
SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

68

UNIT- 4

LOADERS AND LINKERS

Introduction

The Source Program written in assembly language or high level language will be

converted to object program, which is in the machine language form for execution. This

conversion either from assembler or from compiler, contains translated instructions and data

values from the source program, or specifies addresses in primary memory where these items

are to be loaded for execution.

This contains the following three processes, and they are,

 Loading - which allocates memory location and brings the object program into

memory for execution - (Loader)

 Linking- which combines two or more separate object programs and supplies the

information needed to allow references between them - (Linker)

 Relocation - which modifies the object program so that it can be loaded at an address

different from the location originally specified - (Linking Loader)

4.1 Basic Loader Functions:

A loader is a system program that performs the loading function. It brings object program

into memory and starts its execution. The role of loader is as shown in the figure 4.1.

Translator may be assembler/complier, which generates the object program and later loaded

to the memory by the loader for execution. In figure 4.2 the translator is specifically an

assembler, which generates the object loaded, which becomes input to the loader. The

figure4.3 shows the role of both loader and linker. CIT
STUDENTS.IN

Admin
Highlight

Admin
Highlight

Admin
Highlight

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

69

Source

Program

Translator

Object

Object
Program

program

ready for

execution

Memory

Figure 4.1 : The Role of Loader

Source

Program

Assembler

Object

Object
Program

program

ready for

execution

Memory

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

70

Figure 4.2: The Role of Loader with Assembler

Source

Program

Assembler

Object

Program

Executable

Code

Object

program

ready for

execution

Loader

Memory

Figure 4.3: The Role of both Loader and Linker

Type of Loaders

The different types of loaders are, absolute loader, bootstrap loader, relocating loader

(relative loader), and, direct linking loader. The following sections discuss the functions and

design of all these types of loaders.

4.1.1Design of Absolute Loader:

The operation of absolute loader is very simple. The object code is loaded to specified

locations in the memory. At the end the loader jumps to the specified address to begin

execution of the loaded program. The role of absolute loader is as shown in the figure 4.4.

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

71

The advantage of absolute loader is simple and efficient. But the disadvantages are, the need

for programmer to specify the actual address, and, difficult to use subroutine libraries.

Object

Program

Absolute

1000

2000

Object

program

ready for

execution

Memory

Figure 4.4: The Role of Absolute Loader

The algorithm for this type of loader is given here. The object program and, the object

program loaded into memory by the absolute loader are also shown. Each byte of

assembled code is given using its hexadecimal representation in character form. Easy to read

by human beings. Each byte of object code is stored as a single byte. Most machine store

object programs in a binary form, and we must be sure that our file and device conventions

do not cause some of the program bytes to be interpreted as control characters.

Begin

read Header record

verify program name and length

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

72

read first Text record

while record type is <> „E‟ do

begin

{if object code is in character form, convert into internal representation}

move object code to specified location in memory

read next object program record

end

jump to address specified in End record

end

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

73

4.1.2 A Simple Bootstrap Loader

When a computer is first turned on or restarted, a special type of absolute loader, called

bootstrap loader is executed. This bootstrap loads the first program to be run by the computer

-- usually an operating system. The bootstrap itself begins at address 0. It loads the OS

starting address 0x80. No header record or control information, the object code is

consecutive bytes of memory.

The algorithm for the bootstrap loader is as follows

Begin

X=0x80 (the address of the next memory location to be loaded

Loop

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

74

AGETC (and convert it from the ASCII character

code to the value of the hexadecimal digit)

save the value in the high-order 4 bits of S

AGETC

combine the value to form one byte A (A+S)

store the value (in A) to the address in register X

XX+1

End

It uses a subroutine GETC, which is

GETC Aread one character

if A=0x04 then jump to 0x80

if A<48 then GETC

A A-48 (0x30)

if A<10 then return

A A-7

return

4.2. Machine-Dependent Loader Features

Absolute loader is simple and efficient, but the scheme has potential disadvantages One of

the most disadvantage is the programmer has to specify the actual starting address, from

where the program to be loaded. This does not create difficulty, if one program to run, but

not for several programs. Further it is difficult to use subroutine libraries efficiently.

CIT
STUDENTS.IN

Admin
Highlight

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

75

This needs the design and implementation of a more complex loader. The loader must

provide program relocation and linking, as well as simple loading functions.

4.2.1 Relocation

The concept of program relocation is, the execution of the object program using any part of

the available and sufficient memory. The object program is loaded into memory wherever

there is room for it. The actual starting address of the object program is not known until load

time. Relocation provides the efficient sharing of the machine with larger memory and when

several independent programs are to be run together. It also supports the use of subroutine

libraries efficiently. Loaders that allow for program relocation are called relocating loaders or

relative loaders.

Methods for specifying relocation

Use of modification record and, use of relocation bit, are the methods available for

specifying relocation. In the case of modification record, a modification record M is used in

the object program to specify any relocation. In the case of use of relocation bit, each

instruction is associated with one relocation bit and, these relocation bits in a Text record is

gathered into bit masks.

Modification records are used in complex machines and is also called Relocation and

Linkage Directory (RLD) specification. The format of the modification record (M) is as

follows. The object program with relocation by Modification records is also shown here.

Modification record

col 1: M

col 2-7: relocation address

col 8-9: length (halfbyte)

col 10: flag (+/-)

col 11-17: segment name

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

76

HCOPY 000000 001077

T000000 1D17202D69202D48101036…4B105D3F2FEC032010

T00001D130F20160100030F200D4B10105D3E2003454F46

T001035 1DB410B400B44075101000…33200857C003B850

T0010531D3B2FEA1340004F0000F1..53C003DF2008B850

T00070073B2FEF4F000005

M00000705+COPY

M00001405+COPY

M00002705+COPY

E000000

The relocation bit method is used for simple machines. Relocation bit is 0: no

modification is necessary, and is 1: modification is needed. This is specified in the columns

10-12 of text record (T), the format of text record, along with relocation bits is as follows.

Text record:

col 1: T

col 2-7: starting address

col 8-9: length (byte)

col 10-12: relocation bits

col 13-72: object code

Twelve-bit mask is used in each Text record (col:10-12 – relocation bits), since each

text record contains less than 12 words, unused words are set to 0, and, any value that is to be

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

77

modified during relocation must coincide with one of these 3-byte segments. For absolute

loader, there are no relocation bits column 10-69 contains object code. The object program

with relocation by bit mask is as shown below. Observe FFC - means all ten words are to be

modified and, E00 - means first three records are to be modified.

HCOPY 000000 00107A

T0000001EFFC140033481039000036280030300015…3C0003 …

T00001E15E000C00364810610800334C0000…000003000000

T0010391EFFC040030000030…30103FD8105D280030...

T0010570A8001000364C0000F1001000

T00106119FE0040030E01079…508039DC10792C0036...

E000000

4.2.2 Program Linking

The Goal of program linking is to resolve the problems with external references

(EXTREF) and external definitions (EXTDEF) from different control sections.

EXTDEF (external definition) - The EXTDEF statement in a control section

names symbols, called external symbols, that are defined in this (present) control section and

may be used by other sections.

ex: EXTDEF BUFFER, BUFFEND, LENGTH

EXTDEF LISTA, ENDA

EXTREF (external reference) - The EXTREF statement names symbols used in

this (present) control section and are defined elsewhere.

ex: EXTREF RDREC, WRREC

EXTREF LISTB, ENDB, LISTC, ENDC

How to implement EXTDEF and EXTREF

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

78

The assembler must include information in the object program that will cause the loader to

insert proper values where they are required – in the form of Define record (D) and, Refer

record(R).

Define record

The format of the Define record (D) along with examples is as shown here.

Col. 1 D

Col. 2-7 Name of external symbol defined in this control section

Col. 8-13 Relative address within this control section (hexadecimal)

Col.14-73 Repeat information in Col. 2-13 for other external symbols

Example records

D LISTA 000040 ENDA 000054

D LISTB 000060 ENDB 000070

Refer record

The format of the Refer record (R) along with examples is as shown here.

Col. 1 R

Col. 2-7 Name of external symbol referred to in this control section

Col. 8-73 Name of other external reference symbols

Example records

R LISTB ENDB LISTC ENDC

R LISTA ENDA LISTC ENDC

R LISTA ENDA LISTB ENDB

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

79

Here are the three programs named as PROGA, PROGB and PROGC, which are

separately assembled and each of which consists of a single control section. LISTA, ENDA

in PROGA, LISTB, ENDB in PROGB and LISTC, ENDC in PROGC are external

definitions in each of the control sections. Similarly LISTB, ENDB, LISTC, ENDC in

PROGA, LISTA, ENDA, LISTC, ENDC in PROGB, and LISTA, ENDA, LISTB, ENDB in

PROGC, are external references. These sample programs given here are used to illustrate

linking and relocation. The following figures give the sample programs and their

corresponding object programs. Observe the object programs, which contain D and R records

along with other records.

0000 PROGA START 0

EXTDEF LISTA, ENDA

EXTREF LISTB, ENDB, LISTC, ENDC

………..

……….

0020 REF1 LDA LISTA 03201D

0023 REF2 +LDT LISTB+4 77100004

0027 REF3 LDX #ENDA-LISTA 050014

.

.

0040 LISTA EQU *

0054 ENDA EQU *

0054

REF4

WORD

ENDA-LISTA+LISTC

000014

0057

REF5

WORD

ENDC-LISTC-10

FFFFF6

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

80

005A REF6 WORD ENDC-LISTC+LISTA-1 00003F

005D REF7 WORD ENDA-LISTA-(ENDB-LISTB) 000014

0060 REF8 WORD LISTB-LISTA FFFFC0

END REF1

0000 PROGB START 0

EXTDEF LISTB, ENDB

EXTREF LISTA, ENDA, LISTC, ENDC

………..

……….

0036 REF1 +LDA LISTA 03100000

003A REF2 LDT LISTB+4 772027

003D REF3 +LDX #ENDA-LISTA 05100000

.

.

0060 LISTB EQU *

0070 ENDB EQU *

0070

REF4

WORD

ENDA-LISTA+LISTC

000000

0073

REF5

WORD

ENDC-LISTC-10

FFFFF6

0076

REF6

WORD

ENDC-LISTC+LISTA-1

FFFFFF

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

81

0079

007C

REF7

REF8

WORD

WORD

END

ENDA-LISTA-(ENDB-LISTB)

LISTB-LISTA

FFFFF0

000060

0000

PROGC

START

EXTDEF

0

LISTC, ENDC

0018

REF1

EXTREF

………..

………..

+LDA

LISTA, ENDA, LISTB, ENDB

LISTA

03100000

001C

REF2

+LDT

LISTB+4

77100004

0020

REF3

+LDX

.

#ENDA-LISTA

05100000

0030

LISTC

.

EQU

*

0042

ENDC

EQU

*

0042

REF4

WORD

ENDA-LISTA+LISTC

000030

0045

REF5

WORD

ENDC-LISTC-10

000008

0045

REF6

WORD

ENDC-LISTC+LISTA-1

000011

004B

REF7

WORD

ENDA-LISTA-(ENDB-LISTB)

000000

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

82

004E REF8 WORD LISTB-LISTA 000000

END

H PROGA 000000 000063

D LISTA 000040 ENDA 000054

R LISTB ENDB LISTC ENDC

.

.

T 000020 0A 03201D 77100004 050014

.

.

T 000054 0F 000014 FFFF6 00003F 000014 FFFFC0

M000024 05+LISTB

M000054 06+LISTC

M000057 06+ENDC

M000057 06 -LISTC

M00005A06+ENDC

M00005A06 -LISTC

M00005A06+PROGA

M00005D06-ENDB

M00005D06+LISTB

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

83

M00006006+LISTB

M00006006-PROGA

E000020

H PROGB 000000 00007F

D LISTB 000060 ENDB 000070

R LISTA ENDA LISTC ENDC

.

T 000036 0B 03100000 772027 05100000

.

T 000007 0F 000000 FFFFF6 FFFFFF FFFFF0 000060

M000037 05+LISTA

M00003E 06+ENDA

M00003E 06 -LISTA

M000070 06 +ENDA

M000070 06 -LISTA

M000070 06 +LISTC

M000073 06 +ENDC

M000073 06 -LISTC

M000073 06 +ENDC

M000076 06 -LISTC

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

84

M000076 06+LISTA

M000079 06+ENDA

M000079 06 -LISTA

M00007C 06+PROGB

M00007C 06-LISTA

E

H PROGC 000000 000051

D LISTC 000030 ENDC 000042

R LISTA ENDA LISTB ENDB

.

T 000018 0C 03100000 77100004 05100000

.

T 000042 0F 000030 000008 000011 000000 000000

M000019 05+LISTA

M00001D 06+LISTB

M000021 06+ENDA

M000021 06 -LISTA

M000042 06+ENDA

M000042 06 -LISTA

M000042 06+PROGC

M000048 06+LISTA

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

85

M00004B 06+ENDA

M00004B 006-LISTA

M00004B 06-ENDB

M00004B 06+LISTB

M00004E 06+LISTB

M00004E 06-LISTA

E

The following figure shows these three programs as they might appear in memory

after loading and linking. PROGA has been loaded starting at address 4000, with PROGB

and PROGC immediately following.

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

86

For example, the value for REF4 in PROGA is located at address 4054 (the beginning

address of PROGA plus 0054, the relative address of REF4 within PROGA). The following

figure shows the details of how this value is computed.

The initial value from the Text record

T0000540F000014FFFFF600003F000014FFFFC0 is 000014. To this is added the

address assigned to LISTC, which is 4112 (the beginning address of PROGC plus 30). The

result is 004126.

That is REF4 in PROGA is ENDA-LISTA+LISTC=4054-4040+4112=4126.

Similarly the load address for symbols LISTA: PROGA+0040=4040, LISTB:

PROGB+0060=40C3 and LISTC: PROGC+0030=4112

Keeping these details work through the details of other references and values of these

references are the same in each of the three programs.

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

87

4.3.3 Algorithm and Data structures for a Linking Loader

The algorithm for a linking loader is considerably more complicated than the absolute loader

program, which is already given. The concept given in the program linking section is used

for developing the algorithm for linking loader. The modification records are used for

relocation so that the linking and relocation functions are performed using the same

mechanism.

Linking Loader uses two-passes logic. ESTAB (external symbol table) is the main

data structure for a linking loader.

Pass 1: Assign addresses to all external symbols

Pass 2: Perform the actual loading, relocation, and linking

ESTAB - ESTAB for the example (refer three programs PROGA PROGB and

PROGC) given is as shown below. The ESTAB has four entries in it; they are name of the

control section, the symbol appearing in the control section, its address and length of the

control section.

Control section

Symbol

Address

Length

PROGA 4000 63

LISTA

4040

ENDA

4054

PROGB

4063

7F

LISTB

40C3

ENDB

40D3

PROGC

40E2

51

LISTC

4112

 ENDC 4124

Program Logic for Pass 1

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

88

Pass 1 assign addresses to all external symbols. The variables & Data structures used during

pass 1 are, PROGADDR (program load address) from OS, CSADDR (control section

address), CSLTH (control section length) and ESTAB. The pass 1 processes the Define

Record. The algorithm for Pass 1 of Linking Loader is given below.

Program Logic for Pass 2

Pass 2 of linking loader perform the actual loading, relocation, and linking. It uses

modification record and lookup the symbol in ESTAB to obtain its address. Finally it uses

end record of a main program to obtain transfer address, which is a starting address needed

for the execution of the program. The pass 2 process Text record and Modification record of

the object programs. The algorithm for Pass 2 of Linking Loader is given below.

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

89

How to improve Efficiency?

The question here is can we improve the efficiency of the linking loader. Also observe that,

even though we have defined Refer record (R), we haven‟t made use of it. The efficiency can

be improved by the use of local searching instead of multiple searches of ESTAB for the

same symbol. For implementing this we assign a reference number to each external symbol

in the Refer record. Then this reference number is used in Modification records instead of

external symbols.01 is assigned to control section name, and other numbers for external

reference symbols.

The object programs for PROGA, PROGB and PROGC are shown below, with above

modification to Refer record (Observe R records).

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

90

:.

iu

H)'R 0CB .P.00 0 00,._0 0 0 7 P

1ST 0006 ENOB p00070
LISTA 21ENDA LJSC F.NDC

•
•
T"UOU03b"U 0310000._7 /202 "·O· .Sl 00000

•

•
•
'!'·.·r.JOG02 OO, A,O.. 3201D.,.77 100004..0. 50 \1 J

•
•
'f ,OOGO .J HH'Ov C O 14 FPF1-"F6.0CIOO::>01000 14FFFFC0
.·. . .·'. :\ ;·. I· I•

Y.
,
O0 GO 2 4,0 5,

·
+
.1
0
·
2
-

Y..fl O 0 0 .'l '•.0 6,-+·0 4

u (; u J i'o v+J5
r-i};o liO .'> f'o 6:._ o4

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

91

Ref No.

Symbol

Address

1

PROGA

4000

2

LISTB

40C3

3

ENDB

40D3

4

LISTC

4112

5

ENDC

4124

Symbol and Addresses in PROGA, PROGB and PROGC are as shown below. These

are the entries of ESTAB. The main advantage of reference number mechanism is that it

avoids multiple searches of ESTAB for the same symbol during the loading of a control

section

Ref No.

Symbol

Address

1

PROGB

4063

2

LISTA

4040

3

ENDA

4054

4

LISTC

4112

5

ENDC

4124

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

92

Ref No.

Symbol

Address

1

PROGC

4063

2

LISTA

4040

3

ENDA

4054

4

LISTB

40C3

5

ENDB

40D3

4.3. Machine-independent Loader Features

Here we discuss some loader features that are not directly related to machine architecture and

design. Automatic Library Search and Loader Options are such Machine-independent Loader

Features.

4.3.1Automatic Library Search

This feature allows a programmer to use standard subroutines without explicitly including

them in the program to be loaded. The routines are automatically retrieved from a library as

they are needed during linking. This allows programmer to use subroutines from one or more

libraries. The subroutines called by the program being loaded are automatically fetched from

the library, linked with the main program and loaded. The loader searches the library or

libraries specified for routines that contain the definitions of these symbols in the main

program.

4.3.2Loader Options

Loader options allow the user to specify options that modify the standard processing. The

options may be specified in three different ways. They are, specified using a command

language, specified as a part of job control language that is processed by the operating

system, and an be specified using loader control statements in the source program.

Here are the some examples of how option can be specified.

 INCLUDE program-name (library-name) - read the designated object program from

a library

CIT
STUDENTS.IN

Admin
Highlight

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

93

 DELETE csect-name – delete the named control section from the set pf programs

being loaded

 CHANGE name1, name2 - external symbol name1 to be changed to name2

wherever it appears in the object programs

LIBRARY MYLIB – search MYLIB library before standard libraries

NOCALL STDDEV, PLOT, CORREL – no loading and linking of unneeded

routines

Here is one more example giving, how commands can be specified as a part of object

file, and the respective changes are carried out by the loader.

LIBRARY UTLIB

INCLUDE READ (UTLIB)

INCLUDE WRITE (UTLIB)

DELETE RDREC, WRREC

CHANGE RDREC, READ

CHANGE WRREC, WRITE

NOCALL SQRT, PLOT

The commands are, use UTLIB (say utility library), include READ and WRITE

control sections from the library, delete the control sections RDREC and WRREC from the

load, the change command causes all external references to the symbol RDREC to be

changed to the symbol READ, similarly references to WRREC is changed to WRITE,

finally, no call to the functions SQRT, PLOT, if they are used in the program.

4.4 Loader Design Options

There are some common alternatives for organizing the loading functions, including

relocation and linking. Linking Loaders – Perform all linking and relocation at load time. The

CIT
STUDENTS.IN

Admin
Highlight

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

94

Other Alternatives are Linkage editors, which perform linking prior to load time and,

dynamic linking, in which linking function is performed at execution time

Linking Loaders

Object

Program(s)

Library
Linking loader

Memory

The above diagram shows the processing of an object program using Linking Loader.

The source program is first assembled or compiled, producing an object program. A linking

loader performs all linking and loading operations, and loads the program into memory for

execution.

4.4.1 Linkage Editors

The figure below shows the processing of an object program using Linkage editor. A linkage

editor produces a linked version of the program – often called a load module or an executable

image – which is written to a file or library for later execution. The linked program produced

is generally in a form that is suitable for processing by a relocating loader.

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

95

Some useful functions of Linkage editor are, an absolute object program can be

created, if starting address is already known. New versions of the library can be included

without changing the source program. Linkage editors can also be used to build packages of

subroutines or other control sections that are generally used together. Linkage editors often

allow the user to specify that external references are not to be resolved by automatic library

search – linking will be done later by linking loader – linkage editor + linking loader –

savings in space

Object

Program(s)

Library Linkage Editor

Linked

program

Relocating loader

Memory

4.4.2Dynamic Linking

The scheme that postpones the linking functions until execution. A subroutine is loaded and

linked to the rest of the program when it is first called – usually called dynamic linking,

dynamic loading or load on call. The advantages of dynamic linking are, it allow several

executing programs to share one copy of a subroutine or library. In an object oriented system,

CIT
STUDENTS.IN

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

96

dynamic linking makes it possible for one object to be shared by several programs. Dynamic

linking provides the ability to load the routines only when (and if) they are needed. The

actual loading and linking can be accomplished using operating system service request.

4.4.3 Bootstrap Loaders

If the question, how is the loader itself loaded into the memory? is asked, then the answer is,

when computer is started – with no program in memory, a program present in ROM (

absolute address) can be made executed – may be OS itself or A Bootstrap loader, which in

turn loads OS and prepares it for execution. The first record (or records) is generally referred

to as a bootstrap loader – makes the OS to be loaded. Such a loader is added to the beginning

of all object programs that are to be loaded into an empty and idle system.

4.5 Implementation Examples

This section contains brief description of loaders and linkers for actual computers. They are,

MS-DOS Linker - Pentium architecture, SunOS Linkers - SPARC architecture, and, Cray

MPP Linkers – T3E architecture.

4.5.1MS-DOS Linker

This explains some of the features of Microsoft MS-DOS linker, which is a linker for

Pentium and other x86 systems. Most MS-DOS compilers and assemblers (MASM) produce

object modules, and they are stored in .OBJ files. MS-DOS LINK is a linkage editor that

combines one or more object modules to produce a complete executable program - .EXE file;

this file is later executed for results.

The following table illustrates the typical MS-DOS object module

Record Types Description

THEADR Translator Header

TYPDEF,PUBDEF, EXTDEF External symbols and references

LNAMES, SEGDEF, GRPDEF Segment definition and grouping

CIT
STUDENTS.IN

Admin
Highlight

SYSTEM SOFTWARE 10CS52

CITSTUDENTS.IN

97

LEDATA, LIDATA Translated instructions and data

FIXUPP Relocation and linking information

MODEND End of object module

THEADR specifies the name of the object module. MODEND specifies the end of

the module. PUBDEF contains list of the external symbols (called public names). EXTDEF

contains list of external symbols referred in this module, but defined elsewhere. TYPDEF the

data types are defined here. SEGDEF describes segments in the object module (includes

name, length, and alignment). GRPDEF includes how segments are combined into groups.

LNAMES contains all segment and class names. LEDATA contains translated instructions

and data. LIDATA has above in repeating pattern. Finally, FIXUPP is used to resolve

external references.

RECOMMENDED QUESTIONS:

1) Write an algorithm for an absolute loader (7)

2) Explain bootstrap loaders. (6)

3) Write an algorithm for Bootstrap loader. (7)

4) Explain relocation w.r.t. loader. (8)

5) Explain bitmask with an example.(5)

6) Explain program linking with an example. (7)

7) Write the algorithm for pass 1 of an linking loader. (8)

8) Write the algorithm for pass 2 of an linking loader. (8)

9) Explain CSADDR, PROGADDR, ESTAB.(6)

10) Explain linkage editors. (8)

11) Explain dynamic linking. (8)

12) Write shortnotes on (10)

a. MS-DOS Linker

b. Sun OS linker

CIT
STUDENTS.IN

