
S. J. P. N. TRUST’S
HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME.

Department of Computer Science & Engineering

Course: Programming in Java(18CS653)

Module 5: Enumerations, Type Wrappers, I/O, Applets, and
Other Topics

Prof. Prasanna Patil
Asst. Prof. , Dept. of Computer Science & Engg.,

Hirasugar Institute of Technology, Nidasoshi
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi
1

Contents

• Enumerations: Enumerations, Type Wrappers

• I/O, Applets, and Other Topics: I/O Basics, Reading Console
Input, Writing Console Output, The PrintWriter Class, Reading
and Writing Files, Applet Fundamentals, The transient and
volatile Modifiers, Using instanceof, strictfp, Native Methods,
Using assert, Static Import, Invoking Overloaded Constructors
Through this()

• String Handling: The String Constructors, String Length,
Special String Operations, Character Extraction, String
Comparison, Searching Strings, Modifying a String, Data
Conversion Using valueOf(), Changing the Case of
Characters Within a String , Additional String Methods,
StringBuffer, StringBuilder.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

2

String Handling

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

3

Introduction

• In Java a string is a sequence of characters.

• But, unlike many other languages that
implement strings as character arrays, Java
implements strings as objects of type String.

• Implementing strings as built-in objects allows
Java to provide a full complement of features
that make string handling convenient.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

4

The String Constructors

• The String class supports several constructors.
• To create an empty String, you call the default constructor. For

example,
String s = new String();

• will create an instance of String with no characters in it.
• Frequently, you will want to create strings that have initial values.
• The String class provides a variety of constructors to handle this.
• To create a String initialized by an array of characters, use the

constructor shown here:
String(char chars[])

• Here is an example:
char chars[] = { 'a', 'b', 'c' };
String s = new String(chars);

• This constructor initializes s with the string “abc”.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

5

• You can specify a subrange of a character array as an
initializer using the following constructor:

String(char chars[], int startIndex, int numChars)
• Here, startIndex specifies the index at which the

subrange begins, and numChars specifies the number
of characters to use.

• Here is an example:
char chars[] = { 'a', 'b', 'c', 'd', 'e', 'f' };
String s = new String(chars, 2, 3);

• This initializes s with the characters cde.
• You can construct a String object that contains the

same character sequence as another String object
using this constructor:

String(String strObj)
• Here, strObj is a String object.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

6

// Construct one String from another.
class MakeString {

public static void main(String args[]) {
char c[] = {'J', 'a', 'v', 'a'};
String s1 = new String();
String s2 = new String(c);
String s3 = new String(c,1,3);
String s4 = new String(s2);
System.out.println(s1);
System.out.println(s2);
System.out.println(s3);
System.out.println(s4);

}
}

Output:
The output from this program is as follows:

Java
ava
Java

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

7

• The String class provides constructors that
initialize a string when given a byte array.

• Their forms are shown here:
String(byte asciiChars[])

String(byte asciiChars[], int startIndex, int numChars)

• Here, asciiChars specifies the array of bytes.

• The second form allows you to specify a
subrange.

• In each of these constructors, the byte-to-
character conversion is done by using the
default character encoding of the platform.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

8

// Construct string from subset of char array.

class SubStringCons {

public static void main(String args[]) {

byte ascii[] = {65, 66, 67, 68, 69, 70 };

String s1 = new String(ascii);

System.out.println(s1);

String s2 = new String(ascii, 2, 3);

System.out.println(s2);

}

}

Output:
ABCDEF
CDEProf. Prasanna Patil, Dept of CSE, HIT

Nidasoshi
9

• You can construct a String from a StringBuffer by using the
constructor shown here:

String(StringBuffer strBufObj)
• J2SE 5 added two constructors to String.
• The first supports the extended Unicode character set and

is shown here:
String(int codePoints[], int startIndex, int numChars)

• Here, codePoints is an array that contains Unicode code
points.

• The resulting string is constructed from the range that
begins at startIndex and runs for numChars.

• The second new constructor supports the new
StringBuilder class.

• It is shown here:
String(StringBuilder strBuildObj)

• This constructs a String from the StringBuilder passed in
strBuildObj.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

10

String Length

• The length of a string is the number of characters
that it contains.

• To obtain this value, call the length() method,
shown here:

int length()
• The following fragment prints “3”, since there are

three characters in the string s:
char chars[] = { 'a', 'b', 'c' };
String s = new String(chars);
System.out.println(s.length());

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

11

Special String Operations

• Because strings are a common and important part of
programming, Java has added special support for
several string operations within the syntax of the
language.

• These operations include the automatic creation of
new String instances from string literals, concatenation
of multiple String objects by use of the + operator, and
the conversion of other data types to a string
representation.

• There are explicit methods available to perform all of
these functions, but Java does them automatically as a
convenience for the programmer and to add clarity.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

12

• Special String Operations :

– String Literals

– String Concatenation

– String Concatenation with Other Data Types

– String Conversion and toString()

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

13

String Literals

• For each string literal in your program, Java
automatically constructs a String object.

• Thus, you can use a string literal to initialize a
String object.

String s2 = "abc"; // use string literal

• Because a String object is created for every
string literal, you can use a string literal any
place you can use a String object.

System.out.println("abc".length());

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

14

String Concatenation

• In general, Java does not allow operators to be applied to String
objects.

• The one exception to this rule is the + operator, which concatenates
two strings, producing a String object as the result.

• This allows you to chain together a series of + operations.
• For example, the following fragment concatenates three strings:

String age = "9";
String s = "He is " + age + " years old.";
System.out.println(s);

• One practical use of string concatenation is found when you are
creating very long strings.

• Instead of letting long strings wrap around within your source code,
you can break them into smaller pieces, using the + to concatenate
them. Here is an example:

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

15

// Using concatenation to prevent long lines.

class ConCat {

public static void main(String args[]) {

String longStr = "This could have been " +

"a very long line that would have " +

"wrapped around. But string concatenation " +

"prevents this.";

System.out.println(longStr);

}

}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

16

String Concatenation with Other Data
Types

• You can concatenate strings with other types of data.
• For example,

int age = 9;
String s = "He is " + age + " years old.";
System.out.println(s);

• The int value in age is automatically converted into its
string representation within a String object.

• This string is then concatenated as before.
• The compiler will convert an operand to its string

equivalent whenever the other operand of the + is an
instance of String.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

17

• Be careful when you mix other types of
operations with string concatenation
expressions, however.

• You might get surprising results.

• Consider the following:

String s = "four: " + 2 + 2;

System.out.println(s);

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

18

String Conversion and toString()

• When Java converts data into its string representation
during concatenation, it does so by calling one of the
overloaded versions of the string conversion method
valueOf() defined by String.

• For objects, valueOf() calls the toString() method on
the object.

• The toString() method has this general form:

String toString()

• To implement toString(), simply return a String object
that contains the human-readable string that
appropriately describes an object of your class.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

19

// Override toString() for Box
class.

class Box {
double width;
double height;
double depth;
Box(double w, double h, double

d) {
width = w;
height = h;
depth = d;
}
public String toString() {
return "Dimensions are " + width

+ " by " + depth + " by " +
height + ".";

}
}

class toStringDemo {
public static void main(String

args[]) {
Box b = new Box(10, 12, 14);
String s = "Box b: " + b; //

concatenate Box object
System.out.println(b); // convert

Box to string
System.out.println(s);
}
}
Output :
• Dimensions are 10.0 by 14.0

by 12.0
• Box b: Dimensions are 10.0 by

14.0 by 12.0

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

20

Character Extraction

• The String class provides a number of ways in
which characters can be extracted from a
String object.

– charAt()

– getChars()

– getBytes()

– toCharArray()

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

21

charAt()
• To extract a single character from a String, you can refer

directly to an individual character via the charAt() method.
• It has this general form:

char charAt(int where)
• Here, where is the index of the character that you want to

obtain.
• The value of where must be nonnegative and specify a

location within the string.
• charAt() returns the character at the specified location.
• For example,

char ch;
ch = "abc".charAt(1);

• assigns the value “b” to ch

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

22

getChars()
• If you need to extract more than one character at a time,

you can use the getChars() method.
• It has this general form:

void getChars(int sourceStart, int sourceEnd, char target[],
int targetStart)

• Here, sourceStart specifies the index of the beginning of
the substring, and sourceEnd specifies an index that is one
past the end of the desired substring.

• Thus, the substring containsthe characters from sourceStart
through sourceEnd -1.

• The array that will receive the characters is specified by
target.

• The index within target at which the substring will be
copied is passed in targetStart.

• Care must be taken to assure that the target array is large
enough to hold the number of characters in the specified
substring. Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi
23

class getCharsDemo {
public static void main(String args[]) {
String s = "This is a demo of the getChars method.";
int start = 10;
int end = 14;
char buf[] = new char[end - start];
s.getChars(start, end, buf, 0);
System.out.println(buf);
}
}
Here is the output of this program:
demo

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

24

• getBytes()
• There is an alternative to getChars() that stores the

characters in an array of bytes.
• This method is called getBytes(), and it uses the

default character-to-byte conversions provided by the
platform.

• Here is its simplest form:
byte[] getBytes()

• Other forms of getBytes() are also available.
• getBytes() is most useful when you are exporting a

String value into an environment that does not support
16-bit Unicode characters.

• For example, most Internet protocols and text file
formats use 8-bit ASCII for all text interchange.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

25

toCharArray()

• If you want to convert all the characters in a
String object into a character array, the easiest
way is to call toCharArray().

• It returns an array of characters for the entire
string.

• It has this general form:

char[] toCharArray()

• This function is provided as a convenience,
since it is possible to use getChars() to
achieve the same result.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

26

class ChEx

{

public static void main(String args[])

{

String s = "This is a demo of the getChars method.";

char[] b = s.toCharArray();

System.out.println(b);

}

}

Output:

This is a demo of the getChars method.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

27

String Comparison

• The String class includes several methods that
compare strings or substrings within strings.

– equals() and equalsIgnoreCase()

– regionMatches()

– startsWith() and endsWith()

– equals() Versus ==

– compareTo()

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

28

• equals() and equalsIgnoreCase()
• To compare two strings for equality, use equals(). It has this general form:

boolean equals(Object str)
• Here, str is the String object being compared with the invoking String

object.
• It returns true if the strings contain the same characters in the same order,

and false otherwise.
• The comparison is case-sensitive.
• To perform a comparison that ignores case differences, call

equalsIgnoreCase().
• When it compares two strings, it considers A-Z to be the same as a-z.
• It has this general form:

boolean equalsIgnoreCase(String str)
• Here, str is the String object being compared with the invoking String

object.
• It, too, returns true if the strings contain the same characters in the same

order, and false otherwise.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

29

class equalsDemo {
public static void main(String args[]) {
String s1 = "Hello";
String s2 = "Hello";
String s3 = "Good-bye";
String s4 = "HELLO";
System.out.println(s1 + " equals " + s2 + " -> " + s1.equals(s2));
System.out.println(s1 + " equals " + s3 + " -> " + s1.equals(s3));
System.out.println(s1 + " equals " + s4 + " -> " + s1.equals(s4));
System.out.println(s1 + " equalsIgnoreCase " + s4 + " -> " +

s1.equalsIgnoreCase(s4));
}
}
The output from the program is shown here:
Hello equals Hello -> true
Hello equals Good-bye -> false
Hello equals HELLO -> false
Hello equalsIgnoreCase HELLO -> true

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

30

• regionMatches()
• The regionMatches() method compares a specific region inside a

string with another specific region in another string.
• There is an overloaded form that allows you to ignore case in such

comparisons.
• Here are the general forms for these two methods:

boolean regionMatches(int startIndex, String str2, int
str2StartIndex, int numChars)
boolean regionMatches(boolean ignoreCase, int startIndex, String
str2, int str2StartIndex, int numChars)

• For both versions, startIndex specifies the index at which the region
begins within the invoking String object.

• The String being compared is specified by str2.
• The index at which the comparison will start within str2 is specified

by str2StartIndex.
• The length of the substring being compared is passed in numChars.
• In the second version, if ignoreCase is true, the case of the

characters is ignored. Otherwise, case is significant.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

31

class ChEx {
public static void main(String args[]) {
String s1 = "Hello welcome";
String s2 = "Good-bye";
String s3 = "HELLO";
System.out.println(s1 + " regionmatch " + s2 + " -> " +

s1.regionMatches(0,s2,0,5));
System.out.println(s1 + " regionmatch ignore case" + s3 +

" -> " + s1.regionMatches(true,0,s3,0,5));
}
}
Output:
Hello welcome regionmatch Good-bye -> false
Hello welcome regionmatch ignore case HELLO -> true

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

32

• startsWith() and endsWith()
• String defines two routines that are, more or less, specialized forms of

regionMatches().
• The startsWith() method determines whether a given String begins with a

specified string.
• Conversely, endsWith() determines whether the String in question ends

with a specified string. They have the following general forms:
boolean startsWith(String str)
boolean endsWith(String str)

• Here, str is the String being tested. If the string matches, true is returned.
Otherwise, false is returned.

• For example,
"Foobar".endsWith("bar") and "Foobar".startsWith("Foo")

• are both true.
• A second form of startsWith(), shown here, lets you specify a starting

point:
boolean startsWith(String str, int startIndex)

• Here, startIndex specifies the index into the invoking string at which point
the search will begin.

• For example,
• "Foobar".startsWith("bar", 3) returns true.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

33

• equals() Versus ==

• It is important to understand that the equals()
method and the == operator perform two
different operations.

• The equals() method compares the characters
inside a String object.

• The == operator compares two object references
to see whether they refer to the same instance.

• The following program shows how two different
String objects can contain the same characters,
but references to these objects will not compare
as equal:

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

34

// equals() vs ==

class EqualsNotEqualTo {

public static void main(String args[]) {

String s1 = "Hello";

String s2 = new String(s1);
System.out.println(s1 + " equals " + s2 + " -> " + s1.equals(s2));

System.out.println(s1 + " == " + s2 + " -> " + (s1 == s2));

}

}

Output:

Hello equals Hello -> true

Hello == Hello -> false

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

35

• compareTo()
• For sorting applications, you need to know which is less than, equal to, or

greater than the next.

• A string is less than another if it comes before the other in dictionary
order.

• A string is greater than another if it comes after the other in dictionary
order.

• The String method compareTo() serves this purpose.

• It has this general form:

int compareTo(String str)

• Here, str is the String being compared with the invoking String. The result
of the comparison is returned and is interpreted, as shown here:

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

36

// A bubble sort for Strings.
class SortString {
static String arr[] = {
"Now", "is", "the", "time", "for", "all", "good", "men", "to", "come", "too",

"the", "aid", "of", "their", "country“ };
public static void main(String args[]) {
for(int j = 0; j < arr.length; j++) {
for(int i = j + 1; i < arr.length; i++) {
if(arr[i].compareTo(arr[j]) < 0) {
String t = arr[j];
arr[j] = arr[i];
arr[i] = t;
}
}
System.out.println(arr[j]);
}
}
}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

37

• The output of this program is the list of words:
Now
aid
all
come
country
for
good
is
men
of
the
the
their
time
to
too

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

38

• If you want to ignore case differences when
comparing two strings, use
compareToIgnoreCase(), as shown here:

int compareToIgnoreCase(String str)

• This method returns the same results as
compareTo(), except that case differences are
ignored.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

39

Searching Strings

• The String class provides two methods that allow you
to search a string for a specified character or substring:

• indexOf() - Searches for the first occurrence of a
character or substring.

• lastIndexOf() - Searches for the last occurrence of a
character or substring.

• These two methods are overloaded in several different
ways.

• In all cases, the methods return the index at which the
character or substring was found, or –1 on failure.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

40

• To search for the first occurrence of a character, use

int indexOf(int ch)

• To search for the last occurrence of a character, use

int lastIndexOf(int ch)

• Here, ch is the character being sought.

• To search for the first or last occurrence of a substring,
use

int indexOf(String str)

int lastIndexOf(String str)

• Here, str specifies the substring.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

41

• You can specify a starting point for the search using these
forms:

int indexOf(int ch, int startIndex)
int lastIndexOf(int ch, int startIndex)
int indexOf(String str, int startIndex)
int lastIndexOf(String str, int startIndex)

• Here, startIndex specifies the index at which point the
search begins.

• For indexOf(), the search runs from startIndex to the end
of the string.

• For lastIndexOf(), the search runs from startIndex to zero.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

42

class indexOfDemo {
public static void main(String args[]) {
String s = "Now is the time for all good men " + "to come to the aid of

their country.";
System.out.println(s);
System.out.println("indexOf(t) = " + s.indexOf('t'));
System.out.println("lastIndexOf(t) = " + s.lastIndexOf('t'));
System.out.println("indexOf(the) = " + s.indexOf("the"));
System.out.println("lastIndexOf(the) = " + s.lastIndexOf("the"));
System.out.println("indexOf(t, 10) = " + s.indexOf('t', 10));
System.out.println("lastIndexOf(t, 60) = " + s.lastIndexOf('t', 60));
System.out.println("indexOf(the, 10) = " + s.indexOf("the", 10));
System.out.println("lastIndexOf(the, 60) = " + s.lastIndexOf("the", 60));
}
}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

43

• Output :
Now is the time for all good men to come to the aid of their country.

indexOf(t) = 7
lastIndexOf(t) = 65
indexOf(the) = 7
lastIndexOf(the) = 55
indexOf(t, 10) = 11
lastIndexOf(t, 60) = 55
indexOf(the, 10) = 44
lastIndexOf(the, 60) = 55

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

44

Modifying a String

• Because String objects are immutable, whenever
you want to modify a String, you must either
copy it into a StringBuffer or StringBuilder, or use
one of the following String methods, which will
construct a new copy of the string with your
modifications complete.
– substring()

– concat()

– replace()

– trim()

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

45

substring()

• You can extract a substring using substring(). It has two forms. The
first is

String substring(int startIndex)
• Here, startIndex specifies the index at which the substring will

begin.
• This form returns a copy of the substring that begins at startIndex

and runs to the end of the invoking string.
• The second form of substring() allows you to specify both the

beginning and ending index of the substring:
String substring(int startIndex, int endIndex)

• Here, startIndex specifies the beginning index, and endIndex
specifies the stopping point.

• The string returned contains all the characters from the beginning
index, up to, but not including, the ending index.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

46

// Substring replacement.
class StringReplace {
public static void main(String

args[]) {
String org = "This is a test. This is,

too.";
String search = "is";
String sub = "was";
String result = "";
int i;
do { // replace all matching

substrings
System.out.println(org);
i = org.indexOf(search);
if(i != -1) {
result = org.substring(0, i);
result = result + sub;

result = result + org.substring(i +
search.length());

org = result;
}
} while(i != -1);
}
}

Output:
This is a test. This is, too.
Thwas is a test. This is, too.
Thwas was a test. This is, too.
Thwas was a test. Thwas is, too.
Thwas was a test. Thwas was,

too.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

47

concat()

• You can concatenate two strings using concat(), shown here:
String concat(String str)

• This method creates a new object that contains the invoking string
with the contents of str appended to the end. concat() performs
the same function as +.

• For example,
String s1 = "one";
String s2 = s1.concat("two");

• puts the string “onetwo” into s2.
• It generates the same result as the following sequence:

String s1 = "one";
String s2 = s1 + "two";

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

48

replace()

• The replace() method has two forms.
• The first replaces all occurrences of one character in the invoking

string with another character. It has the following general form:
String replace(char original, char replacement)

• Here, original specifies the character to be replaced by the
character specified by replacement.

• The resulting string is returned. For example,
String s = "Hello".replace('l', 'w');

• puts the string “Hewwo” into s.
• The second form of replace() replaces one character sequence with

another. It has this general form:
• String replace(CharSequence original, CharSequence replacement)
• This form was added by J2SE 5.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

49

trim()

• The trim() method returns a copy of the invoking
string from which any leading and trailing
whitespace has been removed.

• It has this general form:
String trim()

• Here is an example:
String s = " Hello World ".trim();

• This puts the string “Hello World” into s.
• The trim() method is quite useful when you

process user commands.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

50

class StringCon {

public static void main(String args[]) {

String s1 = " Hello World ";

String s2 = "two";

String s3 = s1.trim();

System.out.println("Resultant string is="+s3);

}

}

Output:

Resultant string is=Hello World

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

51

Data Conversion Using valueOf()

• The valueOf() method converts data from its internal
format into a human-readable form.

• It is a static method that is overloaded within String for
all of Java’s built-in types so that each type can be
converted properly into a string. valueOf() is also
overloaded for type Object, so an object of any class
type you create can also be used as an argument.

• Here are a few of its forms:
– static String valueOf(double num)
– static String valueOf(long num)
– static String valueOf(Object ob)
– static String valueOf(char chars[])

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

52

• valueOf() is called when a string representation
of some other type of data is needed—for
example, during concatenation operations.

• You can call this method directly with any data
type and get a reasonable String representation.

• All of the simple types are converted to their
common String representation.

• Any object that you pass to valueOf() will return
the result of a call to the object’s toString()
method.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

53

Changing the Case of Characters
Within a String

• The method toLowerCase() converts all the characters in a
string from uppercase to lowercase.

• The toUpperCase() method converts all the characters in a
string from lowercase to uppercase.

• Nonalphabetical characters, such as digits, are unaffected.
• Here are the general forms of these methods:

String toLowerCase()
String toUpperCase()

• Both methods return a String object that contains the
uppercase or lowercase equivalent of the invoking String.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

54

class ChangeCase {
public static void main(String args[])
{
String s = "This is a test.";
System.out.println("Original: " + s);
String upper = s.toUpperCase();
String lower = s.toLowerCase();
System.out.println("Uppercase: " + upper);
System.out.println("Lowercase: " + lower);
}
}
The output produced by the program is shown here:
Original: This is a test.
Uppercase: THIS IS A TEST.
Lowercase: this is a test.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

55

Additional String Methods

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

56

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

57

StringBuffer

• StringBuffer is a peer class of String that provides much
of the functionality of strings.

• String represents fixed-length, immutable character
sequences.

• In contrast, StringBuffer represents growable and
writeable character sequences.

• StringBuffer may have characters and substrings
inserted in the middle or appended to the end.

• StringBuffer will automatically grow to make room for
such additions and often has more characters
preallocated than are actually needed, to allow room
for growth.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

58

StringBuffer Constructors

• StringBuffer defines these four constructors:
StringBuffer()
StringBuffer(int size)
StringBuffer(String str)
StringBuffer(CharSequence chars)

• The default constructor (the one with no parameters) reserves room for
16 characters without reallocation.

• The second version accepts an integer argument that explicitly sets the
size of the buffer.

• The third version accepts a String argument that sets the initial contents of
the StringBuffer object and reserves room for 16 more characters without
reallocation.

• StringBuffer allocates room for 16 additional characters when no specific
buffer length is requested, because reallocation is a costly process in
terms of time.

• The fourth constructor creates an object that contains the character
sequence contained in chars.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

59

length() and capacity()

• The current length of a StringBuffer can be
found via the length() method, while the total
allocated capacity can be found through the
capacity() method.

• They have the following general forms:

int length()

int capacity()

• Here is an example:

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

60

// StringBuffer length vs. capacity.
class StringBufferDemo {
public static void main(String args[]) {
StringBuffer sb = new StringBuffer("Hello");
System.out.println("buffer = " + sb);
System.out.println("length = " + sb.length());
System.out.println("capacity = " + sb.capacity());
}
}
Output
buffer = Hello
length = 5
capacity = 21

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

61

ensureCapacity()

• If you want to preallocate room for a certain
number of characters after a StringBuffer has
been constructed, you can use ensureCapacity()
to set the size of the buffer.

• This is useful if you know in advance that you will
be appending a large number of small strings to a
StringBuffer.

• It has this general form:
void ensureCapacity(int capacity)

• Here, capacity specifies the size of the buffer.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

62

setLength()

• To set the length of the buffer within a
StringBuffer object, use setLength().

• Its general form is shown here:

void setLength(int len)

• Here, len specifies the length of the buffer. This
value must be nonnegative.

• When you increase the size of the buffer, null
characters are added to the end of the existing
buffer.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

63

charAt() and setCharAt()
• The value of a single character can be obtained from a

StringBuffer via the charAt() method.
• You can set the value of a character within a

StringBuffer using setCharAt().
• Their general forms are shown here:

char charAt(int where)
void setCharAt(int where, char ch)

• For charAt(), where specifies the index of the character
being obtained.

• For setCharAt(), where specifies the index of the
character being set, and ch specifies the new value of
that character.

• For both methods, where must be nonnegative and
must not specify a location beyond the end of the
buffer.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

64

class setCharAtDemo {
public static void main(String args[]) {
StringBuffer sb = new StringBuffer("Hello");
System.out.println("buffer before = " + sb);
System.out.println("charAt(1) before = " + sb.charAt(1));
sb.setCharAt(1, 'i');
sb.setLength(2);
System.out.println("buffer after = " + sb);
System.out.println("charAt(1) after = " + sb.charAt(1));
}
}
Output:
buffer before = Hello
charAt(1) before = e
buffer after = Hi
charAt(1) after = i

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

65

getChars()

• To copy a substring of a StringBuffer into an array, use the getChars(
) method.

• It has this general form:

• void getChars(int sourceStart, int sourceEnd, char target[], int
targetStart)

• Here, sourceStart specifies the index of the beginning of the
substring, and sourceEnd specifies an index that is one past the end
of the desired substring.

• This means that the substring contains the characters from
sourceStart through sourceEnd – 1.

• The array that will receive the characters is specified by target.

• The index within target at which the substring will be copied is
passed in targetStart.

• Care must be taken to assure that the target array is large enough
to hold the number of characters in the specified substring.Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi
66

append()

• The append() method concatenates the string
representation of any other type of data to the end of the
invoking StringBuffer object.

• It has several overloaded versions. Here are a few of its
forms:

StringBuffer append(String str)
StringBuffer append(int num)
StringBuffer append(Object obj)

• String.valueOf() is called for each parameter to obtain its
string representation.

• The result is appended to the current StringBuffer object.
• The buffer itself is returned by each version of append().

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

67

class appendDemo {

public static void main(String args[]) {

String s;

int a = 42;

StringBuffer sb = new StringBuffer();

s = sb.append("a = "). append(a). append("!").toString();

System.out.println(s);

}

}

The output of this example is shown here:

a = 42! Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

68

insert()

• The insert() method inserts one string into another.
• It is overloaded to accept values of all the simple types,

plus Strings, Objects, and CharSequences.
• Like append(), it calls String.valueOf() to obtain the string

representation of the value it is called with.
• This string is then inserted into the invoking StringBuffer

object.
• These are a few of its forms:

StringBuffer insert(int index, String str)
StringBuffer insert(int index, char ch)
StringBuffer insert(int index, Object obj)

• Here, index specifies the index at which point the string will
be inserted into the invoking StringBuffer object.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

69

class insertDemo {

public static void main(String args[]) {

StringBuffer sb = new StringBuffer("I Java!");

sb.insert(2, "like ");

System.out.println(sb);

}

}

The output of this example is shown here:

I like Java!

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

70

reverse()

• You can reverse the characters within a
StringBuffer object using reverse(), shown
here:

StringBuffer reverse()

• This method returns the reversed object on
which it was called.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

71

class ReverseDemo {

public static void main(String args[]) {

StringBuffer s = new StringBuffer("abcdef");

System.out.println(s);

s.reverse();

System.out.println(s);

}

}

Here is the output produced by the program:

abcdef

fedcba

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

72

delete() and deleteCharAt()
• Characters can be deleted within a StringBuffer by using the

methods delete() and deleteCharAt().

• These methods are shown here:

StringBuffer delete(int startIndex, int endIndex)

StringBuffer deleteCharAt(int loc)

• The delete() method deletes a sequence of characters from the
invoking object.

• Here, startIndex specifies the index of the first character to
remove, and endIndex specifies an index one past the last
character to remove.

• Thus, the substring deleted runs from startIndex to endIndex –1.

• The resulting StringBuffer object is returned.

• The deleteCharAt() method deletes the character at the index
specified by loc. It returns the resulting StringBuffer object.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

73

class deleteDemo {

public static void main(String args[]) {

StringBuffer sb = new StringBuffer("This is a test.");

sb.delete(4, 7);

System.out.println("After delete: " + sb);

sb.deleteCharAt(0);

System.out.println("After deleteCharAt: " + sb);

}

}

The following output is produced:

After delete: This a test.

After deleteCharAt: his a test.
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi
74

replace()

• You can replace one set of characters with another set
inside a StringBuffer object by calling replace().

• Its signature is shown here:
StringBuffer replace(int startIndex, int endIndex, String str)

• The substring being replaced is specified by the indexes
startIndex and endIndex.

• Thus, the substring at startIndex through endIndex – 1
is replaced.

• The replacement string is passed in str.

• The resulting StringBuffer object is returned.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

75

class replaceDemo {

public static void main(String args[]) {

StringBuffer sb = new StringBuffer("This is a test.");

sb.replace(5, 7, "was");

System.out.println("After replace: " + sb);

}

}

Here is the output:

After replace: This was a test.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

76

substring()

• You can obtain a portion of a StringBuffer by
calling substring().

• It has the following two forms:
String substring(int startIndex)
String substring(int startIndex, int endIndex)

• The first form returns the substring that starts at
startIndex and runs to the end of the invoking
StringBuffer object.

• The second form returns the substring that starts
at startIndex and runs through endIndex–1.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

77

class StringCon {
public static void main(String args[]) {
StringBuffer sb = new StringBuffer("This is a test.");

String s1 = sb.substring(5);
System.out.println("substring 1: " + s1);
String s2 = sb.substring(5);
System.out.println("substring 2: " + s2);
}
}
Output :
substring 1: is a test.
substring 2: is

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

78

Additional StringBuffer Methods

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

79

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

80

class IndexOfDemo {
public static void main(String args[]) {
StringBuffer sb = new StringBuffer("one two one");
int i;
i = sb.indexOf("one");
System.out.println("First index: " + i);
i = sb.lastIndexOf("one");
System.out.println("Last index: " + i);
}
}
The output is shown here:
First index: 0
Last index: 8

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

81

StringBuilder

• J2SE 5 adds a new string class to Java’s already
powerful string handling capabilities.

• This new class is called StringBuilder.

• It is identical to StringBuffer except for one
important difference: it is not synchronized,
which means that it is not thread-safe.

• The advantage of StringBuilder is faster
performance.

• However, in cases in which you are using
multithreading, you must use StringBuffer rather
than StringBuilder.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

82

Enumerations and Type
Wrappers

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

83

Enumeration Fundamentals

• An enumeration is a list of named constants.
• In Java, an enumeration defines a class type.
• An enumeration is created using the enum

keyword.
• For example, here is a simple enumeration that

lists various apple varieties:
• // An enumeration of apple varieties.

enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland
}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

84

• The identifiers Jonathan, GoldenDel, and so on, are called
enumeration constants.

• Each is implicitly declared as a public, static final member of Apple.
• Furthermore, their type is the type of the enumeration in which

they are declared, which is Apple in this case.
• Thus, in the language of Java, these constants are called self-typed,

in which “self” refers to the enclosing enumeration.
• Once you have defined an enumeration, you can create a variable

of that type.
• For example, this declares ap as a variable of enumeration type

Apple:
Apple ap;

• Because ap is of type Apple, the only values that it can be assigned
(or can contain) are those defined by the enumeration.

• For example, this assigns ap the value RedDel:
ap = Apple.RedDel;

• Notice that the symbol RedDel is preceded by Apple.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

85

• Two enumeration constants can be compared for equality by using the = =
relational operator.

• For example, this statement compares the value in ap with the GoldenDel
constant:

if(ap == Apple.GoldenDel) // ...
• An enumeration value can also be used to control a switch statement.
• Of course, all of the case statements must use constants from the same

enum as that used by the switch expression.
• For example, this switch is perfectly valid:

switch(ap) {
case Jonathan:
// ...
case Winesap:
// ...

• When an enumeration constant is displayed, such as in a println()
statement, its name is output.

• For example, given this statement:
System.out.println(Apple.Winesap);

• the name Winesap is displayed.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

86

// An enumeration of apple varieties.
enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland
}
class EnumDemo {
public static void main(String args[])
{
Apple ap;
ap = Apple.RedDel;
// Output an enum value.
System.out.println("Value of ap: " + ap);
System.out.println();
ap = Apple.GoldenDel;
// Compare two enum values.
if(ap == Apple.GoldenDel)
System.out.println("ap contains GoldenDel.\n");
// Use an enum to control a switch statement.
switch(ap) {
case Jonathan:
System.out.println("Jonathan is red.");
break;
case GoldenDel:
System.out.println("Golden Delicious is yellow.");
break;

case RedDel:
System.out.println("Red Delicious is red.");
break;
case Winesap:
System.out.println("Winesap is red.");
break;
case Cortland:
System.out.println("Cortland is red.");
break;
}
}
}
The output from the program is shown here:
Value of ap: RedDel
ap contains GoldenDel.
Golden Delicious is yellow.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

87

The values() and valueOf() Methods

• All enumerations automatically contain two predefined
methods: values() and valueOf().

• Their general forms are shown here:
public static enum-type[] values()
public static enum-type valueOf(String str)

• The values() method returns an array that contains a
list of the enumeration constants.

• The valueOf() method returns the enumeration
constant whose value corresponds to the string passed
in str.

• In both cases, enum-type is the type of the
enumeration.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

88

enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland
}
class EnumDemo2 {
public static void main(String args[])
{
Apple ap;
System.out.println("Here are all Apple constants:");
// use values()
Apple allapples[] = Apple.values();
for(Apple a : allapples)
System.out.println(a);
System.out.println();
// use valueOf()
ap = Apple.valueOf("Winesap");
System.out.println("ap contains " + ap);
}
}

Output :
Here are all Apple constants:
Jonathan
GoldenDel
RedDel
Winesap
Cortland
ap contains Winesap

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

89

Java Enumerations Are Class Types
• A Java enumeration is a class type.
• Although you don’t instantiate an enum using new, it

otherwise has much the same capabilities as other classes.
• The fact that enum defines a class gives powers to the Java

enumeration that enumerations in other languages simply
do not have.

• For example, you can give them constructors, add instance
variables and methods, and even implement interfaces.

• Each enumeration constant is an object of its enumeration
type.

• Thus, when you define a constructor for an enum, the
constructor is called when each enumeration constant is
created.

• Also, each enumeration constant has its own copy of any
instance variables defined by the enumeration.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

90

enum Apple {
Jonathan(10), GoldenDel(9),

RedDel(12), Winesap(15),
Cortland(8);

private int price;
Apple(int p) { price = p; }
int getPrice() { return price; }
}
class EnumDemo3 {
public static void main(String

args[])
{
Apple ap;
System.out.println("Winesap

costs " +
Apple.Winesap.getPrice() +
" cents.\n");
System.out.println("All apple

prices:");

for(Apple a : Apple.values())
System.out.println(a + " costs " +

a.getPrice() +
" cents.");
}
}
Output :
• Winesap costs 15 cents.
• All apple prices:
• Jonathan costs 10 cents.
• GoldenDel costs 9 cents.
• RedDel costs 12 cents.
• Winesap costs 15 cents.
• Cortland costs 8 cents.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

91

Enumerations Inherit Enum

• Although you can’t inherit a superclass when declaring an
enum, all enumerations automatically inherit one:
java.lang.Enum.

• This class defines several methods that are available for use
by all enumerations.

• You can obtain a value that indicates an enumeration
constant’s position in the list of constants.

• This is called its ordinal value, and it is retrieved by calling
the ordinal() method, shown here:

final int ordinal()
• It returns the ordinal value of the invoking constant.
• Ordinal values begin at zero.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

92

• You can compare the ordinal value of two
constants of the same enumeration by using the
compareTo() method.

• It has this general form:

final int compareTo(enum-type e)

• Here, enum-type is the type of the enumeration,
and e is the constant being compared to the
invoking constant.

• You can compare for equality an enumeration
constant with any other object by using equals(),
which overrides the equals() method defined by
Object.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

93

enum Apple {
Jonathan, GoldenDel, RedDel, Winesap,

Cortland
}
class EnumDemo4 {
public static void main(String args[])
{
Apple ap, ap2, ap3;
// Obtain all ordinal values using

ordinal().
System.out.println("Here are all apple

constants" +
" and their ordinal values: ");
for(Apple a : Apple.values())
System.out.println(a + " " + a.ordinal());
ap = Apple.RedDel;
ap2 = Apple.GoldenDel;
ap3 = Apple.RedDel;
System.out.println();
// Demonstrate compareTo() and

equals()
if(ap.compareTo(ap2) < 0)
System.out.println(ap + " comes before "

+ ap2);

if(ap.compareTo(ap2) > 0)
System.out.println(ap2 + " comes before

" + ap);
if(ap.compareTo(ap3) == 0)
System.out.println(ap + " equals " + ap3);
System.out.println();
if(ap.equals(ap2))
System.out.println("Error!");
if(ap.equals(ap3))
System.out.println(ap + " equals " + ap3);
if(ap == ap3)
System.out.println(ap + " == " + ap3);
}
}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

94

• Output :
Here are all apple constants and their ordinal values:
Jonathan 0
GoldenDel 1
RedDel 2
Winesap 3
Cortland 4
GoldenDel comes before RedDel
RedDel equals RedDel
RedDel equals RedDel
RedDel == RedDel

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

95

enum Answers {
NO, YES, MAYBE, LATER, SOON, NEVER
}
class Question {
Random rand = new Random();
Answers ask() {
int prob = (int) (100 * rand.nextDouble());
if (prob < 15)
return Answers.MAYBE; // 15%
else if (prob < 30)
return Answers.NO; // 15%
else if (prob < 60)
return Answers.YES; // 30%
else if (prob < 75)
return Answers.LATER; // 15%
else if (prob < 98)
return Answers.SOON; // 13%
else
return Answers.NEVER; // 2%
}
}
class AskMe {
static void answer(Answers result) {
switch(result) {
case NO:
System.out.println("No");
break;

case YES:
System.out.println("Yes");
break;
case MAYBE:
System.out.println("Maybe");
break;
case LATER:
System.out.println("Later");
break;
case SOON:
System.out.println("Soon");
break;
case NEVER:
System.out.println("Never");
break;
}
}
public static void main(String args[]) {
Question q = new Question();
answer(q.ask());
answer(q.ask());
answer(q.ask());
answer(q.ask());
}
}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

96

Type Wrappers

• Java uses primitive types (also called simple
types), such as int or double, to hold the basic
data types supported by the language.

• Primitive types, rather than objects, are used for
these quantities for the sake of performance.

• Using objects for these values would add an
unacceptable overhead to even the simplest of
calculations.

• you can’t pass a primitive type by reference to a
method.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

97

• Also, many of the standard data structures
implemented by Java operate on objects, which
means that you can’t use these data structures to
store primitive types.

• To handle these (and other) situations, Java
provides type wrappers, which are classes that
encapsulate a primitive type within an object.

• The type wrappers are Double, Float, Long,
Integer, Short, Byte, Character, and Boolean.

• These classes offer a wide array of methods that
allow you to fully integrate the primitive types
into Java’s object hierarchy.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

98

Character
• Character is a wrapper around a char.

• The constructor for Character is

Character(char ch)

• Here, ch specifies the character that will be
wrapped by the Character object being created.

• To obtain the char value contained in a Character
object, call charValue(), shown here:

char charValue()

• It returns the encapsulated character.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

99

Boolean
• Boolean is a wrapper around boolean values.
• It defines these constructors:

Boolean(boolean boolValue)
Boolean(String boolString)

• In the first version, boolValue must be either true or
false.

• In the second version, if boolString contains the string
“true” (in uppercase or lowercase), then the new
Boolean object will be true. Otherwise, it will be false.

• To obtain a boolean value from a Boolean object, use
booleanValue(), shown here:

boolean booleanValue()
• It returns the boolean equivalent of the invoking

object.
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi
100

The Numeric Type Wrappers
• The most commonly used type wrappers are those that

represent numeric values.
• These are Byte, Short, Integer, Long, Float, and Double.
• All of the numeric type wrappers inherit the abstract

class Number.
• Number declares methods that return the value of an

object in each of the different number formats.
• These methods are shown here:

byte byteValue()
double doubleValue()
float floatValue()
int intValue()
long longValue()
short shortValue()

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

101

• All of the numeric type wrappers define constructors
that allow an object to be constructed from a given
value, or a string representation of that value.

• For example, here are the constructors defined for
Integer:

Integer(int num)
Integer(String str)

• If str does not contain a valid numeric value, then a
NumberFormatException is thrown.

• All of the type wrappers override toString().
• It returns the human-readable form of the value

contained within the wrapper.
• This allows you to output the value by passing a type

wrapper object to println(), for example, without
having to convert it into its primitive type.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

102

// Demonstrate a type wrapper.

class Wrap {

public static void main(String args[]) {

Integer iOb = new Integer(100);

int i = iOb.intValue();

System.out.println(i + " " + iOb); // displays 100 100

}

}

• This program wraps the integer value 100 inside
an Integer object called iOb.

• The program then obtains this value by calling
intValue() and stores the result in i.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

103

• The process of encapsulating a value within an
object is called boxing.

• Thus, in the program, this line boxes the value
100 into an Integer:

Integer iOb = new Integer(100);

• The process of extracting a value from a type
wrapper is called unboxing.

• For example, the program unboxes the value
in iOb with this statement:

int i = iOb.intValue();

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

104

I/O, Applets, and
Other Topics

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

105

I/O Basics

• Java does provide strong, flexible support for
I/O as it relates to files and networks.

• Java’s I/O system is cohesive and consistent.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

106

Streams
• Java programs perform I/O through streams.

• A stream is an abstraction that either produces or consumes information.

• A stream is linked to a physical device by the Java I/O system.

• All streams behave in the same manner, even if the actual physical devices
to which they are linked differ.

• Thus, the same I/O classes and methods can be applied to any type of
device.

• This means that an input stream can abstract many different kinds of
input: from a disk file, a keyboard, or a network socket.

• Likewise, an output stream may refer to the console, a disk file, or a
network connection.

• Java implements streams within class hierarchies defined in the java.io
package.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

107

Byte Streams and Character Streams

• Java defines two types of streams: byte and
character.

– Byte streams provide a convenient means for
handling input and output of bytes. Byte streams
are used, for example, when reading or writing
binary data.

– Character streams provide a convenient means for
handling input and output of characters. They use
Unicode and, therefore, can be internationalized.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

108

The Byte Stream Classes

• Byte streams are defined by using two class hierarchies.
• At the top are two abstract classes: InputStream and OutputStream.
• Each of these abstract classes has several concrete subclasses that

handle the differences between various devices, such as disk files,
network connections, and even memory buffers.

• The byte stream classes are shown in Table 13-1.
• The abstract classes InputStream and OutputStream define several

key methods that the other stream classes implement.
• Two of the most important are read() and write(), which,

respectively, read and write bytes of data.
• Both methods are declared as abstract inside InputStream and

OutputStream.
• They are overridden by derived stream classes.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

109

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

110

The Character Stream Classes

• Character streams are defined by using two class
hierarchies.

• At the top are two abstract classes, Reader and Writer.
• These abstract classes handle Unicode character streams.
• Java has several concrete subclasses of each of these.
• The character stream classes are shown in Table 13-2.
• The abstract classes Reader and Writer define several key

methods that the other stream classes implement.
• Two of the most important methods are read() and write(),

which read and write characters of data, respectively.
• These methods are overridden by derived stream classes.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

111

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

112

The Predefined Streams

• All Java programs automatically import the java.lang package.
• This package defines a class called System, which encapsulates

several aspects of the run-time environment.
• For example, using some of its methods, you can obtain the current

time and the settings of various properties associated with the
system.

• System also contains three predefined stream variables: in, out, and
err.

• These fields are declared as public, static, and final within System.
• This means that they can be used by any other part of your

program and without reference to a specific System object.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

113

• System.out refers to the standard output stream.

• By default, this is the console.

• System.in refers to standard input, which is the
keyboard by default.

• System.err refers to the standard error stream, which
also is the console by default.

• However, these streams may be redirected to any
compatible I/O device.

• System.in is an object of type InputStream; System.out
and System.err are objects of type PrintStream.

• These are byte streams, even though they typically are
used to read and write characters from and to the
console.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

114

Reading Console Input
• In Java, console input is accomplished by reading from System.in.

• To obtain a characterbased stream that is attached to the console, wrap System.in in a
BufferedReader object.

• BufferedReader supports a buffered input stream.

• Its most commonly used constructor is shown here:

BufferedReader(Reader inputReader)

• Here, inputReader is the stream that is linked to the instance of BufferedReader that is being
created.

• Reader is an abstract class. One of its concrete subclasses is InputStreamReader, which
converts bytes to characters.

• To obtain an InputStreamReader object that is linked to System.in, use the following
constructor:

InputStreamReader(InputStream inputStream)

• Because System.in refers to an object of type InputStream, it can be used for inputStream.

• Putting it all together, the following line of code creates a BufferedReader that is connected

• to the keyboard:

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

• After this statement executes, br is a character-based stream that is linked to the console
through System.in. Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi
115

Reading Characters

• To read a character from a BufferedReader, use read().

• The version of read() that we will be using is

int read() throws IOException

• Each time that read() is called, it reads a character
from the input stream and returns it as an integer
value.

• It returns –1 when the end of the stream is
encountered.

• It can throw an IOException.

• The following program demonstrates read() by reading
characters from the console until the user types a "q.”

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

116

import java.io.*;
class BRRead {
public static void main(String args[]) throws IOException
{
char c;
BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));
System.out.println("Enter characters, 'q' to quit.");
// read characters
do {
c = (char) br.read();
System.out.println(c);
} while(c != 'q');
}
}

Output :
Enter characters, 'q' to quit.
123abcq
1
2
3
a
b
c
q

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

117

Reading Strings

• To read a string from the keyboard, use the
version of readLine() that is a member of the

• BufferedReader class.
• Its general form is shown here:

String readLine() throws IOException
• It returns a String object.
• The following program demonstrates

BufferedReader and the readLine() method;
• The program reads and displays lines of text until

you enter the word “stop”:

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

118

import java.io.*;
class BRReadLines {
public static void main(String args[])
throws IOException
{
// create a BufferedReader using System.in
BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));
String str;
System.out.println("Enter lines of text.");
System.out.println("Enter 'stop' to quit.");
do {
str = br.readLine();
System.out.println(str);
} while(!str.equals("stop"));
}
}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

119

// A tiny editor.
import java.io.*;
class TinyEdit {
public static void main(String

args[])
throws IOException
{
BufferedReader br = new

BufferedReader(new
InputStreamReader(System.in)

);
String str[] = new String[100];
System.out.println("Enter lines

of text.");
System.out.println("Enter

'stop' to quit.");
for(int i=0; i<100; i++) {

str[i] = br.readLine();
if(str[i].equals("stop")) break;
}
System.out.println("\nHere is

your file:");
for(int i=0; i<100; i++) {
if(str[i].equals("stop")) break;
System.out.println(str[i]);
}
}
}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

120

Here is a sample run:
Enter lines of text.
Enter 'stop' to quit.
This is line one.
This is line two.
Java makes working with strings easy.
Just create String objects.
stop
Here is your file:
This is line one.
This is line two.
Java makes working with strings easy.
Just create String objects.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

121

Writing Console Output
• Console output is most easily accomplished with print()

and println().
• These methods are defined by the class PrintStream (which

is the type of object referenced by System.out).
• Because PrintStream is an output stream derived from

OutputStream, it also implements the low-level method
write().

• Thus, write() can be used to write to the console.
• The simplest form of write() defined by PrintStream is

shown here:
void write(int byteval)

• This method writes to the stream the byte specified by
byteval.

• Although byteval is declared as an integer, only the low-
order eight bits are written.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

122

// Demonstrate System.out.write().

class WriteDemo {

public static void main(String args[]) {

int b;

b = 'A';

System.out.write(b);

System.out.write('\n');

}

}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

123

The PrintWriter Class

• For real-world programs, the recommended method of
writing to the console when using Java is through a
PrintWriter stream.

• PrintWriter is one of the character-based classes.
• Using a character-based class for console output makes it

easier to internationalize your program.
• PrintWriter defines several constructors. The one we will

use is shown here:
PrintWriter(OutputStream outputStream, boolean
flushOnNewline)

• Here, outputStream is an object of type OutputStream, and
flushOnNewline controls whether Java flushes the output
stream every time a println() method is called. If
flushOnNewline is true, flushing automatically takes place.
If false, flushing is not automatic.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

124

// Demonstrate PrintWriter
import java.io.*;
public class PrintWriterDemo {
public static void main(String args[]) {
PrintWriter pw = new PrintWriter(System.out, true);
pw.println("This is a string");
int i = -7;
pw.println(i);
double d = 4.5e-7;
pw.println(d);
}
}

Output :
This is a string
-7
4.5E-7

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

125

Reading and Writing Files

• Java provides a number of classes and methods that allow you to
read and write files.

• In Java, all files are byte-oriented, and Java provides methods to
read and write bytes from and to a file.

• Two of the most often-used stream classes are FileInputStream and
FileOutputStream, which create byte streams linked to files.

• To open a file, you simply create an object of one of these classes,
specifying the name of the file as an argument to the constructor.

• While both classes support additional, overridden constructors, the
following are the forms that we will be using:
FileInputStream(String fileName) throws FileNotFoundException
FileOutputStream(String fileName) throws FileNotFoundException

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

126

• Here, fileName specifies the name of the file that you want to open.
• When you create an input stream, if the file does not exist, then

FileNotFoundException is thrown.
• For output streams, if the file cannot be created, then

FileNotFoundException is thrown.
• When an output file is opened, any preexisting file by the same name is

destroyed.
• When you are done with a file, you should close it by calling close().
• It is defined by both FileInputStream and FileOutputStream, as shown

here:
void close() throws IOException

• To read from a file, you can use a version of read() that is defined within
FileInputStream.

• The one that we will use is shown here:
int read() throws IOException

• Each time that it is called, it reads a single byte from the file and returns
the byte as an integer value.

• read() returns –1 when the end of the file is encountered. It can throw an
IOException.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

127

/* Display a text file.
To use this program, specify the

name
of the file that you want to see.
For example, to see a file called

TEST.TXT,
use the following command line.
java ShowFile TEST.TXT
*/
import java.io.*;
class ShowFile {
public static void main(String args[])
throws IOException
{
int i;
FileInputStream fin;
try {
fin = new FileInputStream(args[0]);
} catch(FileNotFoundException e) {
System.out.println("File Not Found");
return;

}
catch(ArrayIndexOutOfBoundsExc
eption e) {

System.out.println("Usage: ShowFile
File");

return;
}
// read characters until EOF is

encountered
do {
i = fin.read();
if(i != -1) System.out.print((char) i);
} while(i != -1);
fin.close();
}
}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

128

• To write to a file, you can use the write()
method defined by FileOutputStream.

• Its simplest form is shown here:

void write(int byteval) throws IOException

• This method writes the byte specified by
byteval to the file.

• Although byteval is declared as an integer,
only the low-order eight bits are written to the
file. If an error occurs during writing, an
IOException is thrown. The next example uses
write() to copy a text file:

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

129

/* Copy a text file.
To use this program, specify the name
of the source file and the destination file.
For example, to copy a file called FIRST.TXT
to a file called SECOND.TXT, use the following
command line.
java CopyFile FIRST.TXT SECOND.TXT
*/
import java.io.*;
class CopyFile {
public static void main(String args[])
throws IOException
{
int i;
FileInputStream fin;
FileOutputStream fout;
try {
// open input file
try {
fin = new FileInputStream(args[0]);
} catch(FileNotFoundException e) {
System.out.println("Input File Not Found");
return;
}
// open output file
try {
fout = new FileOutputStream(args[1]);
}

catch(FileNotFoundException e) {
System.out.println("Error Opening Output File");
return;
}
} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Usage: CopyFile From To");
return;
}
// Copy File
try {
do {
i = fin.read();
if(i != -1) fout.write(i);
} while(i != -1);
} catch(IOException e) {
System.out.println("File Error");
}
fin.close();
fout.close();
}
}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

130

Applets

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

131

Two Types of Applets

• The first are those based directly on the
Applet class. These applets use the Abstract
Window Toolkit (AWT) to provide the
Graphical User Interface(GUI).

• The second type of applets are those based on
the Swing class JApplet. Swing applets use the
Swing classes to provide the GUI.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

132

• All applets are subclasses (either directly or indirectly) of
Applet.

• Applets are not stand-alone programs. Instead, they run
within either a web browser or an applet viewer.

• Execution of an applet does not begin at main().
• Instead, execution of an applet is started and controlled

with an entirely different mechanism.
• To use an applet, it is specified in an HTML file. One way to

do this is by using the APPLET tag.
• The applet will be executed by a Java-enabled web browser

when it encounters the APPLET tag within the HTML file.
/*
<applet code="MyApplet" width=200 height=60>
</applet>
*/

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

133

An Applet Skeleton

• All but the most trivial applets override a set of methods
that provides the basic mechanism by which the browser or
applet viewer interfaces to the applet and controls its
execution.

• Four of these methods, init(), start(), stop(), and destroy(),
apply to all applets and are defined by Applet.

• AWT-based applets will also override the paint() method,
which is defined by the AWT Component class.

• This method is called when the applet’s output must be
redisplayed.

• These five methods can be assembled into the skeleton
shown here:

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

134

import java.awt.*;
import java.applet.*;
/*
<applet code="AppletSkel" width=300 height=100>
</applet>
*/
public class AppletSkel extends Applet {
// Called first.
public void init() {
// initialization
}
/* Called second, after init(). Also called whenever the applet is restarted. */
public void start() {
// start or resume execution
}
// Called when the applet is stopped.
public void stop() {
// suspends execution
}
/* Called when applet is terminated. This is the last method executed. */
public void destroy() {
// perform shutdown activities
}
// Called when an applet's window must be restored.
public void paint(Graphics g) {
// redisplay contents of window
}
}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

135

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

136

Simple Applet Display Methods

• Here is a very simple applet that sets the
background color to cyan, the foreground
color to red, and displays a message that
illustrates the order in which the init(), start(
), and paint() methods are called when an
applet starts up:

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

137

/* A simple applet that sets the foreground and background colors and outputs a string. */
import java.awt.*;
import java.applet.*;
/*
<applet code="Sample" width=300 height=50>
</applet>
*/
public class Sample extends Applet{
String msg;

// set the foreground and background colors.
public void init() {
setBackground(Color.cyan);
setForeground(Color.red);
msg = "Inside init() --";
}

// Initialize the string to be displayed.
public void start() {
msg += " Inside start() --";
}

// Display msg in applet window.
public void paint(Graphics g) {
msg += " Inside paint().";
g.drawString(msg, 10, 30);
}
}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

138

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

139

The transient and volatile Modifiers

• Java defines two interesting type modifiers: transient and
volatile.

• These modifiers are used to handle somewhat specialized
situations.

• When an instance variable is declared as transient, then its
value need not persist when an object is stored. For
example:
class T {
transient int a; // will not persist
int b; // will persist
}

• Here, if an object of type T is written to a persistent storage
area, the contents of a would not be saved, but the
contents of b would.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

140

• The volatile modifier tells the compiler that the variable
modified by volatile can be changed unexpectedly by other
parts of your program.

• One of these situations involves multithreaded programs.
• In a multithreaded program, sometimes two or more

threads share the same variable.
• For efficiency considerations, each thread can keep its own,

private copy of such a shared variable.
• The real (or master) copy of the variable is updated at

various times, such as when a synchronized method is
entered.

• While this approach works fine, it may be inefficient at
times.

• In some cases, all that really matters is that the master
copy of a variable always reflects its current state.

• To ensure this, simply specify the variable as volatile, which
tells the compiler that it must always use the master copy
of a volatile variable.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

141

Using instanceof

• Sometimes, knowing the type of an object during run time
is useful.

• For example, you might have one thread of execution that
generates various types of objects, and another thread that
processes these objects.

• In this situation, it might be useful for the processing
thread to know the type of each object when it receives it.

• Another situation in which knowledge of an object’s type at
run time is important involves casting.

• In Java, an invalid cast causes a run-time error.
• Many invalid casts can be caught at compile time.
• However, casts involving class hierarchies can produce

invalid casts that can be detected only at run time.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

142

• The instanceof operator has this general form:

objref instanceof type

• Here, objref is a reference to an instance of a class, and
type is a class type.

• If objref is of the specified type or can be cast into the
specified type, then the instanceof operator evaluates
to true.

• Otherwise, its result is false.

• Thus, instanceof is the means by which your program
can obtain run-time type information about an object.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

143

class A {
int i, j;
}
class B {
int i, j;
}
class C extends A {
int k;
}
class D extends A {
int k;
}
class InstanceOf {
public static void main(String args[]) {
A a = new A();
B b = new B();
C c = new C();
D d = new D();
if(a instanceof A)
System.out.println("a is instance of A");
if(b instanceof B)
System.out.println("b is instance of B");
if(c instanceof C)
System.out.println("c is instance of C");
if(c instanceof A)
System.out.println("c can be cast to A");
if(a instanceof C)
System.out.println("a can be cast to C");
System.out.println();

// compare types of derived types
A ob;
ob = d; // A reference to d
System.out.println("ob now refers to d");
if(ob instanceof D)
System.out.println("ob is instance of D");
System.out.println();
ob = c; // A reference to c
System.out.println("ob now refers to c");
if(ob instanceof D)
System.out.println("ob can be cast to D");
else
System.out.println("ob cannot be cast to D");
if(ob instanceof A)
System.out.println("ob can be cast to A");
System.out.println();
// all objects can be cast to Object
if(a instanceof Object)
System.out.println("a may be cast to Object");
if(b instanceof Object)
System.out.println("b may be cast to Object");
if(c instanceof Object)
System.out.println("c may be cast to Object");
if(d instanceof Object)
System.out.println("d may be cast to Object");
}
}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

144

strictfp

• A relatively new keyword is strictfp.
• With the creation of Java 2, the floating-point computation model

was relaxed slightly.
• Specifically, the new model does not require the truncation of

certain intermediate values that occur during a computation.
• This prevents overflow or underflow in some cases.
• By modifying a class or a method with strictfp, you ensure that

floating-point calculations (and thus all truncations) take place
precisely as they did in earlier versions of Java.

• When a class is modified by strictfp, all the methods in the class are
also modified by strictfp automatically.

• For example, the following fragment tells Java to use the original
floating-point model for calculations in all methods defined within
MyClass:
strictfp class MyClass { //...

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

145

