L L

“.* Simplified Instructional Computer (SIC)

= A hypothetical computer that includes the

hardware features most often found on real
machines

= SIC standard modedl
= SIC/XE

= Upward compatible
= Programs for SIC can run on SIC/XE

System Programming

L L

“.* SIC machine architecture

= Memory
= 8-bit bytes

= 3 consecutive bytes form aword
« Addressed by the | owest nunber byte

= 215 (32768) bytes in the computer memory

A word (3 bytes)

< —
——
32768 = 2%° bytes

System Programming

L L

“.* SIC machine architecture

= Registers (5 registers / each 24-bits)

Mnemonic Number

Special use

A 0
X 1
L 2
PC 8
SW 9

Accumulator; used for arithmetic operations
Index register; used for addressing

Linkage register; the Jump to Subroutine (JSUB)
Instruction stores the return address
in this register

Program counter; contains the address of the next
instruction to be fetched for execution

Status word; contains a variety of information,
including a Condition Code (CC)

SIC does not have any stack. It uses the linkage register to store the

return address.

It is difficult to write the recursive program. A programmer has to
maintain memory for return addresses when he write more than one

layer of function call.

System Programming

L L

“.* SIC machine architecture

s Data formats

= Characters
= 8-bit ASCI| codes

= Integers
= 24-bit binary nunbers

« 2°’s conplenent for negative val ues
-N & 2n — N
e.g., if n=4, -1 o 24+ -1 =(1111),.

= No floating-point numbers (exist in SIC/XE)

System Programming

L L

“.* SIC machine architecture

= Instruction formats

= 24-bhits format

opcode (8)

X

address (15)

= Note that the memory size of SIC is 25 bytes
= X Isto indicate index-address mode

= Addressing modes

Mode Indication Target address calculation

Direct x=0

Indexed x=1

TA = address

TA = address + (X)

System Programming

L L

“.* SIC machine architecture

= Instruction set

= Load and store instruction
« LDA, LDX, STA, STX
« Ex: LDA ALPHA = (A < (ALPHA)

STA ALPHA = (ALPHA) ~ (A

= Arithmetic instruction
= involve register A and a word in nenory
« ADD, SUB, MJL, DV
« Ex: ADD ALPHA = (A « (A + (ALPHA)

= Comparison instruction
= involves register A and a word in nenory
= Ssave result in the condition code (CC of SW
= COWP
« Ex: COW ALPHA = CC (<, +,>) of (A ?(ALPHA)

System Programming

L L

“.* SIC machine architecture

= Instruction set (Cont.)

« Conditional jump instructions
= according to CC
« JLE, JEQ JGT
test CC and junp accordingly
= Subroutine linkage instructions
= JSUB

junps and places the return address in register
L

= RSUB

returns to the address in L

System Programming

L L

“.* SIC machine architecture

= Input and output

= Input and output are performed by transferring 1 byte at
atimeto or from the rightmost 8 bits of register A

=« Each deviceis assigned a unigue 8-bits code

= Threel/O instructions

« The Test Device (TD) instruction

tests whether the addressed device is ready to
send or receive a byte of data

CC: < . ready
CC:. = . busy
« Read Data (RD)
« Wite Data (VD)

System Programming 8

L L

“.* Smple /O example for SIC

= Page 19, Figure 1.6

INLOOP

OUTLP

INDEV
OUTDEV
DATA

TD
JEQ
RD
STCH

TD
JEQ
LDCH
WD

BYTE
BYTE
RESB

INDEV

TEST INPUT DEVICE €CC: = denotes device busy

INLOOP LOOP UNTIL DEVICE IS READY

INDEV
DATA

READ ONE BYTE INTO REGISTER A
STORE BYTE THAT WAS READ

OUTDEV TEST OUTPUT DEVICE

OUTLP
DATA

LOOP UNTIL DEVICE IS READY
LOAD DATA BYTE INTO REGISTER A

OUTDEV WRITE ONE BYTE TO OUTPUT DEVICE

XF1’
X'05’

INPUT DEVICE NUMBER
OUTPOUT DEVICE NUMBER
ONE-BYTE VARIABLE

System Programming 9

. . Programming examples
. * - Data movement

= Page 13, Figure 1.2 (a)

LDA FIVE LOAD CONSTANT 5 INTO REGISTER A
STA ALPHA STORE IN ALPHA
LDCH CHARZ LOAD CHARACTER ‘Z'INTO REGISTER A

STCH C1 STORE IN CHARACTER VARIABLE C1
ALPHA RESW 1 ONE-WORD VARIABLE
FIVE WORD 5 ONE-WORD CONSTANT
CHARZ BYTE CZ ONE-BYTE CONSTANT
C1 RESB 1 ONE-BYTE VARIABLE

System Programming 10

. . Programming examples
“.* - Arithmetic

= Page 15, Figure 1.3 (a)

LDA ALPHA LOAD ALPHA INTO REGISTER A
ADD INCR ADD THE VALUE OF INCR
SuUB ONE SUBTRACT 1
STA BETA STORE IN BETA
LDA GAMMA LOAD GAMMA INTO REGISTER A
ADD INCR ADD THE VALUE OF INCR
SuUB ONE SUBTRACT 1
STA DELTA STORE IN DELTA
ONE WORD 1 ONE-WORD CONSTANT

: ONE-WORD VARIABLES
ALPHA RESW
BETA RESW
GAMMA RESW
DELTA RESW
INCR RESW

N Y e e

System Programming

. . Programming examples
“.* -Looping and indexing

= Page 16, Figure 1.4 (a)

MOVECH

STR1
STR2
ZERO
ELEVEN

LDX
LDCH
STCH
TIX
JLT

BYTE
RESB

WORD
WORD

ZERO
STR1,X
STR2,X
ELEVEN
MOVECH

C'TEST STRING’

11

0
11

INITIALIZE INDEX REGISTER TO O

LOAD CHARACTER FROM STR1 INTO REG A
STORE CHARACTER INTO STR2

ADD 1 TO INDEX, COMPARE RESULT TO 11
LOOP IF INDEX IS LESS THAN 11

11-BYTE STRING CONSTANT
11-BYTE VARIABLE
ONE-WORD CONSTANTS

System Programming

12

. . Programming examples
“.* - Indexing and looping

= Page 17, Figure 1.5 (a)

ADDLP

INDEX

ALPHA
BETA
GAMMA

ZERO
K300
THREE

LDA
STA
LDX
LDA
ADD
STA
LDA
ADD
STA
COMP
JLT

RESW

RESW
RESW
RESW

WORD
WORD
WORD

ZERO
INDEX
INDEX
ALPHA,X
BETA,X
GAMMA, X
INDEX
THREE
INDEX
K300
ADDLP

100
100
100

INITIALIZE INDEX VALUE TO O

LOAD INDEX VALUE INTO REGISTER X

LOAD WORD FROM ALPHA INTO REGISTER A
ADD WORD FROM BETA

STORE THE RESULT IN A WORD IN GAMMA
ADD 3 TO INDEX VALUE

COMPARE NEW INDEX VALUE TO 300
LOOP IF INDEX IS LESS THAN 300

ONE-WORD VARIABLE FOR INDEX VALUE
ARRAY VARIABLES—100 WORDS EACH

ONE-WORD CONSTANTS

System Programming 13

. . Programming examples
“.* - Subroutine call and record Input

= Page 20, Figure 1.7 (a)
JSUB READ CALL READ SUBROUTINE

SUBROUTINE TO READ 100-BYTE RCORD

READ LDX ZERO INITAILIZE INDEX REGISTER TO O
RLOOP D INDEV TEST INPUT DEVICE
JEQ RLOOP LOOP IF DEVICE IS BUSY
RD INDEV READ ONE BYTE INTO REGISTER A
STCH RECORD,X STORE DATA BYTE INTO RECORD
TIX K100 ADD 1 TO INDEX AND COMPARE TO 100
JLT RLOOP LOOP IF INDEX IS LESS THAN 100
RSUB EXIT FROM SUBROUTINE
INDEV BYTE XF1’ INPUT DEVICE NUMBER
RECORD RESB 100 100-BYTE BUFFER FOR INPUT RECORD
: ONE-WORD CONSTANTS
ZERO WORD O
K100 WORD 100

System Programming

L L

“.* Define storage

= WORD/BYTE
= Reserve one word/byte of storage

= RESW/RESB
= Reserve one or more words/bytes of storage

= Example
ALPHA RESW 1
FIVE WORD 5
CHARZ BYTE CZ

C1l RESB 1

System Programming

15

L L

" Special symbols (SIC & SIC/XE)

= # . Immediate addressing
= @ :indirect addressing

= + :format4

= * :the current value of PC

= C ‘I character string
= Op M, X :Xdenotes the index addressing

System Programming

16

L L

“.* SIC/XE machine architecture

Memory

= Maximum memory available on a SIC/XE systemis 1
megabyte (2% bytes)
= Instruction format and addressing modes are changed
Register (Additional registers)

Mnemonic Number Special use

B 3 Base register; used for addressing

S 4 General working register-no special use
T 5 General working register-no special use
F 6 Floating-point accumulator (48bits)

= RegistersSand T are only for storing data. They can not use
for accumulator

» EX ADDR S A A « A+S
COMPR X, T

System Programming

17

L L

“.* SIC/XE machine architecture

= Data formats
= Thereisa48-hit floating-point data type

1 11 36
s | exponent | fraction

= sgnbits(0: +, 1: -)

= fractionf: avalue between 0 and 1

= exponent e: unsigned binary number between 0 and 2047

= value: s* f* 2(¢10%9

. Ex 5= 22 +202(2-1 +2-3)* 23— (2-1 +2-3)* £1027-1024
0,10000000011,1010000....0

System Programming

L L

“.* SIC/XE machine architecture

= Instruction formats

= Since the memory used by SIC/XE may be 2°° bytes, the
instruction format of SIC is not enough.

= Sol uti ons

Use rel ati ve addressing

= SIC/XE instruction formats

Format 1 (1 byte)
Format 2 (2 byte)
Format 3 (3 byte)

8 1 15
opcode | x| address
Extend the address field to 20 bits
op (8)
op (8) |r1 (4)(r2 (4)
op (6) n|i|x|bjple| disp (12)
op(6)|n|i|x|blple address (20)

Format 4 (4 byte)

e=0: format 3, e=1: format 4

System Programming

19

L L

“.* SIC/XE machine architecture

Addressing modes
= New relative addressing modes for format 3

Mode Indication Target address calculation

Base relative b=1,p=0 TA=(B)+disp (0=disp=4095)
Program-counter relative b=0,p=1 TA=(B)+disp (-2048=disp=2047)

= When base relative node is used, dispis a 12-bits
unsi gned i nt eger

= Wien programcounter relative node is used, disp
Is a 12-bits signed integer
2’ s conpl enent
= Drect addressing for formats 3 and 4 if b=p=0

= These two addressi ng node can conbine with index
addressing if x=1

System Programming 20

L L

“.* SIC/XE machine architecture

= Addressing modes
= Bitsx,b,p,e: how to calculate the target address

= relative, direct,

nodes

and i ndexed addressing

= Bitsi and n: how to use the target address (TA)

Mode

Indication

Operand value

Immediate addressing | i=1, n=0 TA: TA is used as the operand
value, no memory reference
Indirect addressing =0, n=1 ((TA)): The word at the TA is
fetched. Value of TA is taken as
the address of the operand value
Simple addressing i=0, n=0 Standard SIC
i=1, n=1 (TA):TA is taken as the address of

the operand value

System Programming

21

L L

“.* Addressing mode example

(B)=006000
(PC)=003000
(X)=000090

3030 | 003600

3600 | 103000

6390 | 00C303

C303 | 003030

System Programming

L L

“.* Addressing mode example

Machine instruction Value
Hex Binary Target loadedinto

op ni xbpe disp/address address '6YISIErA
032600 000000 1 1 0 0 1 O 01100000 0000 3600 103000
03C300 000000 1 1 1 1 O O 00110000 0000 6390 00C303
022030 000000 1 0 O 0O 1 O 000000110000 3030 103000
010030 000000 0O 1 O O O O 000000110000 30 000030
003600 000000 0 0O O 0 1 1 01100000 0000 3600 103000
0310C303 000000 1 1 O O O 1 0000 110000110000 0011 C303 003030
System Programming 23

L L

“.* Addressing mode summary

Addressing Flag bits Assembler lenguage Calculation of Operand Notes
type nixbpe notation target address TA
Simple 110000 opc disp (TA) D
110001 +op m addr (TA) 4D
110010 opm (PC)+disp (TA)
110100 opm (B)+disp (TA)
111000 op c,X disp+(X) (TA) D
111001 +op m, X addr+(X) (TA) 4D
111010 op m,X (PC)+disp+(X) (TA)
111100 op m,X (B)+disp+(X) (TA)
000--- opm b/p/eldisp (TA) D S
0O01--- op m,X b/p/e/disp+(X) (TA) D S
Indirect 100000 op @c disp ((TA)) D
100001 +op @m addr ((TA) 4D
100010 op @m (PC)+disp ((TA))
100100 op @m (B)+disp ((TA))
Immediate 010000 op #cC disp TA D
010001 +op #m addr TA 4D
010010 op #m (PC)+disp TA
010100 op #m (B)+disp TA

System Programming

L L

“.* SIC/XE machine architecture

= Instruction set

Standard SIC’ sinstruction
Load and storeregisters (B, S, T, F)
« LDB, STB,

Floating-point arithmetic operations
« ADDF, SUBF, MJLF, DI VF

Register-register arithmetic operations
« ADDR, SUBR, MJULR, DI VR

Register move operations
« RMO

Supervisor call (SVC)
= generates an interrupt for OS (Chap 6)

= Input/Output

SIO, TIO, HIO: start, test, halt the operation of 1/O device

System Programming

25

L L

“.* SIC/XE machine architecture

= Instruction set
= Refer to Appendix A for all instructions (Page 496)

= Notations for appendix
= A « (ImMm.m2): nove word begin at mto A
« P. privileged instruction
= X instruction available only in SIC XE
« C. condition code CC

System Programming

26

. . Programming examples (SIC/XE)
. " - Data movement

= Page 13, Figure 1.2 (b)

LDA #5 LOAD VALUE 5 INTO REGISTER A
STA ALPHA STORE IN ALPHA
LDA #90 LOAD ASCII CODE FOR ‘Z' INTO REG A
STCH C1 STORE IN CHARACTER VARIABLE C1
ALPHA RESW 1 ONE-WORD VARIABLE
C1 RESB 1 ONE-BYTE VARIABLE

System Programming

27

. . Programming examples (SIC/XE)
“.* - Arithmetic

= Page 15, Figure 1.3 (b)

ALPHA
BETA
GAMMA
DELTA
INCR

LDS
LDA
ADDR
SUB
STA
LDA
ADDR
SuUB
STA

RESW
RESW
RESW
RESW
RESW

INCR LOAD VALUE OF INCR INTO REGISTER S
ALPHA LOAD ALPHA INTO REGISTER A

SA ADD THE VALUE OF INCR

#1 SUBTRACT 1

BETA STORE IN BETA

GAMMA LOAD GAMMA INTO REGISTER A

SA ADD THE VALUE OF INCR

#1 SUBTRACT 1

DELTA STORE IN DELTA

N A

ONE WORD VARIABLES

System Programming 28

. . Programming examples (SIC/XE)
“.* -Looping and indexing

= Page 16, Figure 1.4 (b)

MOVECH

STR1
STR2

LDT
LDX
LDCH
STCH
TIXR
JLT

BYTE
RESB

#11

#0
STR1,X
STR2,X

T
MOVECH

INITIALIZE REGISTER T TO 11

INITIALIZE INDEX REGISTER TO O

LOAD CHARACTER FROM STR1 INTO REG A
SOTRE CHARACTER INTO STR2

ADD 1 TO INDEX, COMPARE RESULT TO 11
LOOP IF INDEX IS LESS THAN 11

C'TEST STRING’ 11-BYTE STRING CONSTANT

11

11-BYTE VARIABLE

System Programming 29

. . Programming examples (SIC/XE)
“.* - Indexing and looping

= Page 17, Figure 1.5 (b)

LDS #3
LDT #300
LDX #0

ADDLP LDA ALPHA,X
ADD BETA,X
STA GAMMA, X

ADDR S, X
COMPR X, T
JLT ADDLP

ALPHA RESW 100
BETA RESW 100
GAMMA RESW 100

System Programming

INITIALIZE REGISTER S TO 3

INITIALIZE REGISTER T TO 300

INITIALIZE INDEX REGISTER TO O

LOAD WORD FROM ALPHA INTO REGISTER A
ADD WORD FROM BETA

STORE THE RESULT IN A WORD IN GAMMA
ADD 3 TO INDEX VALUE

COMPARE NEW INDEX VALUE TO 300

LOOP IF INDEX VALUE IS LESS THAN 300

ARRAY VARIABLES—100 WORDS EACH

30

. . Programming examples (SIC/XE)
“.* - Subroutine call and record Input

= Page 20, Figure 1.7 (a)

JSUB

READ LDX

RLOOP LDT
TD
JEQ
RD
STCH
TIXR
LT
RSUB

INDEV BYTE
RECORD RESB

READ

#0
#100
INDEV
RLOOP
INDEV

CALL READ SUBROUTINE

SUBROUTINE TO READ 100-BYTE RECORD
INITIALIZE INDEX REGISTER TO O
INITIALIZE REGISTER T TO 100

TEST INPUT DEVICE

LOOP IF DEVICE IS BUSY

READ ONE BYTE INTO REGISTER A

RECORD,X STORE DATA BYTE INTO RECORD

T
RLOOP

XF1’
100

ADD 1 TO INDEX AND COMPARE TO 100
LOOP IF INDEX IS LESS THAN 100
EXIT FROM SUBROUTINE

INPUT DEVICE NUMBER
100-BYTE BUFFER FOR INPUT RECORD

System Programming

31

