
Subject: System Software and Compilers (18CS61)

Module 3: Syntax Analysis

S J P N Trust's

HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Permanently Affiliated to VTU Belagavi.
Accredited at 'A' Grade by NAAC

Programmes Accredited by NBA: CSE, ECE, EEE & ME

Dr. Mahesh G. Huddar

Dept. of Computer Science and Engineering

CSE, HIT, Nidasoshi

https://hsit.ac.in/nba-accreditation-status.php

• In compiler model, the parser obtains a string of tokens from the lexical analyzer, as

shown in Fig, and verifies that the string of token names can be generated by the grammar

for the source language.

The Role of the Parser

CSE, HIT, Nidasoshi

• We expect the parser to report any syntax errors in an intelligible fashion and to

recover from commonly occurring errors to continue processing the remainder of

the program.

• Conceptually, for well-formed programs, the parser constructs a parse tree and

passes it to the rest of the compiler for further processing.

• There are three general types of parsers for grammars: universal, top-down, and

bottom-up.

• Universal parsing methods such as the Cocke-Younger-Kasami algorithm and

Earley's algorithm can parse any grammar

The Role of the Parser

CSE, HIT, Nidasoshi

• The methods commonly used in compilers can be classified as being either top-

down or bottom-up.

• As implied by their names, top-down methods build parse trees from the top

(root) to the bottom (leaves).

• Bottom-up methods start from the leaves and work their way up to the root.

• In either case, the input to the parser is scanned from left to right, one symbol at a

time.

The Role of the Parser

CSE, HIT, Nidasoshi

• If a compiler had to process only correct programs, its design and implementation would

be simplified greatly.

• However, a compiler is expected to assist the programmer in locating and tracking down

errors that inevitably creep into programs, despite the programmer's best efforts.

• Strikingly, few languages have been designed with error handling in mind, even though

errors are so commonplace.

• Most programming language specifications do not describe how a compiler should

respond to errors; error handling is left to the compiler designer.

• Planning the error handling right from the start can both simplify the structure of a

compiler and improve its handling of errors.

Syntax Error Handling

CSE, HIT, Nidasoshi

Common programming errors can occur at many different levels.

1. Lexical errors include misspellings of identifiers, keywords, or operators - e.g., the use of

an identifier elipsesize instead of ellipsesize – and missing quotes around text intended as a

string.

2. Syntactic errors include misplaced semicolons or extra or missing braces.

3. Semantic errors include type mismatches between operators and operands. An example is a

return statement in a Java method with result type void.

4. Logical errors can be anything from incorrect reasoning on the part of the programmer to

the use in a C program of the assignment operator = instead of the comparison operator ==.

Syntax Error Handling

CSE, HIT, Nidasoshi

The error handler in a parser has goals that are simple to state but challenging to

realize:

• Report the presence of errors clearly and accurately.

• Recover from each error quickly enough to detect subsequent errors.

• Add minimal overhead to the processing of correct programs.

Syntax Error Handling

CSE, HIT, Nidasoshi

• Once an error is detected, how should the parser recover? Although no strategy

has proven itself universally acceptable, a few methods have broad applicability.

• The simplest approach is for the parser to quit with an informative error message

when it detects the first error.

• The following recovery strategies implemented in parser: panic-mode, phrase-

level, error-productions, and global-correction.

Error-Recovery Strategies

CSE, HIT, Nidasoshi

1. Panic-Mode Recovery

• With this method, on discovering an error, the parser discards input symbols one at a time until one of

a designated set of synchronizing tokens is found.

• The synchronizing tokens are usually delimiters, such as semicolon or }, whose role in the source

program is clear and unambiguous.

• The compiler designer must select the synchronizing tokens appropriate for the source language.

• While panic-mode correction often skips a considerable amount of input without checking it for

additional errors, it has the advantage of simplicity, and, unlike some methods to be considered later,

is guaranteed not to go into an infinite loop.

• Example: int a, 5abcd, sum, $2;

Error-Recovery Strategies

CSE, HIT, Nidasoshi

Advantage:

1. It’s easy to use.

2. The program never falls into the loop.

Disadvantage:

1. This technique may lead to runtime error in further stages.

Error-Recovery Strategies

CSE, HIT, Nidasoshi

2. Phrase-Level Recovery

• On discovering an error, a parser may perform local correction on the remaining input; that is, it

may replace a prefix of the remaining input by some string that allows the parser to continue.

• A typical local correction is to replace a comma by a semicolon, delete an extraneous

semicolon, or insert a missing semicolon.

• The choice of the local correction is left to the compiler designer.

• Phrase-level replacement has been used in several error-repairing compilers, as it can correct

any input string. Its major drawback is the difficulty it has in coping with situations in which

the actual error has occurred before the point of detection.

Error-Recovery Strategies

CSE, HIT, Nidasoshi

• Example:

• int a,b

• // AFTER RECOVERY:

• int a,b;

• Advantages: This method is used in many errors repairing compilers.

• Disadvantages: While doing the replacement the program should be prevented from falling into an

infinite loop.

Error-Recovery Strategies

CSE, HIT, Nidasoshi

3. Error Productions

• By anticipating common errors that might be encountered, we can augment the grammar for the

language at hand with productions that generate the erroneous constructs.

• A parser constructed from a grammar augmented by these error productions detects the anticipated

errors when an error production is used during parsing.

• The parser can then generate appropriate error diagnostics about the erroneous construct that has been

recognized in the input.

Error-Recovery Strategies

CSE, HIT, Nidasoshi

Example: Suppose the input string is abcd.

Grammar: S-> A

A-> aA | bA | a | b

B-> cd

Grammar: E->SB // AUGMENT THE GRAMMAR

S-> A

A-> aA| bA | a | b

B-> cd

Now, string abcd is possible to obtain.

Error-Recovery Strategies

CSE, HIT, Nidasoshi

4. Global Correction

• Ideally, we would like a compiler to make as few changes as possible in processing an

incorrect input string.

• There are algorithms for choosing a minimal sequence of changes to obtain a globally

least-cost correction.

• Given an incorrect input string x and grammar G, these algorithms will find a parse tree

for a related string y, such that the number of insertions, deletions, and changes of tokens

required to transform x into y is as small as possible. Unfortunately, these methods are in

general too costly to implement in terms of time and space, so these techniques are

currently only of theoretical interest.

Error-Recovery Strategies

CSE, HIT, Nidasoshi

• Grammars systematically describe the syntax of programming language constructs like

expressions and statements.

• Using a syntactic variable stmt to denote statements and variable expr to denote

expressions, the production

• specifies the structure of conditional statement.

Context-Free Grammars

CSE, HIT, Nidasoshi

A context-free grammar (grammar for short) consists of terminals, non-terminals, a

start symbol, and productions.

1. Terminals are the basic symbols from which strings are formed. In the previous

example, the terminals are the keywords if and else and the symbols “(“ and “)”.

2. Non-terminals are syntactic variables that denote sets of strings. In the previous

example, stmt and expr are non-terminals.

The Formal Definition of a Context-Free Grammar

CSE, HIT, Nidasoshi

3. In a grammar, one nonterminal is distinguished as the start symbol. Conventionally, the

productions for the start symbol are listed first.

4. The productions of a grammar specify the manner in which the terminals and non-

terminals can be combined to form strings.

Each production consists of:

a) A nonterminal called the head or left side of the production.

b) The symbol →. or ::=.

c) A body or right side consisting of zero or more terminals and non-terminals. The

components of the body describe one way in which strings of the nonterminal at the

head can be constructed.

The Formal Definition of a Context-Free Grammar

CSE, HIT, Nidasoshi

Example:

• The below grammar defines simple arithmetic expressions.

• In this grammar, the terminal symbols are id, +, -, *, /, (,) and The nonterminal symbols

are expression, term and factor, and expression is the start symbol

The Formal Definition of a Context-Free Grammar

CSE, HIT, Nidasoshi

Notational Conventions:

1. The symbols are terminals:

a) Lowercase letters in the alphabet, such as a, b, c.

b) Operator symbols such as +, *, and so on.

c) Punctuation symbols such as parentheses, comma, and so on.

d) The digits 0,1,. . . ,9.

e) Boldface strings such as id or if, each of which represents a single terminal symbol.

The Formal Definition of a Context-Free Grammar

CSE, HIT, Nidasoshi

2. The symbols are non-terminals:

a) Uppercase letters early in the alphabet, such as A, B, C.

b) The letter S, which, when it appears, is usually the start symbol.

c) Lowercase, italic names such as expr or stmt.

d) When discussing programming constructs, uppercase letters may be used to represent

non-terminals for the constructs. For example, non-terminals for expressions, terms, and

factors are often represented by E, T, and F, respectively.

The Formal Definition of a Context-Free Grammar

CSE, HIT, Nidasoshi

3. A set of productions A → αl, A→ α2, . . . , A→ αk with a common head A (call

them A-productions), may be written A → αl | α2
……| αk. Call αl, α2,

….. αk the

alternatives for A.

4. Unless stated otherwise, the head of the first production is the start symbol.

The Formal Definition of a Context-Free Grammar

CSE, HIT, Nidasoshi

• Using these conventions, the previous grammar can be rewritten concisely as

The Formal Definition of a Context-Free Grammar

CSE, HIT, Nidasoshi

• The construction of a parse tree can be made precise by taking a derivational

view, in which productions are treated as rewriting rules.

• Beginning with the start symbol, each rewriting step replaces a nonterminal by

the body of one of its productions.

• This derivational view corresponds to the top-down construction of a parse tree

Context-Free Grammar - Derivations

CSE, HIT, Nidasoshi

• For example, consider the following grammar,

• The production E → - E signifies that if E denotes an expression, then – E must also

denote an expression.

• The replacement of a single E by - E will be described by writing

• which is read, "E derives -E."

Context-Free Grammar - Derivations

CSE, HIT, Nidasoshi

• The production E → (E) can be applied to replace any instance of E in any

string of grammar symbols by (E).

• We can take a single E and repeatedly apply productions in any order to get a

sequence of replacements.

• For example,

• We call such a sequence of replacements a derivation of -(id) from E.

Context-Free Grammar - Derivations

CSE, HIT, Nidasoshi

• The string -(id + id) can be derived as shown below,

• Alternate derivation,

Context-Free Grammar - Derivations

CSE, HIT, Nidasoshi

To understand how parsers work, we shall consider derivations in which the nonterminal to

be replaced at each step is chosen as follows:

1. In lefimost derivations, the leftmost nonterminal in each sentential is always chosen.

2. In rightmost derivations, the rightmost nonterminal is always chosen

Context-Free Grammar - Derivations

CSE, HIT, Nidasoshi

• A parse tree is a graphical representation of a derivation that filters out the order

in which productions are applied to replace nonterminals.

• Each interior node of a parse tree represents the application of a production.

• The interior node is labeled with the ont terminal A in the head of the production;

the children of the node are labeled, from left to right, by the symbols in the body

of the production by which this A was replaced during the derivation.

Context-Free Grammar - Parse Trees and Derivations

CSE, HIT, Nidasoshi

Context-Free Grammar - Parse Trees and Derivations

CSE, HIT, Nidasoshi

Context-Free Grammar - Parse Trees and Derivations

CSE, HIT, Nidasoshi

• A grammar that produces more than one parse tree for some sentence is said to be

ambiguous.

• Put another way, an ambiguous grammar is one that produces more than one leftmost

derivation or more than one rightmost derivation for the same sentence.

• For example: Derivation for → id + id * id with below gramer

Context-Free Grammar - Ambiguity

CSE, HIT, Nidasoshi

Context-Free Grammar - Ambiguity

CSE, HIT, Nidasoshi

Context-Free Grammar - Ambiguity

CSE, HIT, Nidasoshi

• In all programming languages with conditional statements of this form, the first

parse tree is preferred.

• The general rule is, “Match each else with the closest unmatched then.”

• This disambiguating rule can theoretically be incorporated directly into a

grammar, but in practice it is rarely built into the productions.

Context-Free Grammar - Ambiguity

CSE, HIT, Nidasoshi

• Unambiguous grammar

Context-Free Grammar - Ambiguity

CSE, HIT, Nidasoshi

• A grammar is left recursive if it has a nonterminal A such that there is a derivation

• Top-down parsing methods cannot handle left-recursive grammars, so a transformation is

needed to eliminate left recursion.

Elimination of Left Recursion

CSE, HIT, Nidasoshi

• Immediate Left Recursion

Elimination of Left Recursion

CSE, HIT, Nidasoshi

• Indirect Left Recursion

Elimination of Left Recursion

CSE, HIT, Nidasoshi

• A left-recursive pair of productions

• could be replaced by the non-left-recursive productions:

• without changing the strings derivable from A. This rule by itself suffices for many

grammars

Elimination of Left Recursion

CSE, HIT, Nidasoshi

Elimination of Left Recursion

CSE, HIT, Nidasoshi

Elimination of Left Recursion

CSE, HIT, Nidasoshi

Elimination of Left Recursion

CSE, HIT, Nidasoshi

• Eliminate Immediate Recursion

Elimination of Left Recursion

CSE, HIT, Nidasoshi

• Eliminate Immediate Recursion

Elimination of Left Recursion

CSE, HIT, Nidasoshi

• Eliminate Indirect Recursion

Elimination of Left Recursion

CSE, HIT, Nidasoshi

• Eliminate Indirect Recursion

Elimination of Left Recursion

CSE, HIT, Nidasoshi

• Eliminate Indirect Recursion

Elimination of Left Recursion

CSE, HIT, Nidasoshi

• Eliminate Indirect Recursion

Elimination of Left Recursion

CSE, HIT, Nidasoshi

Left Factoring

CSE, HIT, Nidasoshi

Left Factoring

CSE, HIT, Nidasoshi

• Example 1:

Left Factoring

CSE, HIT, Nidasoshi

• Example:

Left Factoring

CSE, HIT, Nidasoshi

• Example 2:

Left Factoring

CSE, HIT, Nidasoshi

• Example 2:

Left Factoring

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

• Top-down parsing can be viewed as the problem of constructing a parse tree for

the input string, starting from the root and creating the nodes of the parse tree in

preorder.

• Equivalently, top-down parsing can be viewed as finding a leftmost derivation for

an input string.

Top-Down Parsing

CSE, HIT, Nidasoshi

• Input String: id+id*id

Top-Down Parsing

CSE, HIT, Nidasoshi

• Input String: id+id*id

CSE, HIT, Nidasoshi

• A recursive-descent parsing program consists of a set of procedures, one for each nonterminal.

• Execution begins with the procedure for the start symbol, which halts and announces success if its

procedure body scans the entire input string.

• Pseudocode for a typical nonterminal appears in Fig

Top-Down Parsing - Recursive-Descent Parsing

CSE, HIT, Nidasoshi

• General recursive-descent may require backtracking; that is, it may require

repeated scans over the input.

• However, backtracking is rarely needed to parse programming language

constructs, so backtracking parsers are not seen frequently.

• Even for situations like natural language parsing, backtracking is not very

efficient, and tabular methods are preferred.

Top-Down Parsing - Recursive-Descent Parsing

CSE, HIT, Nidasoshi

• Consider the grammar

• To construct a parse tree top-down for the input string w = cad.

• Begin with a tree consisting of a single node labeled S, and the input pointer pointing to c,

the first symbol of w.

• S has only one production, so we use it to expand S and obtain the tree of Fig (a).

• The leftmost leaf, labeled c, matches the first symbol of input w, so we advance the input

pointer to a, the second symbol of w, and consider the next leaf, labeled A.

Top-Down Parsing - Recursive-Descent Parsing

CSE, HIT, Nidasoshi

• Now, we expand A using the first alternative A -+ a b to obtain the tree of Fig. (b).

• We have a match for the second input symbol, a, so we advance the input pointer to d, the

third input symbol, and compare d against the next leaf, labeled b.

• Since b does not match d, we report failure and go back to A to see whether there is

another alternative for A that has not been tried, but that might produce a match.

• In going back to A, we must reset the input pointer to position 2, the position it had when

we first came to A, which means that the procedure for A must store the input pointer in a

local variable.

Top-Down Parsing - Recursive-Descent Parsing

CSE, HIT, Nidasoshi

• The second alternative for A produces the tree of Fig. (c).

• The leaf a matches the second symbol of w and the leaf d matches the third symbol.

• Since we have produced a parse tree for w, we halt and announce successful completion of

parsing.

Top-Down Parsing - Recursive-Descent Parsing

CSE, HIT, Nidasoshi

• The construction of both top-down and bottom-up parsers is aided by two functions,

FIRST and FOLLOW, associated with a grammar G.

• During topdown parsing, FIRST and FOLLOW allow us to choose which production to

• apply, based on the next input symbol.

• During panic-mode error recovery, sets of tokens produced by FOLLOW can be used as

synchronizing tokens.

Top-Down Parsing - FIRST and FOLLOW

CSE, HIT, Nidasoshi

• To compute FIRST(X) for all grammar symbols X, apply the following rules until no more

terminals or E: can be added to any FIRST set.

Top-Down Parsing - FIRST and FOLLOW

CSE, HIT, Nidasoshi

1. FIRST(F) = FIRST(T) = FIRST(E) = {(, id}. To see why, note that the two productions for F have

bodies that start with these two terminal symbols, id and the left parenthesis. T has only one

production, and its body starts with F. Since F does not derive ε, FIRST(T) must be the same as

FIRST(F). The same argument covers FIRST(E).

2. FIRST(E') = {+, ε}. The reason is that one of the two productions for E’ has a body that begins with

terminal +, and the other's body is E. Whenever a nonterminal derives E, we place E in FIRST for

that nonterminal.

3. FIRST(T') = {*, ε}. The reasoning is analogous to that for FIRST(E').

Top-Down Parsing - FIRST and FOLLOW

CSE, HIT, Nidasoshi

• FIRST(F) = FIRST(T) = FIRST(E) = {(, id}. To see why, note that the two productions for F have

bodies that start with these two terminal symbols, id and the left parenthesis. T has only one

production, and its body starts with F. Since F does not derive ε, FIRST(T) must be the same as

FIRST(F). The same argument covers FIRST(E).

• FIRST(E') = {+, ε}. The reason is that one of the two productions for E’ has a body that begins with

terminal +, and the other's body is E. Whenever a nonterminal derives E, we place E in FIRST for

that nonterminal.

• FIRST(T') = {*, ε}. The reasoning is analogous to that for FIRST(E').

Top-Down Parsing - FIRST and FOLLOW

CSE, HIT, Nidasoshi

• To compute FOLLOW(A) for all non-terminals A, apply the following rules until nothing

can be added to any FOLLOW set.

Top-Down Parsing - FIRST and FOLLOW

CSE, HIT, Nidasoshi

• FOLLOW(E) = FOLLOW(E') = {), $ }. Since E is the start symbol, FOLLOW(E) must

contain $. The production body (E) explains why the right parenthesis is in

FOLLOW(E). For E', note that this nonterminal appears only at the ends of bodies of E-

productions. Thus, FOLLOW(E') must be the same as FOLLOW(E).

Top-Down Parsing - FIRST and FOLLOW

CSE, HIT, Nidasoshi

• FOLLOW(T) = FOLLOW(T') = {+,), $}. Notice that T appears in bodies only followed

by E'. Thus, everything except ε that is in FIRST(E') must be in FOLLOW (T) ; that

explains the symbol +. However, since FIRST(E’) contains ε, and E' is the entire string

following T in the bodies of the E-productions, everything in FOLLOW(E') must also be

in FOLLOW(T). That explains the symbols $ and the right parenthesis.

• As for T', since it appears only at the ends of the T-productions, it must be that

FOLLOW(T') = FOLLOW(T)

Top-Down Parsing - FIRST and FOLLOW

CSE, HIT, Nidasoshi

• FOLLOW(F) = {+, *,), $}. The reasoning is analogous to that for T in point.

Top-Down Parsing - FIRST and FOLLOW

CSE, HIT, Nidasoshi

• Predictive parsers, that is, recursive-descent parsers needing no backtracking, can

be constructed for a class of grammars called LL(1).

• The first "L" in LL(1) stands for scanning the input from left to right, the second

"L" for producing a leftmost derivation, and the "1" for using one input symbol

of lookahead at each step to make parsing action decisions.

• The class of LL(1) grammars is rich enough to cover most programming

constructs, although care is needed in writing a suitable grammar for the source

language. For example, no left-recursive or ambiguous grammar can be LL(1)

Top-Down Parsing - LL(1) Grammars

CSE, HIT, Nidasoshi

• If, after performing the above steps, there is no production at all in M[A, a], then

set M[A, a] to error.

Top-Down Parsing – Predictive Parsing Table

CSE, HIT, Nidasoshi

• If, after performing the above steps, there is no production at all in M[A, a], then

set M[A, a] to error.

Top-Down Parsing – Predictive Parsing Table

CSE, HIT, Nidasoshi

Top-Down Parsing – Predictive Parsing Table

CSE, HIT, Nidasoshi

• A nonrecursive predictive parser can be built by maintaining a stack explicitly, rather than

implicitly via recursive calls. The parser mimics a leftmost derivation.

• If w is the input that has been matched so far, then the stack holds a sequence of grammar

symbols a such that

Top-Down Parsing – Nonrecursive (Table-driven) Predictive Parsing

CSE, HIT, Nidasoshi

• The table-driven parser in previous Fig. has an input buffer, a stack containing a sequence

of grammar symbols, a parsing table, and an output stream.

• The input buffer contains the string to be parsed, followed by the endmarker $. We reuse

the symbol $ to mark the bottom of the stack, which initially contains the start symbol of

the grammar on top of $.

• The parser is controlled by a program that considers X, the symbol on top of the stack, and

a, the current input symbol.

• If X is a nonterminal, the parser chooses an X-production by consulting entry M[X, a] of

the parsing table M.

• Otherwise, it checks for a match between the terminal X and current input symbol a.

Top-Down Parsing – Nonrecursive (Table-driven) Predictive Parsing

CSE, HIT, Nidasoshi

• Example input string:

• id + id * id

Top-Down Parsing – Nonrecursive (Table-driven) Predictive Parsing

CSE, HIT, Nidasoshi

• INPUT: A string w and a parsing table M for grammar G.

• OUTPUT: If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

Top-Down Parsing – Nonrecursive (Table-driven) Predictive Parsing

CSE, HIT, Nidasoshi

• An error is detected during predictive parsing when the terminal on top of the stack does

not match the next input symbol or

• when nonterminal A is on top of the stack, a is the next input symbol, and M[A,a] is error

(i.e., the parsing-table entry is empty).

• There are two ways to recover form error.

1. Panic Mode Recovery

2. Phrase Level Error Recovery

Top-Down Parsing – Error Recovery in Predictive Parsing

CSE, HIT, Nidasoshi

• Panic Mode Recovery

• Panic-mode error recovery is based on the idea of skipping symbols on the input until a

token in a selected set of synchronizing tokens appears.

• Its effectiveness depends on the choice of synchronizing set.

– Usually, we use FOLLOW symbols as synchronizing tokens

– Use synch in predictive parse table to indicate the synchronizing token obtained from

FOLLOW SET of the non-terminal.

Top-Down Parsing – Error Recovery in Predictive Parsing

CSE, HIT, Nidasoshi

• Panic Mode Recovery - Rules

1. If parser looks up entry M[A, a] and finds it blank then the input symbol a is skipped.

2. If the entry in synch then the non-terminal on the top of the stack is popped in an attempt

to resume the parsing.

3. If the token on the top of the stack does not match the input symbol, then we pop the

input from the stack.

Top-Down Parsing – Error Recovery in Predictive Parsing

CSE, HIT, Nidasoshi

Top-Down Parsing – Error Recovery in Predictive Parsing

CSE, HIT, Nidasoshi

Top-Down Parsing – Error Recovery in Predictive Parsing

CSE, HIT, Nidasoshi

Phrase-level Recovery

• Phrase-level error recovery is implemented by filling in the blank entries in the predictive

parsing table with pointers to error routines.

• These routines may change, insert, or delete symbols on the input and issue appropriate

error messages.

Top-Down Parsing – Error Recovery in Predictive Parsing

CSE, HIT, Nidasoshi

• A bottom-up parse corresponds to the construction of a parse tree for an input string

beginning at the leaves (the bottom) and working up towards the root (the top).

• It is convenient to describe parsing as the process of building parse trees, although a front

end may in fact carry out a translation directly without building an explicit tree.

Bottom-Up Parsing

CSE, HIT, Nidasoshi

• We can think of bottom-up parsing as the process of "reducing" a string w to the

start symbol of the grammar.

• At each reduction step, a specific substring matching the body of a production

is replaced by the nonterminal at the head of that production.

• The key decisions during bottom-up parsing are about when to reduce and about

what production to apply, as the parse proceeds.

Bottom-Up Parsing – Reductions

CSE, HIT, Nidasoshi

• The strings in this sequence are formed from the roots of all the subtrees in the snapshots. The

sequence starts with the input string id*id.

• The first reduction produces F * id by reducing the leftmost id to F, using the production F -+

id.

• The second reduction produces T * id by reducing F to T.

• Now, we have a choice between reducing the string T, which is the body of E -+ T, and the

string consisting of the second id, which is the body of F -+ id.

• Rather than reduce T to E, the second id is reduced to T, resulting in the string T * F.

• This string then reduces to T.

• The parse completes with the reduction of T to the start symbol E.

Bottom-Up Parsing – Reductions

CSE, HIT, Nidasoshi

• Bottom-up parsing during a left-to-right scan of the input constructs a rightmost derivation in

reverse.

• Informally, a "handle" is a substring that matches the body of a production, and whose

reduction represents one step along the reverse of a rightmost derivation.

• For example, adding subscripts to the tokens id for clarity, the handles during the parse of idl *

id2.

• Although T is the body of the production E → T, the symbol T is not a handle in the sentential

form T * id2.

• If T were indeed replaced by E, we would get the string E * id2, which cannot be derived from

the start symbol E.

• Thus, the leftmost substring that matches the body of some production need not be a handle.

Bottom-Up Parsing – Handle Pruning

CSE, HIT, Nidasoshi

Bottom-Up Parsing – Handle Pruning

CSE, HIT, Nidasoshi

• S → aABc

• A →Abc | b

• B → d

• Input String: abbcde

Bottom-Up Parsing – Handle Pruning

CSE, HIT, Nidasoshi

• Shift-reduce parsing is a form of bottom-up parsing in which a stack holds

grammar symbols and an input buffer holds the rest of the string to be parsed.

• As we shall see, the handle always appears at the top of the stack just before it is

identified as the handle.

• We use $ to mark the bottom of the stack and also the right end of the input.

• Conventionally, when discussing bottom-up parsing, we show the top of the stack

on the right, rather than on the left as we did for top-down parsing.

Bottom-Up Parsing – Shift-Reduce Parsing

CSE, HIT, Nidasoshi

• Initially, the stack is empty, and the string w is on the input, as follows:

• During a left-to-right scan of the input string, the parser shifts zero or more input symbols onto

the stack, until it is ready to reduce a string P of grammar symbols on top of the stack.

• It then reduces ,O to the head of the appropriate production.

• The parser repeats this cycle until it has detected an error or until the stack contains the start

symbol and the input is empty.

Bottom-Up Parsing – Shift-Reduce Parsing

CSE, HIT, Nidasoshi

Bottom-Up Parsing – Shift-Reduce Parsing

CSE, HIT, Nidasoshi

While the primary operations are shift and reduce, there are actually four possible

actions a shift-reduce parser can make: (1) shift, (2) reduce, (3) accept, and (4) error.

1.Shift. Shift the next input symbol onto the top of the stack.

2. Reduce. The right end of the string to be reduced must be at the top of the stack.

Locate the left end of the string within the stack and decide with what nonterminal

to replace the string.

3. Accept. Announce successful completion of parsing.

4. Error. Discover a syntax error and call an error recovery routine.

Bottom-Up Parsing – Shift-Reduce Parsing

CSE, HIT, Nidasoshi

E → E+T | T

T → T*F | F

F → (E) | id

Input String: (id) + id

Bottom-Up Parsing – Shift-Reduce Parsing

CSE, HIT, Nidasoshi

S → 0S) | 1S1 | 2

Input string: 10201

Bottom-Up Parsing – Shift-Reduce Parsing

CSE, HIT, Nidasoshi

• There are context-free grammars for which shift-reduce parsing cannot be used.

• Every shift-reduce parser for such a grammar can reach a configuration in which the parser,

knowing the entire stack contents and the next input symbol, cannot decide whether to shift

or to reduce (a shift/reduce conflict), or cannot decide which of several reductions to

make (a reduce/reduce conflict).

• Two types of Conflicts:

1. Shift-Reduce Conflict

2. Reduce-Reduce Conflict

Bottom-Up Parsing – Conflicts During Shift-Reduce Parsing

CSE, HIT, Nidasoshi

• Shift-Reduce Conflict

– Whether to shift the next input symbol or reduce the current handle

• Example:

• S →AB

• A → 0S | 1S

• B → 0S1 | 1S1

• Input String: 0S1S1

Bottom-Up Parsing – Conflicts During Shift-Reduce Parsing

CSE, HIT, Nidasoshi

• Reduce-Reduce Conflict

– During Parsing with known stack contents and the next input symbol, the parser identifies the handle on the

top of stack (TOS), the parser can reduce the handle by applying production. But there is a possibility to

apply one more production to the same handle. So, the parser cannot decide which production to apply to

reduce the handle. That is “which of the several production to apply”

• Example:

• S →AB

• A → 0S | 1S

• B → 0S1 | 1S

• Input String: 0S1S

Bottom-Up Parsing – Conflicts During Shift-Reduce Parsing

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

1. Separating the syntactic structure of a language into lexical and nonlexical parts provides

a convenient way of modularizing the front end of a compiler into two manageable-sized

components.

2. The lexical rules of a language are frequently quite simple, and to describe them we do

not need a notation as powerful as grammars.

3. Regular expressions generally provide a more concise and easier-to-understand notation

for tokens than grammars.

4. More efficient lexical analyzers can be constructed automatically from regular

expressions than from arbitrary grammars.

Lexical Versus Syntactic Analysis

CSE, HIT, Nidasoshi

