
Subject: Object Oriented Concepts (18CS45)

Module 3: Classes, Inheritance and Exception
Handling

S J P N Trust's

HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi.
Accredited at 'A' Grade by NAAC

Programmes Accredited by NBA: CSE, ECE, EEE & ME

Dr. Mahesh G Huddar

Dept. of Computer Science and Engineering

CSE, HIT, Nidasoshi

https://hsit.ac.in/nba-accreditation-status.php

A class can be defined as an entity in which data and functions are put

together.

The concept of class is similar to the concept of structure in C.

A class is declared by using the keyword class.

Fundamentals of Classes in Java

Mahesh Huddar

CSE, HIT, Nidasoshi

The general form of class is

class classname {

type variable 1;

type vanable2;

type method(parameter-list)

{

}

type method2(paramteter-list)

{

}

type method n(paramteter-list)

{

}

}

Fundamentals of Classes in Java

Mahesh Huddar

CSE, HIT, Nidasoshi

• The data lies within the class and the data fields are accessed by the methods of that

class.

• The data fields are also called as instance variables or member variables because they are

created when the objects get instantiated.

• For example -

class Test

{

int a;

int b;

}

Data Field Declaration

Mahesh Huddar

CSE, HIT, Nidasoshi

• In object oriented programming any two objects communicate with each other

using methods.

• All the methods have the same general form as the method main(). Most of the

methods are specified as either static or public.

• Java classes do not need the method main, but if you want particular class as a

starting point for your program then the main method is included in that class.

Method Field Declaration

Mahesh Huddar

CSE, HIT, Nidasoshi

• The general form of method is –

type method(parameter-list)

{

}

• The type specifies the type of data returned from the method. If the method does not

return anything then its data type must be void.

• For returning the data from the method the keyword return is used.

Method Field Declaration

Mahesh Huddar

CSE, HIT, Nidasoshi

• Objects are nothing but the instances of the class. Hence a block of memory gets

allocated for these instance variables.

• For creating objects in Java the operator new is used.

• Test obj // Declaration of object obj.

• obj = new Test () ; // obj gets instantiated for class Test

• We instantiate one object obj; it can be represented graphically as -

Declaring Objects

Mahesh Huddar

CSE, HIT, Nidasoshi

• It can be represented graphically as -

Declaring Objects

Mahesh Huddar

CSE, HIT, Nidasoshi

• Now we can two objects and instantiate them,

• Test obj1, obj2;

• obj1 = new Test ()

• obj2 = new Test ()

• It can be represented graphically as -

Declaring Objects

Mahesh Huddar

CSE, HIT, Nidasoshi

• There are two types of class members - The data members and the method.

• These members can be accessed using dot operator.

• For accessing the data members the syntax is –

name_of_object.variable_name = value;

• For accessing the method of the class the syntax is

name_of_object.method_name(parameter_list);

Accessing Variables and Methods

Mahesh Huddar

CSE, HIT, Nidasoshi

• For example –

• obj.name="XYZ"

• obj.display();

• Suppose we wish pass the parameters to the method then first we will create the object

for the class as follows –

• Test obj1=new Test();

• Test obj2=new Test();

Accessing Variables and Methods

Mahesh Huddar

CSE, HIT, Nidasoshi

• Now two objects are created namely obj1 and obj2.

• Obj1.get_val(11,22);

• obj2.get_val(99,100);

• Suppose by this method we assign values to two variables a and b then

• It can be graphically represented as -

Accessing Variables and Methods

Mahesh Huddar

CSE, HIT, Nidasoshi

/*This is a Java program which shows the use of class in the
program */

class Rectangle

{

int height;

int width;

void area()

{

int result=height*width;

System.out.println('The area is "+result);

}

}

Accessing Variables and Methods
//Another class in which main() function is written.

class classDemo
{

public static void main(String args[])
{

Rectangle obj=new Rectangle();
obj.height=10; //setting the attribute

values
obj.width=20; //from outside of class
obj.area(); //using object method of

class is called
}

}

OUTPUT

The area is 200

CSE, HIT, Nidasoshi

• In the above program we have used two classes one class is classDemo which is our

usual one in which the main function is defined and the other class is Rectangle.

• In this class we have used height and width as attributes and one method area() for

calculating area of rectangle. In the main function we have declared an object of a

class as

Rectangle obj=new Rectangle();

Accessing Variables and Methods

Mahesh Huddar

CSE, HIT, Nidasoshi

• And now using obj we have assigned the values to the attributes of a class. The

operator new is used to create an object.

• The objects access the data fields and methods of the class using the dot operator.

This operator is also known as the object member access operator.

• Thus data field height and width are called as instance variables.

• And the method, area is referred as instance method. The object on which the

instance method is invoked is known as calling object.

Accessing Variables and Methods

Mahesh Huddar

CSE, HIT, Nidasoshi

Data Hinding

• The use of class allows to hide the important data from outsider of the class.

• If the data being hidden declared as public, then only these members will be

accessible from outside class.

• Thus class helps in unauthorized access to its data members.

Accessing Variables and Methods

Mahesh Huddar

CSE, HIT, Nidasoshi

• It is a special method which is used to initialize the values of instance-

variables at the time of creation of objects.

• Features:

– Constructor will have same name as that of class name.

– It does not specify a return type not even void.

– It should be declared in public section.

Constructors

Mahesh Huddar

CSE, HIT, Nidasoshi

1. Name of constructor must be the same as the name of the class for which it is

being used.

2. The constructor must be declared in the public mode.

3. The constructor gets invoked automatically when an object gets created.

4. The constructor should not have any return type. Even a void data type should

not be written for the constructor.

5. The constructor can not be used as a member of union or structure.

Properties of Constructors

Mahesh Huddar

CSE, HIT, Nidasoshi

6. The constructors can have default arguments.

7. The constructor can not be inherited. But the derived class can invoke the

constructor of base class.

8. Constructor can make use of new or delete operators for allocating or releasing

memory respectively.

9. Constructor can not be virtual. Multiple constructors can be used by the same

class.

10.When we declare the constructor explicitly then we must declare the object of

that class.

Properties of Constructors

Mahesh Huddar

CSE, HIT, Nidasoshi

• Types of Constructors:

1. Default constructor: It is a constructor which do not take any

argument.

2. Parameterized constructor: It is a constructor which takes any

number of parameters.

• Default constructor is automatically loaded by the compiler.

Type of Constructors

Mahesh Huddar

CSE, HIT, Nidasoshi

class B

{

int x;

B()

{

System.out.println("Constructing Box");

x = 10;

}

void show()

{

System.out.println("x = " + x);

}

}

Default Constructors

Mahesh Huddar

class MB

{

public static void main(String args[])

{

B b1 = new B();

b1.show();

}

}

Output:
Constructing Box
x = 10

CSE, HIT, Nidasoshi

Parameterized Constructors

Mahesh Huddar

class MB

{

public static void main(String args[])

{

B b1 = new B(4, 5);

b1.show();

}

}

Output:
x = 4
y = 5

class B

{

int x, y;

B(int a, int b)

{

x = a;

y = b;

}

void show()

{

System.out.println("x = " + x);

System.out.println("y = " + y);

}

}

CSE, HIT, Nidasoshi

Constructor Overloading

Mahesh Huddar

• Overloading is one of the important concept in Object Oriented Programming.

• Similar to methods the constructors can also be overloaded.

• Constructor overloading in Java allows to have more than one constructor inside

one Class.

• Multiple constructor with different signature with only difference that Constructor

doesn't have return type in Java.

• Those constructor will be called as overloaded constructor.

CSE, HIT, Nidasoshi

Constructor Overloading

Mahesh Huddar

CSE, HIT, Nidasoshi

Constructor Overloading

Mahesh Huddar

Output:

Now, The function is called...

The area is 220

Now, The function is called...

The area is 229.09259999999998

Now, The function is called...

The area is 100

CSE, HIT, Nidasoshi

Constructor Overloading

Mahesh Huddar

• In above program we have defined three constructors; there are two integer parameters

that are passed to the first constructor.

• This constructor invokes the method area1. To the second constructor the two double

values are passed as arguments.

• This constructor invokes the method area2.

• Then the third constructor is defined which has only one argument passed to it.

• This constructor invokes the method area3.

• Depending upon the parameters passed the appropriate constructor gets invoked.

• This mechanism is called constructor overloading.

CSE, HIT, Nidasoshi

this Keyword

Mahesh Huddar

• When a calling object wants to refer its own values then the this reference

is used.

• The this is a keyword used for making the this reference.

• Using this reference we can refer to class's hidden data fields.

• For example

this.a = a;

• Means, assign the value of a to data field a of the calling object.

CSE, HIT, Nidasoshi

this Keyword

Mahesh Huddar

CSE, HIT, Nidasoshi

this Keyword

Mahesh Huddar

• In above program, we have written a simple method area for computing the area of

rectangle.

• For calculating the area of rectangle we need the height and width values. Each time an

object is created to invoke the method area.

• While using the first object obj the parameterized constructor is used.

• The values passed as parameter are assigned to the data fields height and width using this

reference.

• Similarly the simple constructor is used to create another object obj1.

• In this constructor the this reference is used to pass the values to height and width.

CSE, HIT, Nidasoshi

Inheritance

• Inheritance is the process by which one object acquires the properties of

another object.

• Using inheritance, you can create a general class that defines traits common to a

set of related items.

• This class can then be inherited by other, more specific classes, each adding

those things that are unique to it.

• In the terminology of Java, a class that is inherited is called a superclass .

• The class that does the inheriting is called a subclass .

CSE, HIT, Nidasoshi

Inheritance

Mahesh Huddar

• Inheritance is a property in which data members and member functions of some class are

used by some other class.

CSE, HIT, Nidasoshi

Advantages of Inheritance

Mahesh Huddar

One of the key benefits of inheritance is to minimize the amount of duplicate code in an

application by sharing common code amongst several subclasses.

1. Reusability: The base class code can be used by derived class without any need to rewrite

the code.

2. Extensibility: The base class logic can be extended in the derived classes.

3. Data hiding: Base class can decide to keep some data private so that it cannot be altered

by the derived class.

4. Overriding: With inheritance, we will be able to override the methods of the base class

so that meaningful implementation of the base class method can be designed in the

derived class.

CSE, HIT, Nidasoshi

Inheritance Types

Mahesh Huddar

class Superclassname

{

….......

}

class subclassname extends Superclassname

{

…........

}

CSE, HIT, Nidasoshi

Inheritance Types

Mahesh Huddar

1. Single Inheritance.

2. Multilevel Inheritance

3. Hierarchical Inheritance

4. Multiple Inheritance
CSE, HIT, Nidasoshi

1. Single Inheritance

Mahesh Huddar

• In single inheritance there is one parent per derived class. This is the

most common form of inheritance.

CSE, HIT, Nidasoshi

2. Multilevel Inheritance

Mahesh Huddar

• When a derived class is derived from a base class which itself is a

derived class then that type of inheritance is called multilevel

inheritance.

CSE, HIT, Nidasoshi

3. Hierarchical Inheritance

Mahesh Huddar

• The process of deriving more than one subclass from the single

superclass is called as hierarchical inheritance.

CSE, HIT, Nidasoshi

4. Multiple Inheritance

Mahesh Huddar

• The process of deriving a single subclass from more than one super
classes is called as Multiple inheritance.

CSE, HIT, Nidasoshi

Use of Inheritance

Mahesh Huddar

• Inheritance means taking some properties from the parents. For instance: if your

mother has blue eyes and your eyes are also blue then it is said that the color of

your eyes is inherited.

• In Java inheritance means derived class borrows some properties of base class. At

the same time the derived class may have some additional properties.

• The inheritance can be achieved by incorporating the definition of one class into

the another using the keyword extends.

• In Object Oriented Programming, inheritance is referred as is-a relation.

CSE, HIT, Nidasoshi

The super()

Mahesh Huddar

• Super is a keyword used to access the immediate parent class from subclass. There

are three ways by which the keyword super is used.

CSE, HIT, Nidasoshi

The super() is used to invoke the class variable of immediate parent class.

Mahesh Huddar

class A

{

int x=10;

}

class B extends A

{

int x=20;

void display()

{

System. out.println(super.x);

}

}

class superdemo
{

public static void main(String
args[])

{
B obj=new ();
obj.display();

}
}

Output:
10

CSE, HIT, Nidasoshi

The super() is used to invoke the class variable of immediate parent class.

Mahesh Huddar

• Program Explanation:

• In above program class A is a immediate parent class of class B.

• Both the class A and Class B has variables x.

• In class A, the value of x variable is 10 and in class B the value of variable x is 20.

• In display function if we would write System.out.println(x);

• The output will be 20 but if we user super.x then the variable x of class A will be

referred.

• Hence the output is 10.

CSE, HIT, Nidasoshi

The super() is used to access the class method of immediate parent class.

Mahesh Huddar

class A

{

void fun()

{

System.out.println("Method: Class
A");

}

}

class B extends A

{

void fun()

{

System.out.println("Method: Class B");

}

void display()
{

super.fun();
}

}
class superdemo2
{

public static void main(String args[])
{

B obj =new B();
obj.display();

}
}

Output:
Method: Class A

CSE, HIT, Nidasoshi

The super() is used to access the class method of immediate parent class.

Mahesh Huddar

• Program Explanation:

• In above program, the derived class can access the immediate

parent's class method using super.fun().

• Hence is the output.

• You can change super.fun() to fun().

• Then note that in this case, the output will be invocation of subclass

method fun.

CSE, HIT, Nidasoshi

The super() is used to invoke the immediate parent class constructor.

Mahesh Huddar

class A

{

A()

{

System.out.println("Constructor of Class A");

}

}

class B extends A

{

B()

{

super();

System.out.println("Constructor of Class B");

}

}

class superdemo3
{

public static void main(String args[])
{

B obj=new B();
}

}

Output:
Constructor of Class A
Constructor of Class B

CSE, HIT, Nidasoshi

The super() is used to access the class variable of immediate parent class.

Mahesh Huddar

• Program Explanation:

• In above program, the constructor in class B makes a call to the

constructor of immediate parent class by using the keyword super,

hence the print statement in parent class constructor is executed

and then the print statement for class B constructor is executed.

CSE, HIT, Nidasoshi

Method Overriding

Mahesh Huddar

• Method overriding is a mechanism in which a subclass inherits the

methods of superclass and sometimes the subclass modifies the

implementation of a method defined in superclass.

CSE, HIT, Nidasoshi

Method Overriding

Mahesh Huddar

• The method of superclass which gets modified in subclass has the same name and

type signature.

• The overridden method must be called from the subclass. Consider following Java

Program, in which the method(named as fun) in which a is assigned with some

value is modified in the derived class.

• When an overridden method is called from within a subclass, it will always refer to

the version of that method re-defined by the subclass.

• The version of the method defined by the superclass will be hidden.

CSE, HIT, Nidasoshi

Method Overriding - Example

Mahesh Huddar

class A
{

int a=0;
void fun(int i)
{

this.a=i;
}

}
class B extends A
{

int b;
void fun(int i)
{

int c;
b=20;
super.fun(i+5);

System.out.println(“The value of a:“+a);
System.out.println(“The value of b:"+b);
c=a*b;
System.out.println("The value of c: "+c);

}
}
class OverrideDemo
{

public static void main(String args[])
{

B obj_B=new B();
obj_B.fun(10); //function re-defined in derived class

}
}
Output:
The value of a:15 The value of b:20 The value of c: 300

CSE, HIT, Nidasoshi

Method Overriding - Example

Mahesh Huddar

Program Explanation

• In the above program, there are two classes - class A and class B.

• Class A acts as a superclass and class B acts as a subclass.

• In class A, a method fun is defined in which the variable a is assigned with some

value.

• In the derived class B, we use the same function name fun in which, we make use

of a super keyword to access the variable a, and then it is multiplied by b and the

result of multiplication will be printed.

CSE, HIT, Nidasoshi

Difference between Method Overloading and Method Overriding

Mahesh Huddar

Method Overloading Method Overriding

The method overloading occurs at

compile time.

The method overriding occurs at the run time or

execution time.

In the case of method overloading, a

different number of parameters can be

passed to the function.

In function overriding the number of parameters

that are passed to the function is the same.

The overloaded functions may have

different return types.

In method overriding all the methods will have the

same return type.

Method overloading is performed within

a class.

Method overriding is normally performed between

two classes that have an inheritance relationship.

CSE, HIT, Nidasoshi

The Final Keyword

Mahesh Huddar

The final keyword can be applied at three places

• For declaring variables

• For declaring the methods

• For declaring the class

CSE, HIT, Nidasoshi

The Final Keyword

Mahesh Huddar

• A variable can be declared as final.

• If a particular variable is declared as final then it cannot be modified further.

• The final variable is always a constant.

For example - final int a = 10;

• The final keyword can also be applied to the method. When final keyword is applied to the

method, the method overriding is avoided.

• That means the methods those are declared with the keyword final cannot be overridden.

• Consider the following Java program which makes use of the keyword final for declaring the

method -

CSE, HIT, Nidasoshi

The Final Keyword for variable - Example

Mahesh Huddar

class Test
{

final int a =10;
void fun()
{

System.out.println("\n Hello, this
function declared using final");

}
}
class Test1 extends Test
{

int a = 20;
}

class finaldemo
{

public static void main(String
args[])

{
Test t = new Test1();
t.fun();

}
}
Output:
1 Error
Cannot override final variable a in class
Test1

CSE, HIT, Nidasoshi

The Final Keyword for method - Example

Mahesh Huddar

class Test
{

final void fun()
{

System.out.println("\n Hello, this
function declared using final");

}
}
class Test1 extends Test
{

final void fun()
{

System.out.println("\n Hello, this
another function");

}
}

class finaldemo
{

public static void main(String
args[])

{
Test t = new Test1();
t.fun();

}
}
Output:
1 Error
fun() in Test1 cannot override fun() in
Test; overridden method is final final void
fun()

CSE, HIT, Nidasoshi

Final Classes to Stop Inheritance

Mahesh Huddar

• If we declare particular class as final, no class can be derived from it.

• Following Java program is an example of final classes.

CSE, HIT, Nidasoshi

Final Classes to Stop Inheritance - Example

Mahesh Huddar

final class Test
{

void fun()
{

System.out.println("\n Hello, this
function in base class");

}
}
class Test1 extends Test
{

final void fun()
{

System.out.println("\n Hello, this
another function");

}
}

class finalclassdemo
{

public static void main(String
args[])

{
Test t = new Test1();
t.fun();

}
}

Output:
1 Error
cannot inherit from final Test class Test1

extends Test

CSE, HIT, Nidasoshi

Exception Handling in Java

Mahesh Huddar

• Exception is an unusual situation in program that may lead to crash it.

• Usually it indicates the error.

• Let us first understand the concept. In Java, exception is handled using five

keywords try, catch, throw, throws and finally.

• The Java code that you may think may produce exception is placed within the try

block.

• Let us see one simple program in which the use of try and catch is done in order to

handle the exception divide by zero.

CSE, HIT, Nidasoshi

Exception Handling in Java

Mahesh Huddar

class ExceptionDemo
{

public static void main(String args[])
try
{

int a, b;
a=5;
b=a/0;

}
catch(ArithmeticException e)
{

System.out.println("Divide by Zero");
}
System.out.println("...Executed catch statement...");

}

CSE, HIT, Nidasoshi

Exception Handling in Java

Mahesh Huddar

• Inside a try block as soon as the statement:

b = a/0

• gets executed then an arithmetic exception must be raised, this exception

is caught by a catch block.

• Thus there must be a try-catch pair and catch block should be immediate

follower of try statement.

• After execution of catch block the control must come on the next line.

• These are basically the exceptions thrown by java runtime systems.

CSE, HIT, Nidasoshi

Exception Handling Syntax

Mahesh Huddar

• Various keywords used in handling the exception are -

• try - A block of source code that is to be monitored for the exception.

• catch - The catch block handles the specific type of exception along with the try

block. Note that for each corresponding try block there exists the catch block.

• finally - It specifies the code that must be executed even though exception may or

may not occur.

• throw - This keyword is used to throw specific exception from the program code.

• throws - It specifies the exceptions that can be thrown by a particular method.

CSE, HIT, Nidasoshi

Exception Handling Syntax - Try-catch Block

Mahesh Huddar

• The statements that are likely to cause an exception are enclosed

within a try block. For these statements the exception is thrown.

• There is another block defined by the keyword catch which is

responsible for handling the exception thrown by the try block.

• As soon as exception occurs it is handled by the catch block.

• The catch block is added immediately after the try block.

• Following is an example of try-catch block.

CSE, HIT, Nidasoshi

Exception Handling Syntax - Try-catch Block

Mahesh Huddar

CSE, HIT, Nidasoshi

Exception Handling Syntax - Try-catch Block

Mahesh Huddar

try

{

//exception gets generated here

}

catch(Type_of_Exception e)

{

//exception is handled here

}

If any one statement in the try block generates an exception then the remaining statements

are skipped and the control is then transferred to the catch statement.

CSE, HIT, Nidasoshi

Exception Handling - Try-catch Block - Example

Mahesh Huddar

class RunErrDemo
{

public static void main(String[] args)
{

int a,b,c;
a=10;
b=0;
try
{

c = a/b;
}
catch(ArithmeticException e)
{

System.out.println("\n Divide by zero");
}
System.out.println("\n The value of a: "+a);
System.out.println("\n The value of b: "+b);
}

}
}

Output:

Divide by zero

The value of a: 10

The value of b: 0

Note that even if the exception occurs at

some point, the program does not stop

at that point.

CSE, HIT, Nidasoshi

Finally Block

Mahesh Huddar

• Sometimes because of execution of try block the execution gets break off. And due

to this some important code (which comes after throwing off an exception) may

not get executed. That means, sometimes try block may bring some unwanted

things to happen.

• The finally block provides the assurance of execution of some important code that

must be executed after the try block.

• Even though there is any exception in the try block the statements assured by

finally block are sure to execute. These statements are sometimes called as clean

up code.

CSE, HIT, Nidasoshi

Finally Block

Mahesh Huddar

The syntax of finally block is

finally

{

//clean up code that has to be executed finally

}

The finally block always executes. The finally block is to free the resources.

CSE, HIT, Nidasoshi

This is a java program which shows the use of finally block for handling exception

Mahesh Huddar

class finallyDemo
{

public static void main(String args[])
{

int a=10,b=-1;
try
{

b=a/0;
}
catch(ArithmeticException e)
{

System.out.println("In catch block: "+e);

finally
{

if(b!=-1)
System.out.println("Finally block executes without occurrence of exception");

else
System.out.println("Finally block executes on occurrence of exception");

}
}

}

Output
In catch block: java.lang.ArithmeticException: / by zero
Finally block executes on occurrence of exception

CSE, HIT, Nidasoshi

Finally Block

Mahesh Huddar

Program Explanation

In above program, on occurrence of exception in try block the control goes to catch

block, the exception of instance ArithmeticException gets caught.

This is divide by zero exception and therefore / by zero will be printed as output.

Following are the rules for using try, catch and finally block

1. There should be some preceding try block for catch or finally block. Only catch

block or only finally block without preceding try block is not at all possible.

2. There can be zero or more catch blocks for each try block but there must be

single finally block present at the end.

CSE, HIT, Nidasoshi

Throws

Mahesh Huddar

• When a method wants to throw an exception then keyword throws

is used.

method name(parameter list) throws exception list

{

}

• Let us understand this exception handling mechanism with the help

of simple Java program.

CSE, HIT, Nidasoshi

Throws - Example

Mahesh Huddar

class ExceptionThrows
{

static void fun(int a,int b) throws ArithmeticException
{

int c;
try
{

c=a/b;
}
catch(ArithmeticException e)
{

System.out.println("Caught exception: "+e);
}

}
public static void main(String args[])
{

int a=5;
fun(a,0);

}
}

Output

Caught exception:

javalang.ArittuneticException: / by zeroCSE, HIT, Nidasoshi

Throws - Example

Mahesh Huddar

• In above program the method fun is fur handling the exception

divide by zero.

• This is an arithmetic exception hence we write

static void fun(int a, int b) throws ArithmeticException

• This method should be of static type.

• Also note as this method is responsible for handling the exception

the try-catch block should be within fun.

CSE, HIT, Nidasoshi

Throw

Mahesh Huddar

• For explicitly throwing the exception, the keyword throw is used.

• The keyword throw is normally used within a method.

• We can not throw multiple exceptions using throw.

CSE, HIT, Nidasoshi

Throw - Example

Mahesh Huddar

class ExceptionThrow
{

static void fun(int a,int b)
{

int c;
if(b==0)

throw new ArithmeticException("Divide By Zero!!!");
else

c=a/b;
}
public static void main(String args[])
{

int a=5;
fun(a,0);

}
}

CSE, HIT, Nidasoshi

Difference between throw and throws

Mahesh Huddar

Throw Throws

For explicitly throwing the exception, the

keyword throw is used.

For declaring the exception the keyword

throws is used.

Throw is followed by instance. Throws is followed by exception class.

Throw is used within the method. Throws is used with method signature.

We cannot throw multiple exceptions. It is possible to declare multiple

exceptions using throws.

CSE, HIT, Nidasoshi

Example Program

Mahesh Huddar

• Define exception. Write a program that contains one method which will throw

IllegalAccessException and use proper exception handlers so that exception should

be printed. July-17. Marks 6

CSE, HIT, Nidasoshi

Example Program

Mahesh Huddar

class Test
{

static void fun() throws IllegalAccessException
{

System.out.printIn("Inside the function');
throw new IllegalAccessException(“testing”);

}
public static void main(String args[])
{

try
{

fun();
}
catch(IllegalAccessException e)
{

System.out.println(e);
}

}
}

Output:
Inside the function
java.lang.IllegalAccessException: testing

CSE, HIT, Nidasoshi

Multiple Catch

Mahesh Huddar

• It is not possible for the try block to throw a single exception always.

• There may be the situations in which different exceptions may get raised by a

single try block statements and depending upon the type of exception thrown it

must be caught.

• To handle such situation multiple catch blocks may exist for the single try block

statements.

• The syntax for single try and multiple catch is -

CSE, HIT, Nidasoshi

Multiple Catch

Mahesh Huddar

try
{

...//exception occurs
}
catch(Exception_type e)
{

...//exception is handled here
}
catch(Exception_type e)
{

...//exception is handled here
}
catch(Exception_type e)
{

...//exception is handled here
}

CSE, HIT, Nidasoshi

Multiple Catch - Example

Mahesh Huddar

class MultipleCatchDemo
{

public static void main (String args [])
{

int al] = new int 13];
try
{

for (int i = 1; i <=3; i++)
{

a[il = i *i;
}
for (int i = 0; i <3; i++)
{

a[i] = i/i;
}

}

catch (ArrayIndexOutOfBoundsException e)
{
System.out.printin ("Array index is out of bounds");
}
catch (ArithmeticException e)
{
System.out.println ("Divide by zero error");
}

}
}
Output:
Array index is out of bounds

Note:If we comment the first for loop in the try block and
then execute the above code we will get following output-

Divide by zero error

CSE, HIT, Nidasoshi

Example Program

Mahesh Huddar

• Write a Java program for illustrating the exception handling when a

number is divided by zero and an array has a negative index value.

VTU : July-18, Marks 6

CSE, HIT, Nidasoshi

Example Program

Mahesh Huddar

class test
{

public static void main (String args[])
{

int a[] = new int [3];
try
{

for (int i = 1; i <=3; i++)
{

int j=-1;
a[j] = i *i;

}
for (int i = 0; i <3; i++)
{

a[i] = i/i;
}

}

catch (ArraylndexOutOfBoundsException e)
{

System.out.println ("Array index is
Negative");

}
catch (ArithmeticException e)
{

System.out.println ("Divide by zero
error");

}
}

}
Output:
Array index is Negative Note that if we comment first
for loop in the try block then we get following output
Divide by zero error

CSE, HIT, Nidasoshi

Benefits of Exception Handling

Mahesh Huddar

Following are the benefits of exception handling –

1. Using exception the main application logic can be separated out from the code which may

cause some unusual conditions.

2. When calling method encounters some error then the exception can be thrown. This

avoids crashing of the entire application abruptly.

3. The working code and the error handling code can be separated out due to exception

handling mechanism. Using exception handling, various types of errors in the source code

can be grouped together.

4. Due to exception handling mechanism, the errors can be propagated up the method call

stack i.e. problems occurring at the lower level can be handled by the higher up methods.

CSE, HIT, Nidasoshi

Benefits of Exception Handling

Mahesh Huddar

Following are the benefits of exception handling –

1. Using exception the main application logic can be separated out from the code

which may cause some unusual conditions.

2. When calling method encounters some error then the exception can be thrown.

This avoids crashing of the entire application abruptly.

3. The working code and the error handling code can be separated out due to

exception handling mechanism. Using exception handling, various types of errors

in the source code can be grouped together.

CSE, HIT, Nidasoshi

Garbage Collection

Mahesh Huddar

Garbage collection is a method of automatic memory management.

It works as follows -

1. When an application needs some free space to allocate the nodes and if there is

no free space available to allocate the memory for these objects then a system

routine called garbage collector is called.

2. This routine then searches the system for the nodes that are no longer

accessible from an external pointer. These nodes are then made available for

reuse by adding them to available pool. The system can then make use of these

free available space for allocating the nodes.

CSE, HIT, Nidasoshi

Garbage Collection

Mahesh Huddar

• Garbage collection is usually done in two phases - marking phase

and collection phase. In marking phase, the garbage collector scans

the entire system and marks all the nodes that can be accessible

using external pointer.

• During collection phase, the memory is scanned sequentially and the

unmarked nodes are made free.

CSE, HIT, Nidasoshi

Garbage Collection

Mahesh Huddar

• Marking phase:

• For marking each node, there is one field called mark field. Each node that is

accessible using external pointer has the value TRUE in marking field.

• For example CSE, HIT, Nidasoshi

Garbage Collection

Mahesh Huddar

• Collection phase

• During collection phase, all the nodes that are marked FALSE are collected and

made free. This is called sweeping. There is another term used in regard to

garbage collection called Thrashing.CSE, HIT, Nidasoshi

Garbage Collection

Mahesh Huddar

• Consider a scenario that, the garbage collector is called for getting some free

space and almost all the nodes are accessible by external pointers.

• Now garbage collection routine executes and returns a small amount of space.

Then again after some time system demands for some free space. Once again

garbage collector gets invokes which returns very small amount of free space. This

happens repeatedly and garbage collection routine is executing almost all the

time. This process is called thrashing. Thrashing must be avoided for better system

performance.

CSE, HIT, Nidasoshi

Garbage Collection

Mahesh Huddar

Advantages of garbage collection

1. The manual memory management done by the programmer (i.e.

use of malloc and free) is time-consuming and error prone. Hence

automatic memory management is done.

2. Reusability of memory can be achieved with the help of garbage

collection.

CSE, HIT, Nidasoshi

Garbage Collection

Mahesh Huddar

Disadvantages of garbage collection

1. The execution of the program is paused or stopped during the

process of garbage collection.

2. Sometimes situations like thrashing may occur due to garbage

collection.

CSE, HIT, Nidasoshi

The finalize() Method

Mahesh Huddar

• Java has a facility of automatic garbage collection.

• Hence even though we allocate the memory and then forget to deallocate it then

the objects that are no longer is used get freed.

• Inside the finalize() method you will specify those actions that must be performed

before an object is destroyed.

• The garbage collector runs periodically checking for objects that are no longer

referenced by any running state or indirectly though other referenced objects.

CSE, HIT, Nidasoshi

The finalize() Method

Mahesh Huddar

• Sometime an object will need to perform some specific task before it

is destroyed such as closing an open connection or releasing any

resources held.

• To handle such situation finalize() method is used.

• finalize() method is called by garbage collection thread before

collecting object.

• It’s the last chance for any object to perform cleanup utility.

CSE, HIT, Nidasoshi

The finalize() Method

Mahesh Huddar

• To add finalizer to a class simply define the finalize method.

• The syntax to finalize() the code is –

protected void finalize()

{

finalization code

}

• Note that finalize() method is called just before the garbage collection. It is not

called when an object goes out-of-scope

CSE, HIT, Nidasoshi

The finalize() Method

Mahesh Huddar

• Can the Garbage Collection be forced explicitly?

• No, the Garbage Collection cannot be forced explicitly.

• We may request JVM for garbage collection by calling System.gc()

method.

• But this does not guarantee that JVM will perform the garbage

collection.

CSE, HIT, Nidasoshi

The finalize() Method

Mahesh Huddar

• gc() method is used to call garbage collector explicitly.

• However gc() method does not guarantee that JVM will perform the

garbage collection.

• It only requests the JVM for garbage collection.

• This method is present in System and Runtime class.

CSE, HIT, Nidasoshi

The finalize() Method

Mahesh Huddar

public class Test

{

public static void main(String[] args)

{

Test t = new Test();

t=null;

System.gc();

}

public void finalize()
{

System.out.println("Garbage
Collected");

}
}

Output :

Garbage Collected

CSE, HIT, Nidasoshi

Why does Java not support destructors and how does the finalize method help in
garbage collection

Mahesh Huddar

• The destructor is used to free or deallocate the memory of unused variables.

• This is called cleaning up.

• Java has in built mechanism of cleaning up.

• This mechanism is called Garbage collection.

• The garbage collector automatically deallocates the memory of unused

variables.

• Hence there is no need of destructor in Java.

CSE, HIT, Nidasoshi

Why does Java not support destructors and how does the finalize method help in
garbage collection

Mahesh Huddar

• Finalization is the facility provided by the Java for the classes for cleaning up the

native resources before the objects are garbage collected.

• The garbage collector is unable to control the cleaning up of native resources

which are used earlier.

• Then the responsibility of cleaning up those native allocations falls on the object's

finalization code.

• Thus the purpose of finalization is to clean up the native resources used earlier.

The finalize() method must be run before invoking the garbage collector.

CSE, HIT, Nidasoshi

