
Regular Expressions

Chapter 6

Regular Languages

Regular

Language

Regular Expression

Finite State

Machine

L

Accepts

Regular Expressions

The regular expressions over an alphabet  are all and

only the strings that can be obtained as follows:

1.  is a regular expression.

2.  is a regular expression.

3. Every element of  is a regular expression.

4. If  ,  are regular expressions, then so is .

5. If  ,  are regular expressions, then so is .

6. If  is a regular expression, then so is *.

7.  is a regular expression, then so is +.

8. If  is a regular expression, then so is ().

Regular Expression Examples

If  = {a, b}, the following are regular expressions:




a

(a  b)*

abba  

Regular Expressions Define Languages

Define L, a semantic interpretation function for regular

expressions:

1. L() = .

2. L() = {}.

3. L(c), where c   = {c}.

4. L() = L() L().

5. L(  ) = L()  L().

6. L(*) = (L())*.

7. L(+) = L(*) = L() (L())*. If L() is equal to , then

L(+) is also equal to . Otherwise L(+) is the

language that is formed by concatenating together one

or more strings drawn from L().

8. L(()) = L().

The Role of the Rules

• Rules 1, 3, 4, 5, and 6 give the language its power to

define sets.

• Rule 8 has as its only role grouping other operators.

• Rules 2 and 7 appear to add functionality to the

regular expression language, but they don’t.

2.  is a regular expression.

7.  is a regular expression, then so is +.

Analyzing a Regular Expression

L((a  b)*b) = L((a  b)*) L(b)

= (L((a  b)))* L(b)

= (L(a)  L(b))* L(b)

= ({a}  {b})* {b}

= {a, b}* {b}.

Examples

L(a*b*) =

L((a  b)*) =

L((a  b)*a*b*) =

L((a  b)*abba(a  b)*) =

Going the Other Way

L = {w  {a, b}*: |w| is even}

Going the Other Way

L = {w  {a, b}*: |w| is even}

((a  b) (a  b))*

(aa  ab  ba  bb)*

Going the Other Way

L = {w  {a, b}*: |w| is even}

(a  b) (a  b))*

(aa  ab  ba  bb)*

L = {w  {a, b}*: w contains an odd number of a’s}

Going the Other Way

L = {w  {a, b}*: |w| is even}

(a  b) (a  b))*

(aa  ab  ba  bb)*

L = {w  {a, b}*: w contains an odd number of a’s}

b* (ab*ab*)* a b*

b* a b* (ab*ab*)*

More Regular Expression Examples

L ((aa*)  ) =

L ((a  )*) =

L = {w  {a, b}*: there is no more than one b in w}

L = {w  {a, b}* : no two consecutive letters in w are the

same}

Common Idioms

(  )

(a  b)*

Operator Precedence in Regular Expressions

Regular Arithmetic

Expressions Expressions

Highest Kleene star exponentiation

concatenation multiplication

Lowest union addition

a b*  c d* x y2 + i j2

The Details Matter

a*  b*  (a  b)*

(ab)*  a*b*

The Details Matter

L1 = {w  {a, b}* : every a is immediately followed a b}

A regular expression for L1:

(b  ab)*

A FSM for L1:

b

b

a

Kleene’s Theorem

Finite state machines and regular expressions define

the same class of languages. To prove this, we must

show:

Theorem: Any language that can be defined with a

regular expression can be accepted by some FSM

and so is regular.

Theorem: Every regular language (i.e., every language

that can be accepted by some DFSM) can be

defined with a regular expression.

For Every Regular Expression

There is a Corresponding FSM

We’ll show this by construction. An FSM for:

:

For Every Regular Expression

There is a Corresponding FSM

We’ll show this by construction. An FSM for:

:

For Every Regular Expression

There is a Corresponding FSM

We’ll show this by construction. An FSM for:

:

A single element of :

For Every Regular Expression

There is a Corresponding FSM

We’ll show this by construction. An FSM for:

:

A single element of :

For Every Regular Expression

There is a Corresponding FSM

We’ll show this by construction. An FSM for:

:

A single element of :

 (*):

For Every Regular Expression

There is a Corresponding FSM

We’ll show this by construction. An FSM for:

:

A single element of :

 (*):

An Example

(b  ab)*

An FSM for b An FSM for a An FSM for b

An FSM for ab:

An Example

(b  ab)*

An FSM for (b  ab):

An Example

(b  ab)*

An FSM for (b  ab)*:

Error in Book, Not an Accept State

The Algorithm regextofsm

regextofsm(: regular expression) =

Beginning with the primitive subexpressions of  and

working outwards until an FSM for all of  has been

built do:

Construct an FSM as described above.

For Every FSM There is a

Corresponding Regular Expression

We’ll show this by construction.

The key idea is that we’ll allow arbitrary regular

expressions to label the transitions of an FSM.

A Simple Example

Let M be:

Suppose we rip out state 2:

The Algorithm fsmtoregexheuristic

fsmtoregexheuristic(M: FSM) =

1. Remove unreachable states from M.

2. If M has no accepting states then return .

3. If the start state of M is part of a loop, create a new start state s

and connect s to M’s start state via an -transition.

4. If there is more than one accepting state of M or there are any

transitions out of any of them, create a new accepting state and

connect each of M’s accepting states to it via an -transition. The

old accepting states no longer accept.

5. If M has only one state then return .

6. Until only the start state and the accepting state remain do:

6.1 Select rip (not s or an accepting state).

6.2 Remove rip from M.

6.3 *Modify the transitions among the remaining states so M

accepts the same strings.

7. Return the regular expression that labels the one remaining

transition from the start state to the accepting state.

An Example

1. Create a new initial state and a new, unique accepting

state, neither of which is part of a loop.

An Example, Continued

2. Remove states and arcs and replace with arcs labelled

with larger and larger regular expressions.

An Example, Continued

Remove state 3:

An Example, Continued

Remove state 2:

An Example, Continued

Remove state 1:

When It’s Hard

M =

When It’s Hard

A regular expression for M:

a (aa)*

 (aa)* b(b(aa)*b)* ba(aa)*

 [a(aa)* b  (b  a(aa)* b) (b(aa)* b)* (a  ba(aa)*b)]

[b(aa)* b  (a  b(aa)* ab) (b(aa)* b)* (a  ba(aa)*b)]*

[b(aa)*  (a  b(aa)* ab) (b(aa)* b)* ba(aa)*]

Further Modifications to M Before We Start

We require that, from every state other than the accepting state there

must be exactly one transition to every state (including itself) except

the start state. And into every state other than the start state there

must be exactly one transition from every state (including itself)

except the accepting state.

1. If there is more than one transition between states p and q,

collapse them into a single transition:

becomes:

Further Modifications to M Before We Start

2. If any of the required transitions are missing, add them:

becomes:

Ripping Out States

3. Choose a state. Rip it out. Restore functionality.

Suppose we rip state 2.

What Happens When We Rip?

Consider any pair of states p and q. Once we remove rip, how can M

get from p to q?

● It can still take the transition that went directly from p

to q, or

● It can take the transition from p to rip. Then, it can take the

transition from rip back to itself zero or more times. Then it can

take the transition from rip to q.

Defining R(p, q)

After removing rip, the new regular expression that should

label the transition from p to q is:

R(p, q) /* Go directly from p to q

 /* or

R(p, rip) /* Go from p to rip, then

R(rip, rip)* /* Go from rip back to itself

any number of times, then

R(rip, q) /* Go from rip to q

Without the comments, we have:

R = R(p, q)  R(p, rip) R(rip, rip)* R(rip, q)

Returning to Our Example

R = R(p, q)  R(p, rip) R(rip, rip)* R(p, rip)

Let rip be state 2. Then:

R (1, 3) = R(1, 3)  R(1, rip)R(rip, rip)*R(rip, 3)

= R(1, 3)  R(1, 2)R(2, 2)*R(2, 3)
=   a b* a

= ab*a

The Algorithm fsmtoregex

fsmtoregex(M: FSM) =

1. M = standardize(M: FSM).

2. Return buildregex(M).

standardize(M: FSM) =

1. Remove unreachable states from M.

2. If necessary, create a new start state.

3. If necessary, create a new accepting state.

4. If there is more than one transition between states p

and q, collapse them.

5. If any transitions are missing, create them with label

.

The Algorithm fsmtoregex

buildregex(M: FSM) =

1. If M has no accepting states then return .

2. If M has only one state, then return .

3. Until only the start and accepting states remain do:

3.1 Select some state rip of M.

3.2 For every transition from p to q, if both p

and q are not rip then do

Compute the new label R for the transition

from p to q:

R (p, q) = R(p, q)  R(p, rip) R(rip, rip)* R(rip, q)

3.3 Remove rip and all transitions into and out of it.

4. Return the regular expression that labels the

transition from the start state to the accepting state.

Simplifying Regular Expressions

Regex’s describe sets:

● Union is commutative:    =   .

● Union is associative: (  )   =   (  ).

●  is the identity for union:    =    = .

● Union is idempotent:    = .

Concatenation:

● Concatenation is associative: () = ().

●  is the identity for concatenation:   =   = .

●  is a zero for concatenation:   =   = .

Concatenation distributes over union:

● (  )  = ( )  ( ).

●  (  ) = ( )  ( ).

Kleene star:

● * = .

● * = .

●(*)* = *.

● ** = *.

●(  )* = (**)*.

