SJTPNTrust's

Hirasugar Lnstitute of Technology,Nidasoshi.
Inculcating Values, Fromating Frosperity

Accredited at 'A’' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Subject: Operating System (18CS43)
Operating System Structures

By: Prof. Prasanna Patil
Asst. Prof. , Dept. of Computer Science & Engg.,
Hirasugar Institute of Technology, Nidasoshi

Contents

Operating System Services

User Operating System Interface

System Calls

Types of System Calls

System Programs

Operating System Design and Implementation
Operating System Structure

Virtual Machines

Operating System Generation

System Boot

Objectives

* To describe the services an operating system
provides to users, processes, and other
systems

e To discuss the various ways of structuring an
operating system

* To explain how operating systems are
installed and customized and how they boot

Operating System Services

Operating systems provide an environment for execution of programs and
services to programs and users

One set of operating-system services provides functions that are helpful to
the user:

User interface - Almost all operating systems have a user interface
(Ul).
* Varies between Command-Line (CLI), Graphics User Interface
(GUI), Batch

Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)

1/O operations - A running program may require 1/0, which may
involve a file or an I/O device

File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and
delete them, search them, list file Information, permission

management' Prof. Prasanna Patil, Dept of CSE,

HIT, Nidasoshi

Operating System Services (Cont.)

e Communications — Processes may exchange
information, on the same computer or between
computers over a network

— Communications may be via shared memory or through
message passing (packets moved by the OS)

* Error detection — OS needs to be constantly aware of
possible errors

— May occur in the CPU and memory hardware, in 1/O
devices, in user program

— For each type of error, OS should take the appropriate
action to ensure correct and consistent computing

— Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system
Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

Operating System Services (Cont.)

* Another set of OS functions exists for ensuring the efficient operation of
the system itself via resource sharing

— Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

* Many types of resources - Some (such as CPU cycles, main
memory, and file storage) may have special allocation code,
others (such as /O devices) may have general request and release
code

— Accounting - To keep track of which users use how much and what
kinds of computer resources

— Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of
that information, concurrent processes

* Protection involves ensuring that all access to system resources is controlled

* Security of the system from outsiders requires user authentication, extends to
defending external I/O devices from invalid access attempts

* |If a system should not interfere with each other
* isto be protected and secure, precautions must be instituted throughout it. A
chain is only as strong as its weakest link.

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

A View of Operating System Services

user and other system programs

GUI batch command line

user interfaces

system calls
program 17O file I resource .
execution operations systems Eemmunicatian allocation ageaynIng
error pro:?]céuon
detection . security
services

operating system

hardware

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

User Operating System Interface - CLI

Command Line Interface (CLI) or command
interpreter allows direct command entry

Sometimes implemented in kernel, sometimes by
systems program

Sometimes multiple flavors implemented — shells

Primarily fetches a command from user and executes

It

— Sometimes commands built-in, sometimes just names of
programs

— If the latter, adding new features doesn’t require shell
modification

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

User Operating System Interface - GUI

* User-friendly desktop metaphor interface
— Usually mouse, keyboard, and monitor
— lcons represent files, programs, actions, etc

— Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute
function, open directory (known as a folder)

— Invented at Xerox PARC

* Many systems now include both CLI and GUI interfaces
— Microsoft Windows is GUI with CLI “command” shell

— Apple Mac OS X as “Aqua” GUI interface with UNIX kernel
underneath and shells available

— Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

Prof. Prasanna Patil, Dept of CSE,

HIT, Nidasoshi 2

Bourne Shell Command Interpreter

(] B Terminal (=) €3
File Edit View Terminal Tabs Help
fdO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 '}
1sd0 0.0 0.2 0.0 0.2 0.0 0.0 0.4 0 0
isdl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
extended device statistics
Idevice r/s w/s kr/s kw/s wait actv svc_t %w %b
fdO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
1sd0 0.6 0.0 38.4 0.0 0.0 0.0 8.2 0 0
sdl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

(root@bg-nv64-vm) -(11/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systen-contents/scripts)# swap -sh
|total: 1.1G allocated + 190M reserved = 1.3G used, 1.6G available
(root@pbg-nv64-vm)-(12/pts)-(00:53 15-Jun-2007)-(global)
~-(/var/tmp/systen-contents/scripts)# uptime

12:53am up 9 min(s), 3 users, Tload average: 33.29, 67.68, 36.81
(root@pbg-nv64-vmn)-(13/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systen-contents/scripts)# w

4:07pm up 17 day(s), 15:24, 3 users, Tload average: 0.09, 0.11, 8.66

User tty login@ +idle JCPU PCPU what

root console 15Jun0718days 1 fusr/bin/ssh-agent -- /fusr/bi
in/d

|root pts/3 15Jun07 18 4 w

root pts/4 15Jun0718days W

(root@bg-nv64-vm) - (14/pts)-(16:07 02-Jul-2007)-(global)
0

Prof. Prqsanna Patil, Deptof CSE,
-(/var/tnp/systen-contents/scr1pgssiiw’Nidathi

AT

The Mac OS X GUI

" @ Grab File Edit JEERILGE Window Help e — -8 B0 Ay e 4) 15060 MonzZul 2 8 @
an0n [} fig-di- =
S iIHEE0 2 8= o) E (H@. e
-ap Stk - Fawrites> Documemtse Dusic= Mowies~ Picterzs~ Datiktoz= Apolicatioms= ZPBG- ZPGE- iDisk~
B © 2007 06s10wecde | D Desttcp @ Comocter (@ he-dir |
s ok) osi-dr 3 Myrse)
T 4 End Dete Modificd Size Apalicatiza
 Retwork o FOf €:24/07. 10579 1618 Sm
B R o s £118/07. 5532\ TTER Inkscaoe
= Free es O Formabe Netasik Crazhizs Imege Tocy, 105N 39248 Fredmw -
= Vadintasn HD o v Tecay. 105 12368 hkscaoe =
2l Untiles D TF dmur=m Tody), 2N ESTIKR Fressw -
2 Unztlez 2 & =
o 778G 2
o zomcE N TIFF
£ isk &
* Pater Baar Galvm's iFod =
[5:-2.03]
Preves 1 Hex
s -rer
T ptg a Name: g2 A
A Apalicavons Kimc: TIFF Cocument
" Domements UT= suzkcr
URL: Fg
| Gemes CAUVENT,BCABLACCS K
| Ukl ties 1ZPEG
[ma Size: 38I.. KB 1921236 bytess
data 901,236 yles
5 Deskuop Fnsica’. £3] KE (302,141
W Favorites ey
& Vusic o
B Voxies Fle tistoy = Sclec—or P2l ~ Ot ,
Poturae * h3-203 v fg-2ra Croup: sdmi1is)
| Sites | fg-di m-m;;
o Public r L asE-dir
{1 Preterences £ beck Apliztior:
Lbrary LS imp Volume: -
i o ZPEG Cﬂl‘:iﬁ
o= Tae:
|7 projects. v Format: »
| consuit - Mount Pairt: =
== G siems 10f < iters selected - 7343 G3zlazle 5.1 GIuses Fe

Dictionary and Theszurus

opecreat-ing sys-tem

Loaum

the software
<uch a:
contrall

{ supparts a computer s heSc functions.
choculing tasks, exesving applicz tons. ar:d

o peripherais

main 1-80-MY-APPLE

alier 800-275-2273

7o hitpfivaay. appe.co™

work 1 Infitite _oop
C_pert no CA9301¢
U-ited S:ztes

System Calls

Programming interface to the services provided by
the OS

Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level
Application Program Interface (API) rather than
direct system call use

Three most common APIs are Win32 API for
Windows, POSIX APl for POSIX-based systems
(including virtually all versions of UNIX, Linux, and
Mac OS X), and Java API for the Java virtual machine
(JVM)

Why use APIs rather than system calls?

Prof. Prasanna Patil, Dept of CSE,

HIT, Nidasoshi 12

Example of System Calls

e System call sequence to copy the contents of
one file to another file

source file »| destination file

4 Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally Y,

A

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

Example of Standard API

* Consider the ReadFile() function in the Win32 API—a function for reading from a file

return value

'

BOOL ReadFile ¢ (HANDLE file,
LPVOID buffer,
T DWORD bytes To Read, | parameters
LPDWORD bytes Read,
LPOVERLAPPED ovl) ;

function name —

* Adescription of the parameters passed to ReadFile()

HANDLE file—the file to be read

LPVOID buffer—a buffer where the data will be read into and written from
DWORD bytesToRead—the number of bytes to be read into the buffer
LPDWORD bytesRead—the number of bytes read during the last read
LPOVERLAPPED ovl—indicates if overlapped 1/0O is being used

Prof. Prasanna Patil, Dept of CSE, 14
HIT, Nidasoshi

System Call Implementation

* Typically, a number associated with each system call

— System-call interface maintains a table indexed according to
these numbers

* The system call interface invokes intended system call in
OS kernel and returns status of the system call and any
return values

 The caller needs to know nothing about how the system
call is implemented

— Just needs to obey APl and understand what OS will do as a
result call

— Most details of OS interface hidden from programmer by API

* Managed by run-time support library (set of functions built into
libraries included with compiler)

Prof. Prasanna Patil, Dept of CSE,

HIT, Nidasoshi 15

APl — System Call — OS Relationship

user application
open ()
user

mode
system call interface
kernel
mode A
| open ()
8 Implementation
i » of open ()
. system call
return

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

16

Standard C Library Example

e C program invoking printf() library call,
which calls write() system call

#include <stdio.h>
int main ()

{

printf ("Greetings"); |
return O;
}
user
node Y
standard C library —
ernel

write ()

node
write ()
system call

Prof. Pxasanna Patil _Dept of CSE,
HIT, Nidasoshi

System Call Parameter Passing

* Often, more information is required than simply
identity of desired system call

— Ex;éct tlyllpe and amount of information vary according to OS
and ca

 Three general methods used to pass parameters to the
OS

— . pass the parameters in registers
* |n some cases, may be more parameters than registers
— Parameters stored in a , or table, in memory, and
address of block passed as a parameter in a register
* This approach taken by
— Parameters placed, or pushed, onto the by the
program and popped off the stack by the operating system

— Block and stack methods do not limit the number or length
of parameters being passed

Parameter Passing via Table

—_—

X

X: parameters
for call

load address X

system call 13 —

user program

register

/

use parameters
from table X

o

operating system

Prof. Prasanna Patil, Dept of CSE,

HIT, Nidasoshi

}

code for
system
call 13

19

Types of System Calls

* Process control
— end, abort
— load, execute
— create process, terminate process
— get process attributes, set process attributes
— wait for time
— wait event, signal event
— allocate and free memory

* File management
— create file, delete file
— open, close file
— read, write, reposition
— get and set file attributes

Types of System Calls (Cont.)

* Device management
— request device, release device
— read, write, reposition
— get device attributes, set device attributes
— logically attach or detach devices
* Information maintenance
— get time or date, set time or date
— get system data, set system data
— get and set process, file, or device attributes
* Communications
— create, delete communication connection
— send, receive messages
— transfer status information
— attach and detach remote devices

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Examples of Windows and
Unix System Calls

Windows

CreateProcess ()
ExitProcess()
WaitForSingleObject ()

CreateFile()
ReadFile ()
WriteFile()
CloseHandle ()

SetConsoleMode ()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe ()
CreateFileMapping ()
MapViewOfFile()

SetFileSecurity ()

InitdializeSecupityPeseriptor ()
SetSecurdtyRegseiptorGroup ()

Unix

fork()
exit ()
wait()

open()
read ()
write()
close()

ioctl()
read ()

write()

getpid ()
alarm()
sleep()

pipe O
shmget ()
mmap ()

chmod ()
umask ()

chown () 22

Example: MS-DOS

Single-tasking

Shell invoked when system booted
Simple method to run program
Single memory space

 0oads program into memory, overwriting all
out the kernel

Program exit -> shell reloaded

MS-DOS execution

free memory

free memory

process
command
interpreter command
Interpreter
kernel kernel

(a) (b)

(a) At system startup (b) running a program

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

24

Example: FreeBSD

Unix variant

Multitasking

User login -> invoke user’s choice of shell
Shell executes fork() system call to create
process

— Executes exec() to load program into process

— Shell waits for process to terminate or continues
with user commands

Process exits with code of 0 — no error or >0 —
error code

FreeBSD Running Multiple Programs

process D

free memory

process C

interpreter

process B

kernel

Prof. Prasanna Patil, Dept of CSE,

HIT, Nidasoshi 26

System Programs

System programs provide a convenient environment
for program development and execution. They can
be divided into:

— File manipulation

— Status information

— File modification

— Programming language support

— Program loading and execution

— Communications

— Application programs

Most users’ view of the operation system is defined
by system programs, not the actual system calls

Prof. Prasanna Patil, Dept of CSE,

HIT, Nidasoshi 27

System Programs

Provide a convenient environment for program
development and execution

— Some of them are simFIy
others are considerably more complex

File management - Create, delete, copy, rename, print,
dump, list, and generally manipulate files and directories

Status information
— Some user ask the system for info - date, time, amount of
available memory, disk space, number of users
— Others provide detailed performance, logging, and
debugging information
— Typically, these programs format and print the output to
the terminal or other output devices

— Some systems implement a registry - used to store and
retrieve configuration information

Vi

System Programs (Cont.)

File modification
— Text editors to create and modify files

— Special commands to search contents of files or perform
transformations of the text

Programming-language support - Compilers,
assemblers, debuggers and interpreters sometimes
provided

Program loading and execution- Absolute loaders,
relocatable loaders, linkage editors, and overlay-
loaders, debugging systems for higher-level and
machine language

Communications - Provide the mechanism for creating
virtual connections among processes, users, and
computer systems

— Allow users to send messages to one another’s screens,

browse web pages, send electronic-mail messages, log in
remotely, transter files from one machine to another

Operating System Design
and Implementation

Few Problems in Design and Implementation of OS
are not “completely solvable”, but some approaches
have proven successful.

Internal structure of different Operating Systems can
vary widely

Start by defining goals and specifications
Affected by choice of hardware, type of system

User goals and System goals

— User goals — operating system should be convenient to
use, easy to learn, reliable, safe, and fast

— System goals — operating system should be easy to
design, implement, and maintain, as well as flexible,
reliable, error-free, and efficient

Operating System Design and
Implementation (Cont.)

* Important principle to separate

Policy: What will be done?
Mechanism: How to do it?

* Mechanisms determine how to do something,
policies decide what will be done

— The separation of policy from mechanism is a very
important principle, it allows maximum flexibility
if policy decisions are to be changed later

Simple Structure

* MS-DOS — written to provide the most
functionality in the least space

— Not divided into modules

— Although VIS-DOS has some structure, its
interfaces and levels of functionality are not well
separated

Prof. Prasanna Patil, Dept of CSE,

HIT, Nidasoshi 32

MS-DOS Layer Structure

resident system program '

MS-DOS device drivers

ROM BIOS device drivers

-

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

33

Layered Approach

* The operating system is divided into a
number of layers (levels), each built on top
of lower layers. The bottom layer (layer
0), is the hardware; the highest (layer N) is
the user interface.

 With modularity, layers are selected such
that each uses functions (operations) and
services of only lower-level layers

Kernel

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

signals terminal file system CPU scheduling

handling

swapping block /O page replacement

character /O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers

terminals

disks and tapes physical memory

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

Traditional UNIX System Structure

35

UNIX

* UNIX — limited by hardware functionality, the
original UNIX operating system had limited
structuring. The UNIX OS consists of two
separable parts

— Systems programs

— The kernel

e Consists of everything below the system-call interface
and above the physical hardware

* Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level

Layered Operating System

layer N
user interface

layer O
hardware

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

37

Microkernel System Structure

Moves as much from the kernel into “user” space

Communication takes place between user
modules using message passing

Benefits:
— Easier to extend a microkernel

— Easier to port the operating system to new
architectures

— More reliable (less code is running in kernel mode)
— More secure

Detriments:

— Performance overhead of user space to kernel space
communication

Mac OS X Structure

application environments
and common services

I

BSD

kernel
environment

Mach

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

39

Modules

* Most modern operating systems implement
kernel modules
— Uses object-oriented approach
— Each core component is separate
— Each talks to the others over known interfaces
— Each is loadable as needed within the kernel

* Overall, similar to layers but with more
flexible

Solaris Modular Approach

scheduling
classes

device and
bus drivers

core Solaris
kernel

loadable
system calls

miscellaneous
modules

executable
formats

STREAMS
modules

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

Virtual Machines

A virtual machine takes the layered approach to its
logical conclusion. It treats hardware and the
operating system kernel as though they were all
hardware.

A virtual machine provides an interface identical to the
underlying bare hardware.

The operating system host creates the illusion that a
process has its own processor and (virtual memory).

Each guest provided with a (virtual) copy of underlying
computer.

Prof. Prasanna Patil, Dept of CSE,

HIT, Nidasoshi 42

Virtual Machines History and Benefits

First appeared commercially in IBM mainframes in 1972

Fundamentally, multiple execution environments (different
operating systems) can share the same hardware

Protect from each other
Some sharing of file can be permitted, controlled

Commutate with each other, other physical systems via
networking

Useful for development, testing

Consolidation of many low-resource use systems onto fewer
busier systems

“Open Virtual Machine Format”, standard format of virtual
machines, allows a VM to run within many different virtual
machine (host) platforms

Virtual Machines (Cont.)

processes

.

kernel

hardware

(a)
machine

processes
processes
processes
/ P ricrn]%;?frggng kernel kernel kernel
VM1 VM2 VM3
virtual-machine
implementation
hardware
(b)
\d) INULIVII LUudI THiduliie (V) vilwudl

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

44

Para-virtualization

* Presents guest with system similar but not
identical to hardware

e Guest must be modified to run on
paravirtualized hardware

e GQuest can be an OS, or in the case of Solaris
10 applications running in containers

Virtualization Implementation

* Difficult to implement — must provide an exact
duplicate of underlying machine

— Typically runs in user mode, creates virtual user
mode and virtual kernel mode

 Timing can be an issue — slower than real
machine

 Hardware support needed
— More support-> better virtualization
— i.e. AMD provides “host” and “guest” modes

Solaris 10 with Two Containers

user programs
system programs

CPU resources
memory resources

global zone

user programs
system programs
network addresses

device access

CPU resources
Memory resources

Zone 1

user programs
system programs
network addresses

device access

CPU resources
Memory resources

Zone 2

virtual platform
device management

Zone management

Solaris kernel

network addresses

Prof. Prasanna Pa

HIT, Nidasoshi

. Dept of CSE,

47

VMware Architecture

application application application application

guest operating guest operating guest operating

system system system
(free BSD) (Windows NT) (Windows XP)
virtual CPU virtual CPU virtual CPU
virtual memory virtual memory virtual memory
virtual devices virtual devices virtual devices

virtualization layer
, '
host operating system
hardware
CPU memory I/O devices

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

48

The Java Virtual Machine

Java programy__ _
.class files

1->

class loader

!

Java

Interpreter

< -+

4

host system

(Windows, Linux, etc.)

Prof. Prasanna Patil, Dept of CSE,

HIT, Nidasoshi

__/ Java API
.class files

49

Operating-System Debugging

Debugging is finding and fixing errors, or bugs

OSes generate log files containing error information

Failure of an application can generate core dump file capturing
memory of the process

Operating system failure can generate crash dump file containing
kernel memory

Beyond crashes, performance tuning can optimize system
performance

Kernighan’s Law: “Debugging is twice as hard as writing the code in
the first place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.”

DTrace tool in Solaris, FreeBSD, Mac OS X allows live instrumentation
on production systems

— Probes fire when code is executed, capturing state data and sending it to
consumers of those probes

Prof. Prasanna Patil, Dept of CSE,

HIT, Nidasoshi 20

Solaris 10 dtrace Following System Call

./all.d ‘pgrep xclock'® XEventsQueued
dtrace: script ’./all.d’ matched 52377 probes
CPU FUNCTION
0 -> XEventsQueued
0 -> _XEventsQueued
-> _XllTransBytesReadable
<- _XllTransBytesReadable
-> _XllTransSocketBytesReadable
<- XllTransSocketBytesreadable
-> ioctl
-> lioctl
-> getf
-> set_active_ fd
<- set_active fd
<- getf
-> get _udatamodel
<- get_ udatamodel

ARRRAIRRXRCCCaCacaa

OO OO0 000 OO0 O0oOOo

-> releasef
-» clear active fd
<= clear active fd
-> cVv_broadcast
<- c¢v_broadcast
<- releasef
<= loctl
<= loctl
<- _XEventsQueued
<—- XEventsQueued

coocoooo0o0O0O.
CCCrRARARRARARAN

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

Operating System Generation

Operating systems are designed to run on any of a
class of machines; the system must be configured
for each specific computer site

SYSGEN program obtains information concerning
the specific configuration of the hardware system

Booting — starting a computer by loading the kernel

Bootstrap program — code stored in ROM that is
able to locate the kernel, load it into memory, and
start its execution

System Boot

* Operating system must be made available
to hardware so hardware can start it
— Small piece of code — bootstrap loader,

locates the kernel, loads it into memory, and
starts it

— Sometimes two-step process where boot
block at fixed location loads bootstrap loader

— When power initialized on system, execution
starts at a fixed memory location

* Firmware used to hold initial boot code

End of Chapter 2

