SYSTEM SOFTWARE 10CS52

UNIT-4

LOADERS AND LINKERS

Introduction

The Source Program written in assembly language or high level language will be
converted to object program, which is in the machine language form for.execution. This
conversion either from assembler or from compiler, contains translated instructions and data
values from the source program, or specifies addresses in primary memory where these items

are to be loaded for execution.
This contains the following three processes, and they are,

e Loading - which allocates memory location.and. brings the object program into
memory for execution - (Loader)

e Linking- which combines two or more-separate object programs and supplies the
information needed to allow references between them - (Linker)

e Relocation - which modifies.the object program so that it can be loaded at an address

different from the location originally specified - (Linking Loader)
4.1 Basic Loader Functions:

A loader is a system program that performs the loading function. It brings object program
into memory and. starts”its execution. The role of loader is as shown in the figure 4.1.
Translator-may be assembler/complier, which generates the object program and later loaded
to the memory by the loader for execution. In figure 4.2 the translator is specifically an
assembler, which generates the object loaded, which becomes input to the loader. The

figure4.3 shows the role of both loader and linker.

CITSTUDENTS.IN 68

Admin
Highlight

Admin
Highlight

Admin
Highlight

SYSTEM SOFTWARE 10CS52

Source Object
Translator Object
Program Program

program
ready for
execution
Memory
Figure 4.1.:-The Role of LLoader
Source Object
—>
Assembler Object
Program Program
program
ready for
execution
Memory

CITSTUDENTS.IN 69

SYSTEM SOFTWARE 10CS52

Figure 4.2: The Role of Loader with Assembler

Object
Source —
Assembler
Program
rrogem Object
l program
Executable ready for
execution
Coge
Loader
Memory
Figure.4.3: The Role of both Loader and Linker
Type of Loaders

The different types of loaders are, absolute loader, bootstrap loader, relocating loader
(relative loader); and, direct linking loader. The following sections discuss the functions and

design ofall these types of loaders.

4.1.1Design of Absolute Loader:

The operation of absolute loader is very simple. The object code is loaded to specified
locations in the memory. At the end the loader jumps to the specified address to begin

execution of the loaded program. The role of absolute loader is as shown in the figure 4.4.

CITSTUDENTS.IN 70

SYSTEM SOFTWARE 10CS52

The advantage of absolute loader is simple and efficient. But the disadvantages are, the need

for programmer to specify the actual address, and, difficult to use subroutine libraries.

. 1000
Object Absolute
Program Object
program
ready for
execution
2000
Memory

Figure 4.4: The Role of Absolute Loader

The algerithm-for this type of loader is given here. The object program and, the object
program loaded into memory by the absolute loader are also shown. Each byte of
assembled code is given using its hexadecimal representation in character form. Easy to read
by lhuman beings. Each byte of object code is stored as a single byte. Most machine store
object programs in a binary form, and we must be sure that our file and device conventions

do not cause some of the program bytes to be interpreted as control characters.
Begin
read Header record

verify program name and length

CITSTUDENTS.IN 71

SYSTEM SOFTWARE 10CS52

read first Text record
while record type is <> ‘E’ do
begin
{if object code is in character form, convert into internal representation}
move object code to specified location in memory
read next object program record
end
jump to address specified in End record

end

HA(')UPY ._\CC 1060061 074

TAJU!UU(;:,\] I‘%,\l&l(.‘ii%&ﬁZﬁ.’j%\[lt] 1{73(5{28 03(%30101 %82[]61:\3&!UOSA{JOI02:\})81039!\%1029
'I}f)(}l Olb}h_ljﬂpcl 03():352061;@81033._,54(3000(2*\454?59.(}00003AQ(}IJUU[)

'12\902039}‘1 I:.Ui; } {)3[1,\})0 l(}3Q\E0205%\30203!:'%1‘:82051)528 1 03[}-\30205?&5&QU”,-.?CZOSEQBEOB’F
’I}pOZUS?hl thO.l 0 BQA:!&CUOUQ\'F ‘..aPOWOQ»F’““%ON 7%30206@\50903%002();‘2&201 J36
T.A.("MU?%'.,O ?)\38206@(.‘000%5

E0ULOGO
h (a) Object program

CITSTUDENTS.IN 72

SYSTEM SOFTWARE 10CS52
Memory
address Contents

a0Go EARRXKEX HXEXXXXX REXMNXXXE HEXXXXXXX

oulo XXXXXXKXE XXFEXEANXN XAXXXRXX XXAKKXAX

» [» L] a

» ®] [] a

- [] [] * >
DFFO FXEXXXKE XARXKMXX XXEXXXXK XAAXXKRX
000 4102348 20320010 36281030 30101548
10190 200613C10 0300102A 0C103900 102n0Ci0
102G 36482061 ORBIC3I34C Q000454 4600CCU3
1030 DOGO00EX MHUYXXXXX HXXXNXXR xxxxxxxx""'copY

L » [] » []

L > [» [

L » [] | 3 L]
2030 KXKKXKXXEX RXXRXXX® xx041030- GUIOI0ED
2040 J053D3020 3FDEZOS5L 281030830 0 20575490
2G50 39ZC204F 38203F10 10384000 QCRIOCIC
2060 00041030 EG207930 20645080 3I8DC2079
2070 [2€103638 20644C50 DODJRR®E, XXXXXXXX
2080 KXKXXKXAXKK AXMXXXEX / XXXKRBEELX XXXXXXXX

] ® [] L] []

L] L] L] L | »

] L L | L]

(o)

Program loaded in memory

4.1.2 A Simple Bootstrap Loader

When a computer, is first turned on or restarted, a special type of absolute loader, called

bootstrap loader is executed. This bootstrap loads the first program to be run by the computer

-- usually an operating. system. The bootstrap itself begins at address 0. It loads the OS

starting address.0x80. No header record or control information, the object code is

consecutive bytes of memory.

The algorithm for the bootstrap loader is as follows

Begin

X=0x80 (the address of the next memory location to be loaded

Loop

CITSTUDENTS.IN

73

SYSTEM SOFTWARE 10CS52

A«GETC (and convert it from the ASCII character
code to the value of the hexadecimal digit)
save the value in the high-order 4 bits of S
A«<GETC
combine the value to form one byte A« (A+S)
store the value (in A) to the address in register X
XeX+1
End
It uses a subroutine GETC, which is
GETC A<«—read one character
if A=0x04 then jump to 0x80
if A<48 then GETC
A « A-48 (0x30)
if A<10.then return
As< A-7
return
4.2, Machine-Dependent Loader Features

Absolute loader is simple and efficient, but the scheme has potential disadvantages One of
the most disadvantage is the programmer has to specify the actual starting address, from
where the program to be loaded. This does not create difficulty, if one program to run, but

not for several programs. Further it is difficult to use subroutine libraries efficiently.

CITSTUDENTS.IN 74

Admin
Highlight

SYSTEM SOFTWARE 10CS52

This needs the design and implementation of a more complex loader. The loader must

provide program relocation and linking, as well as simple loading functions.

4.2.1 Relocation

The concept of program relocation is, the execution of the object program using any part of
the available and sufficient memory. The object program is loaded into memory wherever
there is room for it. The actual starting address of the object program is not known-until load
time. Relocation provides the efficient sharing of the machine with larger.memory:and when
several independent programs are to be run together. It also supports the ‘'use ofisubroutine
libraries efficiently. Loaders that allow for program relocation are.called relocating loaders or

relative loaders.
Methods for specifying relocation

Use of modification record and, use of relocation:bit;, are the methods available for
specifying relocation. In the case of modification record’, a'modification record M is used in
the object program to specify any relogation, In_the case of use of relocation bit, each
instruction is associated with one relocation bit and, these relocation bits in a Text record is

gathered into bit masks.

Modification records are used-in-complex machines and is also called Relocation and
Linkage Directory (RLD) specification. The format of the modification record (M) is as

follows. The object program with relocation by Modification records is also shown here.

Modification record

col 1: M

col 2-7: relocation address
col 8-9: length (halfbyte)
col 10: flag (+/-)

col 11-17: segment name

CITSTUDENTS.IN 75

SYSTEM SOFTWARE 10CS52

HACOPY ,000000 001077

TA000000 ,1DA17202DA69202D»48101036,...,04B105DA3F2FECA032010
TA00001D»13,0F2016,010003,0F200D,4B10105D,3E2003,454F46
TA001035 ,1D,B410,B400,B440,75101000,...1332008,57C003,B850
TA001053,1DA3B2FEAA134000,4F00004F14..453C003,DF2008,B850
TA00070,07,3B2FEF,4F0000,05

MA000007,05+COPY

MA000014,05+COPY

MA000027,05+COPY

EA000000

The relocation bit method is.used for simple machines. Relocation bit is 0: no
modification is necessary, and. is'1: modification is needed. This is specified in the columns

10-12 of text record (T)ythe format of text record, along with relocation bits is as follows.
Text record:
coll: T
col 2-7: starting address
col 8-9: length (byte)
col 10-12: relocation bits
col 13-72: object code

Twelve-bit mask is used in each Text record (col:10-12 — relocation bits), since each

text record contains less than 12 words, unused words are set to 0, and, any value that is to be

CITSTUDENTS.IN 76

SYSTEM SOFTWARE 10CS52

modified during relocation must coincide with one of these 3-byte segments. For absolute
loader, there are no relocation bits column 10-69 contains object code. The object program
with relocation by bit mask is as shown below. Observe FFC - means all ten words are to be
modified and, EOO - means first three records are to be modified.

HACOPY ,000000 00107A
TA000000,1E,FFC4140033,481039,000036,280030,300015,...,3C0003 , ...
TA00001E,15,E00,0C0036,481061,080033,4C0000,...,000003,000000

TA001039,1E,FFC,040030,000030,4...,30103F,D8105D,280030,4...

T,001057,0A,800,100036,4C0000,F1,001000
T,001061,19,FE0,040030,E01079,...,508039,DC1079,2C0036,...
EA000000

4.2.2 Program Linking

The Goal of program linking is.to resolve the problems with external references
(EXTREF) and external definitions (EXTDEF) from different control sections.

EXTDEF (external definition) - The EXTDEF statement in a control section
names symbols, called external'symbols, that are defined in this (present) control section and

may be used by other sections.
ex: EXTDEF BUFFER, BUFFEND, LENGTH
EXTDEF LISTA, ENDA

EXTREF (external reference) - The EXTREF statement names symbols used in

this (present) control section and are defined elsewhere.

ex: EXTREF RDREC, WRREC
EXTREF LISTB, ENDB, LISTC, ENDC

How to implement EXTDEF and EXTREF

CITSTUDENTS.IN 77

SYSTEM SOFTWARE 10CS52

The assembler must include information in the object program that will cause the loader to
insert proper values where they are required — in the form of Define record (D) and, Refer
record(R).

Define record

The format of the Define record (D) along with examples is as shown here.

Col. 1 D

Col. 2-7 Name of external symbol defined in this control section
Col. 8-13 Relative address within this control section (hexadecimal)
Col.14-73 Repeat information in Col. 2-13 for other external symbols

Example records

D LISTA 000040 ENDA 000054
D LISTB 000060 ENDB 000070
Refer record

The format of the Refer record (R) along with examples is as shown here.

Col. 1 R
Col. 2-7 Name of-external symbol referred to in this control section
Col. 8-73 Name of other external reference symbols

Example records
RLISTB ENDB LISTC ENDC
R LISTA ENDA LISTC ENDC

R LISTA ENDA LISTB ENDB

CITSTUDENTS.IN 78

SYSTEM SOFTWARE 10CS52

Here are the three programs named as PROGA, PROGB and PROGC, which are
separately assembled and each of which consists of a single control section. LISTA, ENDA
in PROGA, LISTB, ENDB in PROGB and LISTC, ENDC in PROGC are external
definitions in each of the control sections. Similarly LISTB, ENDB, LISTC, ENDC in
PROGA, LISTA, ENDA, LISTC, ENDC in PROGB, and LISTA, ENDA, LISTB, ENDB in

PROGC, are external references. These sample programs given here are used to illustrate

linking and relocation. The following figures give the sample programswand their

corresponding object programs. Observe the object programs, which contain D.and"R records

along with other records.

0000 PROGA START 0

EXTDEF LISTA, ENDA

EXTREF LISTB, ENDBLISTC, ENDC
0020 REF1 LDA LISTA 03201D
0023 REF2 +LDT LISTB+4 77100004
0027 REF3 LDX #ENDA-LISTA 050014
0040. LISTA EQU *
0054 ENDA EQU *
0054 REF4 WORD ENDA-LISTA+LISTC 000014
0057 REF5 WORD ENDC-LISTC-10 FFFFF6
CITSTUDENTS.IN 79

SYSTEM SOFTWARE 10CS52

005A REF6 WORD ENDC-LISTC+LISTA-1 00003F

005D REF7 WORD ENDA-LISTA-(ENDB-LISTB) 000014

0060 REF8 WORD LISTB-LISTA FFFFCO
END REF1

0000 PROGB START 0

EXTDEF LISTB, ENDB

EXTREF LISTA, ENDA, LISTC{ENDC

0036 REF1 +LDA LISTA | 03100000
003A REF2 LDT LISTB+4 772027
003D REF3 +LDX #ENDA-LISTA 05100000
0060 LISTB EQU *

0070 “ENDB EQU *

0070 REF4 WORD ENDA-LISTA+LISTC 000000
0073 REF5 WORD ENDC-LISTC-10 FFFFF6
0076 REF6 WORD ENDC-LISTC+LISTA-1 FFFFFF

CITSTUDENTS.IN 80

SYSTEM SOFTWARE
|

0079

007C

0000 PROGC

0018

001C

0020

0030

0042

0042

0045

0045

004B

REF7

REF8

REF1

REF2

REF3

LISTC

ENDC

REF4

REF5

REF6

REF7

WORD
WORD

END

START
EXTDEF

EXTREF

EQU

EQU
WORD
WORD
WORD

WORD

10CS52

ENDA-LISTA-(ENDB-LISTB) FFFFFO

LISTB-LISTA 000060

LISTC, ENDC

LISTA, ENDA, LISTB, ENDB

LISTA 03100000
LISTB+4 ' 77100004
#ENDA-LISTA 05100000
*
*
ENDA-LISTA+LISTC 000030
ENDC-LISTC-10 000008
ENDC-LISTC+LISTA-1 000011

ENDA-LISTA-(ENDB-LISTB) 000000

CITSTUDENTS.IN

81

SYSTEM SOFTWARE 10CS52

004E REF8 WORD LISTB-LISTA 000000

END

H PROGA 000000 000063

D LISTA 000040 ENDA 000054

RLISTB ENDB LISTC ENDC

T 000020 OA 03201D 77100004 050014

T 000054 OF 000014 FFFF6 00003F.000014 FFFFCO

MO000024 05+LISTB

MO000054 06+LISTC

MO000057 06+ENDC

MO00005706 -LISTC

MOOO05A06+ENDC

MO0005A06 -LISTC

MOO005A06+PROGA

MO00005D06-ENDB

MO00005D06+LISTB

CITSTUDENTS.IN 82

SYSTEM SOFTWARE 10CS52

MO00006006+LISTB
MO00006006-PROGA

E000020

H PROGB 000000 00007F
D LISTB 000060 ENDB 000070

R LISTA ENDA LISTC ENDC

T 000036 0B 03100000 772027 05100000

T 000007 OF 000000 FFFFF6 FFFFFF FEFFF0 000060
MO000037 05+LISTA
MOOOO3E 06+ENDA
MOOOO3E 06 -LISTA
MO000070 06 +ENDA
MO000070:06 -LISTA
MO0Q00070 06 +kISTC
MO000073°06 +ENDC
MO000073 06 -LISTC
MO000073 06 +ENDC

MO000076 06 -LISTC

CITSTUDENTS.IN 83

SYSTEM SOFTWARE 10CS52

MO000076 06+LISTA

MO000079 06+ENDA

MO000079 06 -LISTA

MO00007C 06+PROGB

MO00007C 06-LISTA

E

H PROGC 000000 000051

D LISTC 000030 ENDC 000042

RLISTA ENDA LISTB ENDB

T 000018 0C 03100000 77100004 05100000

T 000042 OF 000030 000008:000011 000000 000000

MO000019 05+LISTA

MO00001D 06+LISTB

MO00002106+ENDA

MO000021 06 -LISTA

MO000042:06+ENDA

MO000042 06 -LISTA

M000042 06+PROGC

MO000048 06+LISTA

CITSTUDENTS.IN 84

SYSTEM SOFTWARE

10CS52

MO00004B 06+ENDA

MO00004B 006-LISTA

MO00004B 06-ENDB

MO00004B 06+LISTB

MOOOO4E 06+LISTB

MOOOO4E 06-LISTA

E

The following figure shows these three programs as.they might appear in memory
after loading and linking. PROGA has been loaded starting at address 4000, with PROGB
and PROGC immediately following.

Memory
address Contents
Qoou XRAXKEEELEX XEXXAXXXRE ' XRFXAXXX AXAEZXXAXX
L 2 - L] L J
L] - L 3 L] *
3¥FC AAXXAXXAXEX ARXHXXKAX MEXANEAX XXXRAUNKK
&000 e Ay == -- e A e v = 8 4 & 8 a0 " > 3 F U
4010 - > 8 4 i “aar 4 avw LR R R A R
4020 |032C01D77 0. 1040C705 0018aver sevevs-e l4—PROGA
4030 LR B = R B I L B I L I L L B AL B d = "2 a4 a>
4040 - w e mr - w & 4 S s 4 & 4 v roesn LN I R
4G50 S vy - OG412600 00080640 5100000
4060 000083.0 “ 5 8 a4 > ® ® 989 raas= - a = & a s
4(}?0 “ sy v 2l¥ s a “ s a4 oemeoa a8 4 a0 oa va+srravavw
4080 4 & & >3 &0 e 4 8 v v rV e L I L I =« 4 S &
4090 -~ - h et A P N N) - ,0310&0 4OFr72027 ¢
40AO 05].0001“‘ «ar e+ rvecr > "= - - - LR B PROGB
40BU ------- 4 - & B 4 F 4 - " & 4 + v * 9 * 9 - - A -
4000 L T I) P YR rYawr smesmew - & 4 a1+ >
o b 0C 41260000 __ OBGO4051 0O0O0400
QDEU 0082.00- LI B R I B =" 3 s r v ey P v = & & s &
40FKN0 B R an ce3: 40310 40&Q07710
4100 40C7051C 0Q0k4.... vasasan. 4—PROGC
al‘o - 9 " 9 = s == - - o A A " & 8 4+ > ¥ v S 9 & & g & = @
4120 e T S 00412600 QOQO3C040 51000004
4130 DOOUﬁﬂhx NXXXXXXX AMRAAHAXAXX XXFELXKXX
&140 KEXXEXRA XAXAAXXKXKXE EXXKTXXX EXFELRXXX
* - - » -
» - - - -
» - -] -
CITSTUDENTS.IN 85

SYSTEM SOFTWARE 10CS52

For example, the value for REF4 in PROGA is located at address 4054 (the beginning
address of PROGA plus 0054, the relative address of REF4 within PROGA). The following
figure shows the details of how this value is computed.

Object programs Memory contents
PHOGA | HPROGA s s« 0089

. (REF4) M

TEE00E305000014 <=+ | ’ (B3

: l ooo--oooo|0£{4126]..9.l¢000.00

MGB00B206-(ISTO)

o 1

: |
x |
P

1
PROGC ROG() ®en=
HPROGD) «++/
4’: ,...4""'". o
/ e
/7 |DLIsTCp00020 {Actual address
7 il of LISTC)
/
/
l! Load addresses

{ PROGA 004000
\ PROGB 004063

EROGD
The initial value from the Text record

T0000540F000014FFFFF600003F000014FFFFCO is 000014. To this is added the
address\assigned to LISTC, which is 4112 (the beginning address of PROGC plus 30). The
result is 004126:

That is REF4 in PROGA is ENDA-LISTA+LISTC=4054-4040+4112=4126.

Similarly the load address for symbols LISTA: PROGA+0040=4040, LISTB:
PROGB+0060=40C3 and LISTC: PROGC+0030=4112

Keeping these details work through the details of other references and values of these

references are the same in each of the three programs.

CITSTUDENTS.IN 86

SYSTEM SOFTWARE 10CS52

4.3.3 Algorithm and Data structures for a Linking Loader

The algorithm for a linking loader is considerably more complicated than the absolute loader
program, which is already given. The concept given in the program linking section is used
for developing the algorithm for linking loader. The modification records are used for
relocation so that the linking and relocation functions are performed using the same

mechanism.

Linking Loader uses two-passes logic. ESTAB (external symbol table) is‘the main
data structure for a linking loader.

Pass 1: Assign addresses to all external symbols
Pass 2: Perform the actual loading, relocation, and linking

ESTAB - ESTAB for the example (refer three programs PROGA PROGB and
PROGC) given is as shown below. The ESTAB has four entries in it; they are name of the
control section, the symbol appearing in the control section, its address and length of the

control section.

Control section Symbol Address Length
PROGA 4000 63
. LISTA 4040
ENDA 4054
PROGB 4063 TF
A N LISTB 40C3
ENDB 40D3
PROGC 40E2 51
LISTC 4112
ENDC 4124

Program Logic for Pass 1

CITSTUDENTS.IN 87

SYSTEM SOFTWARE 10CS52

Pass 1 assign addresses to all external symbols. The variables & Data structures used during
pass 1 are, PROGADDR (program load address) from OS, CSADDR (control section
address), CSLTH (control section length) and ESTAB. The pass 1 processes the Define
Record. The algorithm for Pass 1 of Linking Loader is given below.

Fass 1:

hagin
get PROCADDR {rom opécaling systsm
st US8DDR 1o FROGADDR {for first coatrel ssstined
while not end of 1nput do
bagin
read next input revord {Header record for upuicval zectigny
set 081.7H 1o control sectioi leanglh
sgarch ESTAE for ¢onirol secticn naae
1f fouml then
aet srrar {lag !duplicats sxteronl usynsoli
alga
anter coalrol section name wnto ESTAR with valCe (aDDR
while rcocord iype (} 'E’ do
begin
read nexl ikput recerd
if record Sype = ‘D them
for cack symbol 4in Lle record do
hagin
gesprtn RECAS Lo’ symbol aame
i¥ founc Fhem
#el crpor flag {duplicate sxtereal symoecll
elee
enter symbol inta ESTAR sith value
{LSALDR 1 indicated address:
emd [#57}
end {wiile €2 'E°}
add CHLTH .o OSADDR isiarting addreus for next control sectiob
and {whilc net EQF\|
end {?gss 14

Program Logic for Pass 2

Pass. 2 ofylinking loader perform the actual loading, relocation, and linking. It uses
modification record and lookup the symbol in ESTAB to obtain its address. Finally it uses
end record of a main program to obtain transfer address, which is a starting address needed
for the execution of the program. The pass 2 process Text record and Modification record of

the object programs. The algorithm for Pass 2 of Linking Loader is given below.

CITSTUDENTS.IN 88

SYSTEM SOFTWARE 10CS52

Pass 2:

begin
set CSADNR to PROGANDR
se~ REXECADDR to PROGALRLR
while not c¢nd of inout &0
begin
read next ioput record {Header recocd}
sel CSLTH 1o conzrol scction length
while rccord type {3 'E° de
begin
read rext input record
if record type — T them
bedgin
{if okject code is 1n chavasler form, voayert
intc inic-nal reprosentationd
mova shject ande Zrom record to Tacialicn
(C340DR + specilied addpess)
end J1f 'T"!
elss 1f rvecord type - 'M° them
begin
zaarch ESTAB tor rmeddlying symhyl cane
it found then .
add or snbtpgst Sywbol vadae il lecation
- i CSADDR + specilisd address)
alge
et epfér lag (wndeliced sxteroal symboll]
end (if ‘M ,
ena {while () 'Ed
1f an address is specd tied (in Bdd cecord} them
sot EXECADCR 4o JGSADDR | spacified address]
add CSILTH to CSADDR
emd {ahi_e nnt EGR}
sump to lopation_giger by EXEGADUR {to stqﬁ}_qggggt;Qg,Qi‘lnﬂﬂggxgzggg@1

How to improve Efficiency?

The questionshere is can-we improve the efficiency of the linking loader. Also observe that,
even though we have defined Refer record (R), we haven’t made use of it. The efficiency can
be improved by the use of local searching instead of multiple searches of ESTAB for the
same symbal. For implementing this we assign a reference number to each external symbol
in the Refer record. Then this reference number is used in Modification records instead of
external symbols.01 is assigned to control section name, and other numbers for external

reference symbols.

The object programs for PROGA, PROGB and PROGC are shown below, with above

modification to Refer record (Observe R records).

CITSTUDENTS.IN 89

SYSTEM SOFTWARE 10CS52

H)'ROCB P.OOOOO,._OOO?P
1sT 0006 ENOB pO0070
L.ISTA 21ENDA LJSC F.NDC

T"UOUO3B'U 0310000.7/202 ""0O.Sl 00000
[]

TO0007 NOEOCDO00FEFFEBFEFFFEFFEFFOM00Q60
MBU0037,054+02
MO0003E05+03
MPO0O3EDS-02
MPOCO7 0064+03
MOOOD7 006,02
MDO007006+04
MDUOD7306+05
MO0007306-04
00007 606+05
&b000?606-0&
MDOO0T7 606+02
MOOUG790E+D
MO0O07 906~

MDOODT GO 6+
Mpoou?qp 02

EEN wi

HJ’R(;(‘A 000600000063
DLISTA 000060£I\Dz\ DN0G54
RUZIIQI’B l;3INDB O4LISI’(. GSE\DL

17J0G02 (AQ 3201D,77 100004.0 5011

,00G0.J HH'Ov €014 FPF1£60C100:>0000 14FFFFCO
Y.0G02405492
V10001 0604

Il u(usiov+J5
H}0li0>f06_ 0ok

CITSTUDENTS.IN 90

SYSTEM SOFTWARE 10CS52

I-;{RO(:C pOOOOOUOUOSl
ISTC 00003 JERDC 000042
R LISTA OBENDA U&LIS'IB “O_ENDB

*
*

TO00080COI1000007710000405100000

T0000420£000030000008000011,000000000000
MOGOO01905+02
390001Dos+04
KO0002105+03
gpoooz;os -02
MOO004206+03
M00004206-02
qpoooa205+01
MOO0U04E06+02
K9000¢596+03
MO0004EQ6 [
npoooagp&ros
unuuuanpa+04
H00004E06+04
MOOUOAEO& az
K

Symbol and Addresses in PROGA, PROGB and"PROGC are as shown below. These
are the entries of ESTAB. The main advantage,of reference number mechanism is that it

avoids multiple searches of ESTAB for.the same symbol during the loading of a control

section

Ref No. Symbol Address
1 /A PROGA* 4000
2. LISTB 40C3

A3 || ENDB 40D3
4 LISTC 4112
5 ENDC 4124

Ref No. Symbol Address
1 PROGB 4063
2 LISTA 4040
3 ENDA 4054
4 LISTC 4112
5 ENDC 4124

CITSTUDENTS.IN 91

SYSTEM SOFTWARE 10CS52

Ref No. Symbol Address
1 PROGC 4063
2 LISTA 4040
3 ENDA 4054
4 LISTB 40C3
5 ENDB 40D3

4.3. Machine-independent Loader Features

Here we discuss some loader features that are not directly related to'machine architecture and
design. Automatic Library Search and Loader Options are‘such-Machine-independent Loader

Features.
4.3.1Automatic Library Search

This feature allows a programmer to use.standard subfoutines without explicitly including
them in the program to be loaded. The routines are automatically retrieved from a library as
they are needed during linking. This allows programmer to use subroutines from one or more
libraries. The subroutines called by the program being loaded are automatically fetched from
the library, linked with{the main program and loaded. The loader searches the library or
libraries specified #or routines that contain the definitions of these symbols in the main

program.
4.3.2Loader Options

Loader options-allow the user to specify options that modify the standard processing. The
options-may be specified in three different ways. They are, specified using a command
language, specified as a part of job control language that is processed by the operating

system, and an be specified using loader control statements in the source program.
Here are the some examples of how option can be specified.

e INCLUDE program-name (library-name) - read the designated object program from

a library

CITSTUDENTS.IN 92

Admin
Highlight

SYSTEM SOFTWARE 10CS52

e DELETE csect-name — delete the named control section from the set pf programs
being loaded
e CHANGE namel, name2 - external symbol namel to be changed to name2

wherever it appears in the object programs
LIBRARY MYLIB — search MYLIB library before standard libraries

NOCALL STDDEV, PLOT, CORREL - no loading and linking of. unneeded

routines

Here is one more example giving, how commands can be specified as a part of object

file, and the respective changes are carried out by the loader.
LIBRARY UTLIB
INCLUDE READ (UTLIB)
INCLUDE WRITE (UTLIB)
DELETE RDREC, WRREC
CHANGE RDREC, READ
CHANGE WRREC, WRITE
NOCALL SQRT,PLOT

The eommands:are; use UTLIB (say utility library), include READ and WRITE
control sections from the library, delete the control sections RDREC and WRREC from the
load; the change command causes all external references to the symbol RDREC to be
changed to'the symbol READ, similarly references to WRREC is changed to WRITE,
finally, no call to the functions SQRT, PLOT, if they are used in the program.

4.4 Loader Design Options

There are some common alternatives for organizing the loading functions, including

relocation and linking. Linking Loaders — Perform all linking and relocation at load time. The

CITSTUDENTS.IN 93

Admin
Highlight

SYSTEM SOFTWARE 10CS52

Other Alternatives are Linkage editors, which perform linking prior to load time and,

dynamic linking, in which linking function is performed at execution time

Linking Loaders

Object
Program(s)

YN
N v

Linking loader

A 4

Library

S !

Memonry

The above diagram shows the processing of an object program using Linking Loader.
The source programyis first assembled or compiled, producing an object program. A linking

loader performs.all linking and loading operations, and loads the program into memory for
execution.

4.4.1 Linkage Editors

The figure below shows the processing of an object program using Linkage editor. A linkage
editor produces a linked version of the program — often called a load module or an executable
image — which is written to a file or library for later execution. The linked program produced

is generally in a form that is suitable for processing by a relocating loader.

CITSTUDENTS.IN 94

SYSTEM SOFTWARE 10CS52

Some useful functions of Linkage editor are, an absolute object program can be
created, if starting address is already known. New versions of the library can be included
without changing the source program. Linkage editors can also be used to build packages of
subroutines or other control sections that are generally used together. Linkage editors often
allow the user to specify that external references are not to be resolved by automatic library
search — linking will be done later by linking loader — linkage editor + linking loader —
savings in space

Object
Program(s)
Y
v A 4
Library — | Linkage Editor
v

Linked
pragram

v

Relocating loader

Memory

4.4.2Dynamic Linking

The scheme that postpones the linking functions until execution. A subroutine is loaded and
linked to the rest of the program when it is first called — usually called dynamic linking,
dynamic loading or load on call. The advantages of dynamic linking are, it allow several

executing programs to share one copy of a subroutine or library. In an object oriented system,

CITSTUDENTS.IN 95

SYSTEM SOFTWARE 10CS52

dynamic linking makes it possible for one object to be shared by several programs. Dynamic
linking provides the ability to load the routines only when (and if) they are needed. The

actual loading and linking can be accomplished using operating system service request.
4.4.3 Bootstrap Loaders

If the question, how is the loader itself loaded into the memory? is asked, then the answer is,
when computer is started — with no program in memory, a program presentiin ROM (
absolute address) can be made executed — may be OS itself or A Bootstrap leader;:which in
turn loads OS and prepares it for execution. The first record (or records) is generally referred
to as a bootstrap loader — makes the OS to be loaded. Such a loader is added to'the beginning

of all object programs that are to be loaded into an empty and idle system.

4.5 Implementation Examples

This section contains brief description of loaders \and-linkers for actual computers. They are,
MS-DOS Linker - Pentium architecture, SunOS: Linkers - SPARC architecture, and, Cray
MPP Linkers — T3E architecture.

4.5.1MS-DOS Linker

This explains some of thefeatures. of Microsoft MS-DOS linker, which is a linker for
Pentium and other x868ystems. Most MS-DOS compilers and assemblers (MASM) produce
object modules, and they.are stored in .OBJ files. MS-DOS LINK is a linkage editor that
combines one.or more object modules to produce a complete executable program - .EXE file;

this file is later executedfor results.

Thefollowing table illustrates the typical MS-DOS object module
Record Types Description
THEADR Translator Header
TYPDEF,PUBDEF, EXTDEF External symbols and references

LNAMES, SEGDEF, GRPDEF Segment definition and grouping

CITSTUDENTS.IN 96

Admin
Highlight

SYSTEM SOFTWARE 10CS52

LEDATA, LIDATA Translated instructions and data
FIXUPP Relocation and linking information
MODEND End of object module

THEADR specifies the name of the object module. MODEND specifies the end of

the module. PUBDEF contains list of the external symbols (called public names). EXTDEF

contains list of external symbols referred in this module, but defined elsewhere.. TYRDEF the

data types are defined here. SEGDEF describes segments in the object module (includes

name, length, and alignment). GRPDEF includes how segments are combined .into groups.

LNAMES contains all segment and class names. LEDATA containsstranslated instructions

and data. LIDATA has above in repeating pattern. Finally, FIXUPP/is used to resolve

external references.

RECOMMENDED QUESTIONS:

1)
2)
3)
4)
5)
6)
7)
8)
9)

Write an algorithm for an absolute loader” (' 7)

Explain bootstrap loaders. (6)

Write an algorithm for Bootstrap loader. (7)

Explain relocation w;r.t. loader. (8)

Explain bitmask with an example.(5)

Explain program linking with an example. (7)

Write the algorithm for pass 1 of an linking loader. (8)
Write'the algorithm for pass 2 of an linking loader. (8)
Explain CSADDR, PROGADDR, ESTAB.(6)

10) Explain linkage editors. (8)

11) Explain dynamic linking. (8)
12) Write shortnotes on (10)

a. MS-DOS Linker
b. Sun OS linker

CITSTUDENTS.IN 97

