syntax for 1/O programming in the Linux OS
environment.

x86 Assembly Linux C/C++
OUT port#, AL | outb (byte, port#)
OUT DX, AL | outb (byte, port#)
IN AL, port# inb (port#)
IN AL, DX inb (port#)

Compiling & Running Linux C/C++ Programs with 1/O Functions:

e To compile the I/O programs, the following points must be noted:
0 To compile with a keypress loop, you must link to library ncurses as follows:
> gcc -Incurses toggle.c -o toggle
e To run the program, you must either be root or root must change permissions on executable for
hardware port access.
Example: (as root or superuser)

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

> chown root toggle
> chmod 4750 toggle

¢ Now toggle can be executed by users other than root.

Write a C/C++ program for a PC with the Linux OS to toggle all bits of PA and PB of the 8255
chip on the PC Trainer. Put a 500 ms delay between the “on™ and “off” states. Pressing any key
should exit the program.

Solution:

i This program demonstrates low level I/D

£ using C language on a Linux based system.

i Tested by Nathan Noel £

finclude <stdio.h> // for printfl)

finclude <unistd.h> ff for usleep()

$include <sys/io.h> [/ for cuth() and inb()
$include <ncurses.h> // for console ifo functions

int main ()
{
int n=0; // temp char wvariable
int delay=5 ef5; // sleep delay wvariable

ioperm(0x2300,4,0x300); // get port perxmission
outb (Ox80, 0x303) ; FfY send control word

i begin ncurses setup ————————
fi-—- {needed for consale ifo) ————-
initscr(); // initialize screen for ncurses
chreak () ; ff do not wait for carriage return
noachao () ; ff do not echo input character
halfdelay (1} ; /f only wait for 1mz for input
// from keyboard
ff——— end nourses setup —————————n
do /7 main toggle loop
{
printf ("0x55 \nh\z"); f/ display status to screen
refresh(); ff refreshl) to update console

outh {0x55,0x300) ; // send 0x55% to Porth (01010101B)
outbh {0x55,0x301); // send 0x55 to PortB (01010101E)

usleep (delay) ; f¢ wait for 500ms (5 &5 microseconds)
printf ("0xAA “n\r"): /{ display status to screen
refresh(); f¢ refreshi() to update conscle

outb {0xaa, 0x300); // send 0xA2& to PorthA (10101010E)
outb {0xaa,0x301); // send OxARA to PortE (10101010E)
usleep (delay) ; Ff wait for 500ms
/Y get input from keyboard
n=getchi{); ff if no keypress in lms, n=0
// due to halfdelay(}
}

while (n<=0}; // test for keypress
£/ 1f keypress, exit program
endwin() ; // close program conscle for ncurses
return 0; Ff exit program

}

MAHESH PRASANNA K., VCET, PUTTUR

MICROPROCESSORS AND MICROCONTROLLERS

Write a CICH; program for a PC with the Linux OS to get a byte of data from port A and
send it to both port B and port C of the 8255 in the PC Trainer,

Solution:

£ This program gets data from Port A& and
i sends a copy to both Port B and Port C.
£ Tested by: Nathan Hoel -- Z/10/2002

tinclude <stdio.h>

finclude <unistd.h=
tinclude <sysfic.h>
$include <ncurses.h>

int main {}

{
int n=07 JF temp variable
int 1=0; !/ temp variable 3

ioperm (3x300,4,0x300) ;// get permission to use ports
outlk (Dx%0, 0x303) ; A send controel word for
/f PartA=input, PortB=output, FPortC=cutput

initser(); /f initialize screen for ncurses
chreak() ; J¥ do not wait for carriage return
noschao() ; ff do not echo input character
halfdelay(1); /¢ only wait for lms for input
do A/ main toggle loop

{

i=ink (0x300) ; Af get data from Porth

usleepiles); Af sleep for 100ms

cutkbi{i,0x301}; /f =end data te PortB

ocutb{i, 0x302}; Af send data to PortC

n=getch{] ; AFf get input from keyboard

ff if no keypress in 1ms, n=0
I while{n<=0) ; ff test for keypress

Af 1L keypress, exit program

endwini); /Y claose program window
return (0) ;- A exit program
1
By: MAHESH PRASANNA K.,
DEPT. OF CSE, VCET.
*kkkkhkkkikkk
*kkhkkhkkikk

MAHESH PRASANNA K., VCET, PUTTUR

	MODULE – 3
	SIGNED NUMBERS AND STRINGS & MEMORY INTERFACING & 8255
	After
	1100 0000 = -40H

	Before

