
ACA (15CS72) MODULE-1

 Objective

 Introduction

 The state of computing

o Evolution of computer system

o Elements of Modern Computers

o Flynn's Classical Taxonomy

o System attributes

 Multiprocessor and multicomputer,

o Shared memory multiprocessors

o Distributed Memory Multiprocessors

o A taxonomy of MIMD Computers

 Multi vector and SIMD computers

o Vector Supercomputer

o SIMD supercomputers

 PRAM and VLSI model

o Parallel Random Access machines

o VLSI Complexity Model

 Keywords

 Summary

1.0 Objective

The main aim of this chapter is to learn about the evolution of computer systems, various

attributes on which performance of system is measured, classification of computers on

their ability to perform multiprocessing and various trends towards parallel processing.

1.1 Introduction

From an application point of view, the mainstream of usage of computer is experiencing

a trend of four ascending levels of sophistication:

1

 Data processing

 Information processing

 Knowledge processing

 Intelligence processing

With more and more data structures developed, many users are shifting to computer roles

from pure data processing to information processing. A high degree of parallelism has

been found at these levels. As the accumulated knowledge bases expanded rapidly in

recent years, there grew a strong demand to use computers for knowledge processing.

Intelligence is very difficult to create; its processing even more so. Todays computers are

very fast and obedient and have many reliable memory cells to be qualified for data-

information-knowledge processing.

Parallel processing is emerging as one of the key technology in area of modern

computers. Parallel appears in various forms such as lookahead, vectorization

concurrency, simultaneity, data parallelism, interleaving, overlapping, multiplicity,

replication, multiprogramming, multithreading and distributed computing at different

processing level.

1.2 The state of computing

Modern computers are equipped with powerful hardware technology at the same time

loaded with sophisticated software packages. To access the art of computing we firstly

review the history of computers then study the attributes used for analysis of performance

of computers.

1.2.1 Evolution of computer system

Presently the technology involved in designing of its hardware components of computers

and its overall architecture is changing very rapidly for example: processor clock rate

increase about 20% a year, its logic capacity improve at about 30% in a year; memory

speed at increase about 10% in a year and memory capacity at about 60% increase a year

also the disk capacity increase at a 60% a year and so overall cost per bit improves about

25% a year.

But before we go further with design and organization issues of parallel computer

architecture it is necessary to understand how computers had evolved. Initially, man used

simple mechanical devices – abacus (about 500 BC) , knotted string, and the slide rule for

2

computation. Early computing was entirely mechanical like : mechanical adder/subtracter

(Pascal, 1642) difference engine design (Babbage, 1827) binary mechanical computer

(Zuse, 1941) electromechanical decimal machine (Aiken, 1944). Some of these machines

used the idea of a stored program a famous example of it is the Jacquard Loom and

Babbage’s Analytical Engine which is also often considered as the first real computer.

Mechanical and electromechanical machines have limited speed and reliability because of

the many moving parts. Modern machines use electronics for most information

transmission.

Computing is normally thought of as being divided into generations. Each successive

generation is marked by sharp changes in hardware and software technologies. With

some exceptions, most of the advances introduced in one generation are carried through

to later generations. We are currently in the fifth generation.

Ist generation of computers (1945-54)

The first generation computers where based on vacuum tube technology. The first large

electronic computer was ENIAC (Electronic Numerical Integrator and Calculator), which

used high speed vacuum tube technology and were designed primarily to calculate the

trajectories of missiles. They used separate memory block for program and data. Later in

1946 John Von Neumann introduced the concept of stored program, in which data and

program where stored in same memory block. Based on this concept EDVAC (Electronic

Discrete Variable Automatic Computer) was built in 1951. On this concept IAS (Institute

of advance studies, Princeton) computer was built whose main characteristic was CPU

consist of two units (Program flow control and execution unit).

In general key features of this generation of computers where

1) The switching device used where vacuum tube having switching time between 0.1 to 1

milliseconds.

2) One of major concern for computer manufacturer of this era was that each of the

computer designs had a unique design. As each computer has unique design one cannot

upgrade or replace one component with other computer. Programs that were written for

one machine could not execute on another machine, even though other computer was also

designed from the same company. This created a major concern for designers as there

were no upward-compatible machines or computer architectures with multiple, differing

3

implementations. And designers always tried to manufacture a new machine that should

be upward compatible with the older machines.

3) Concept of specialized registers where introduced for example index registers were

introduced in the Ferranti Mark I, concept of register that save the return-address

instruction was introduced in UNIVAC I, also concept of immediate operands in IBM

704 and the detection of invalid operations in IBM 650 were introduced.

4) Punch card or paper tape were the devices used at that time for storing the program. By

the end of the 1950s IBM 650 became one of popular computers of that time and it used

the drum memory on which programs were loaded from punch card or paper tape. Some

high-end machines also introduced the concept of core memory which was able to

provide higher speeds. Also hard disks started becoming popular.

5) In the early 1950s as said earlier were design specific hence most of them were

designed for some particular numerical processing tasks. Even many of them used

decimal numbers as their base number system for designing instruction set. In such

machine there were actually ten vacuum tubes per digit in each register.

6) Software used was machine level language and assembly language.

7) Mostly designed for scientific calculation and later some systems were developed for

simple business systems.

8) Architecture features

Vacuum tubes and relay memories

CPU driven by a program counter (PC) and accumulator

Machines had only fixed-point arithmetic

9) Software and Applications

Machine and assembly language

Single user at a time

No subroutine linkage mechanisms

Programmed I/O required continuous use of CPU

10) examples: ENIAC, Princeton IAS, IBM 701

IInd generation of computers (1954 – 64)

The transistors were invented by Bardeen, Brattain and Shockely in 1947 at Bell Labs

and by the 1950s these transistors made an electronic revolution as the transistor is

4

smaller, cheaper and dissipate less heat as compared to vacuum tube. Now the transistors

were used instead of a vacuum tube to construct computers. Another major invention was

invention of magnetic cores for storage. These cores where used to large random access

memories. These generation computers has better processing speed, larger memory

capacity, smaller size as compared to pervious generation computer.

The key features of this generation computers were

1) The IInd generation computer were designed using Germanium transistor, this

technology was much more reliable than vacuum tube technology.

2) Use of transistor technology reduced the switching time 1 to 10 microseconds thus

provide overall speed up.

2) Magnetic cores were used main memory with capacity of 100 KB. Tapes and disk

peripheral memory were used as secondary memory.

3) Introduction to computer concept of instruction sets so that same program can be

executed on different systems.

4) High level languages, FORTRAN, COBOL, Algol, BATCH operating system.

5) Computers were now used for extensive business applications, engineering design,

optimation using Linear programming, Scientific research

6) Binary number system very used.

7) Technology and Architecture

Discrete transistors and core memories

I/O processors, multiplexed memory access

Floating-point arithmetic available

Register Transfer Language (RTL) developed

8) Software and Applications

High-level languages (HLL): FORTRAN, COBOL, ALGOL with compilers and

subroutine libraries

Batch operating system was used although mostly single user at a time

9) Example : CDC 1604, UNIVAC LARC, IBM 7090

IIIrd Generation computers(1965 to 1974)

In 1950 and 1960 the discrete components (transistors, registers capacitors) were

manufactured packaged in a separate containers. To design a computer these discrete

5

unit were soldered or wired together on a circuit boards. Another revolution in computer

designing came when in the 1960s, the Apollo guidance computer and Minuteman

missile were able to develop an integrated circuit (commonly called ICs). These ICs

made the circuit designing more economical and practical. The IC based computers are

called third generation computers. As integrated circuits, consists of transistors, resistors,

capacitors on single chip eliminating wired interconnection, the space required for the

computer was greatly reduced. By the mid-1970s, the use of ICs in computers became

very common. Price of transistors reduced very greatly. Now it was possible to put all

components required for designing a CPU on a single printed circuit board. This

advancement of technology resulted in development of minicomputers, usually with 16-

bit words size these system have a memory of range of 4k to 64K.This began a new era

of microelectronics where it could be possible design small identical chips (a thin wafer

of silicon’s). Each chip has many gates plus number of input output pins.

Key features of IIIrd Generation computers:

1) The use of silicon based ICs, led to major improvement of computer system. Switching

speed of transistor went by a factor of 10 and size was reduced by a factor of 10,

reliability increased by a factor of 10, power dissipation reduced by a factor of 10. This

cumulative effect of this was the emergence of extremely powerful CPUS with the

capacity of carrying out 1 million instruction per second.

2) The size of main memory reached about 4MB by improving the design of magnetic

core memories also in hard disk of 100 MB become feasible.

3) On line system become feasible. In particular dynamic production control systems,

airline reservation systems, interactive query systems, and real time closed lop process

control systems were implemented.

4) Concept of Integrated database management systems were emerged.

5) 32 bit instruction formats

6) Time shared concept of operating system.

7) Technology and Architecture features

Integrated circuits (SSI/MSI)

Microprogramming

Pipelining, cache memories, lookahead processing

6

8) Software and Applications

Multiprogramming and time-sharing operating systems

Multi-user applications

9) Examples : IBM 360/370, CDC 6600, TI ASC, DEC PDP-82

IVth Generation computer ((1975 to 1990)

The microprocessor was invented as a single VLSI (Very large Scale Integrated circuit)

chip CPU. Main Memory chips of 1MB plus memory addresses were introduced as single

VLSI chip. The caches were invented and placed within the main memory and

microprocessor. These VLSIs and VVSLIs greatly reduced the space required in a

computer and increased significantly the computational speed.

1) Technology and Architecture feature

LSI/VLSI circuits,

semiconductor memory

Multiprocessors,

vector supercomputers,

multicomputers

Shared or distributed memory

Vector processors

Software and Applications

Multprocessor operating systems,

languages,

compilers,

parallel software tools

Examples : VAX 9000, Cray X-MP, IBM 3090, BBN TC2000

Fifth Generation computers(1990 onwards)

In the mid-to-late 1980s, in order to further improve the performance of the system the

designers start using a technique known as “instruction pipelining”. The idea is to break

the program into small instructions and the processor works on these instructions in

different stages of completion. For example, the processor while calculating the result of

the current instruction also retrieves the operands for the next instruction. Based on this

concept later superscalar processor were designed, here to execute multiple instructions

7

in parallel we have multiple execution unit i.e., separate arithmetic-logic units (ALUs).

Now instead executing single instruction at a time, the system divide program into

several independent instructions and now CPU will look for several similar instructions

that are not dependent on each other, and execute them in parallel. The example of this

design are VLIW and EPIC.

1) Technology and Architecture features

ULSI/VHSIC processors, memory, and switches

High-density packaging

Scalable architecture

Vector processors

2) Software and Applications

Massively parallel processing

Grand challenge applications

Heterogenous processing

3) Examples : Fujitsu VPP500, Cray MPP, TMC CM-5, Intel Paragon

Elements of Modern Computers

The hardware, software, and programming elements of modern computer systems can be

characterized by looking at a variety of factors in context of parallel computing these

factors are:













Computing problems

Algorithms and data structures

Hardware resources

Operating systems

System software support

Compiler support

Computing Problems

 Numerical computing complex mathematical formulations tedious integer or

floating -point computation

 Transaction processing accurate transactions large database management

information retrieval

 Logical Reasoning logic inferences symbolic manipulations

Algorithms and Data Structures

 Traditional algorithms and data structures are designed for sequential machines.

 New, specialized algorithms and data structures are needed to exploit the

capabilities of parallel architectures.

 These often require interdisciplinary interactions among theoreticians,

experimentalists, and programmers.

Hardware Resources

 The architecture of a system is shaped only partly by the hardware resources.

 The operating system and applications also significantly influence the overall

architecture.

 Not only must the processor and memory architectures be considered, but also the

architecture of the device interfaces (which often include their advanced

processors).

Operating System

 Operating systems manage the allocation and deallocation of resources during

user program execution.

 UNIX, Mach, and OSF/1 provide support for multiprocessors and multicomputers

 multithreaded kernel functions virtual memory management file subsystems

network communication services

 An OS plays a significant role in mapping hardware resources to algorithmic and

data structures.

System Software Support

 Compilers, assemblers, and loaders are traditional tools for developing programs

in high-level languages. With the operating system, these tools determine the bind

of resources to applications, and the effectiveness of this determines the efficiency

of hardware utilization and the system’s programmability.

 Most programmers still employ a sequential mind set, abetted by a lack of popular

parallel software support.

System Software Support

9

 Parallel software can be developed using entirely new languages designed

specifically with parallel support as its goal, or by using extensions to existing

sequential languages.

 New languages have obvious advantages (like new constructs specifically for

parallelism), but require additional programmer education and system software.

 The most common approach is to extend an existing language.

Compiler Support

 Preprocessors use existing sequential compilers and specialized libraries to

implement parallel constructs

 Precompilers perform some program flow analysis, dependence checking, and

limited parallel optimzations

 Parallelizing Compilers requires full detection of parallelism in source code, and

transformation of sequential code into parallel constructs

 Compiler directives are often inserted into source code to aid compiler

parallelizing efforts

1.2.3 Flynn's Classical Taxonomy

Among mentioned above the one widely used since 1966, is Flynn's Taxonomy. This

taxonomy distinguishes multi-processor computer architectures according two

independent dimensions of Instruction stream and Data stream. An instruction stream is

sequence of instructions executed by machine. And a data stream is a sequence of data

including input, partial or temporary results used by instruction stream. Each of these

dimensions can have only one of two possible states: Single or Multiple. Flynn’s

classification depends on the distinction between the performance of control unit and the

data processing unit rather than its operational and structural interconnections. Following

are the four category of Flynn classification and characteristic feature of each of them.

1. Single instruction stream, single data stream (SISD)

10

Figure 1.1 Execution of instruction in SISD processors

The figure 1.1 is represents a organization of simple SISD computer having one control

unit, one processor unit and single memory unit.

Figure 1.2 SISD processor organization

 They are also called scalar processor i.e., one instruction at a time and each

instruction have only one set of operands.

 Single instruction: only one instruction stream is being acted on by the CPU

during any one clock cycle

 Single data: only one data stream is being used as input during any one clock

cycle

 Deterministic execution

 Instructions are executed sequentially.

 This is the oldest and until recently, the most prevalent form of computer

 Examples: most PCs, single CPU workstations and mainframes

b) Single instruction stream, multiple data stream (SIMD) processors

 A type of parallel computer

 Single instruction: All processing units execute the same instruction issued by the

control unit at any given clock cycle as shown in figure 13.5 where there are

multiple processor executing instruction given by one control unit.

11

 Multiple data: Each processing unit can operate on a different data element as

shown if figure below the processor are connected to shared memory or

interconnection network providing multiple data to processing unit

Figure 1.3 SIMD processor organization

 This type of machine typically has an instruction dispatcher, a very high-

bandwidth internal network, and a very large array of very small-capacity

instruction units.

 Thus single instruction is executed by different processing unit on different set of

data as shown in figure 1.3.

 Best suited for specialized problems characterized by a high degree of regularity,

such as image processing and vector computation.

 Synchronous (lockstep) and deterministic execution

 Two varieties: Processor Arrays e.g., Connection Machine CM-2, Maspar MP-1,

MP-2 and Vector Pipelines processor e.g., IBM 9000, Cray C90, Fujitsu VP, NEC

SX-2, Hitachi S820

Figure 1.4 Execution of instructions in SIMD processors

12

c) Multiple instruction stream, single data stream (MISD)

 A single data stream is fed into multiple processing units.

 Each processing unit operates on the data independently via independent

instruction streams as shown in figure 1.5 a single data stream is forwarded to

different processing unit which are connected to different control unit and execute

instruction given to it by control unit to which it is attached.

Figure 1.5 MISD processor organization

 Thus in these computers same data flow through a linear array of processors

executing different instruction streams as shown in figure 1.6.

 This architecture is also known as systolic arrays for pipelined execution of

specific instructions.

 Few actual examples of this class of parallel computer have ever existed. One is

the experimental Carnegie-Mellon C.mmp computer (1971).

 Some conceivable uses might be:

1. multiple frequency filters operating on a single signal stream

2. multiple cryptography algorithms attempting to crack a single coded message.

Figure 1.6 Execution of instructions in MISD processors

13

d) Multiple instruction stream, multiple data stream (MIMD)

 Multiple Instruction: every processor may be executing a different instruction

stream

 Multiple Data: every processor may be working with a different data stream as

shown in figure 1.7 multiple data stream is provided by shared memory.

 Can be categorized as loosely coupled or tightly coupled depending on sharing of

data and control

 Execution can be synchronous or asynchronous, deterministic or non-

deterministic

Figure 1.7 MIMD processor organizations

 As shown in figure 1.8 there are different processor each processing different

task.

 Examples: most current supercomputers, networked parallel computer "grids" and

multi-processor SMP computers - including some types of PCs.

Figure 1.8 execution of instructions MIMD processors

14

Here the some popular computer architecture and there types

SISD IBM 701, IBM 1620, IBM 7090, PDP VAX11/ 780

SISD (With multiple functional units) IBM360/91 (3); IBM 370/168 UP

SIMD (Word Slice Processing) Illiac – IV ; PEPE

SIMD (Bit Slice processing) STARAN; MPP; DAP

MIMD (Loosely Coupled) IBM 370/168 MP; Univac 1100/80

MIMD(Tightly Coupled) Burroughs- D – 825

1.2.4 PERFORMANCE ATTRIBUTES

Performance of a system depends on

 hardware technology

 architectural features

 efficient resource management

 algorithm design

 data structures

 language efficiency

 programmer skill

 compiler technology

When we talk about performance of computer system we would describe how quickly a

given system can execute a program or programs. Thus we are interested in knowing the

turnaround time. Turnaround time depends on:

 disk and memory accesses

 input and output

 compilation time

 operating system overhead

 CPU time

An ideal performance of a computer system means a perfect match between the machine

capability and program behavior. The machine capability can be improved by using

better hardware technology and efficient resource management. But as far as program

behavior is concerned it depends on code used, compiler used and other run time

conditions. Also a machine performance may vary from program to program. Because

there are too many programs and it is impractical to test a CPU's speed on all of them,

15

benchmarks were developed. Computer architects have come up with a variety of metrics

to describe the computer performance.

Clock rate and CPI / IPC : Since I/O and system overhead frequently overlaps

processing by other programs, it is fair to consider only the CPU time used by a program,

and the user CPU time is the most important factor. CPU is driven by a clock with a

constant cycle time (usually measured in nanoseconds, which controls the rate of internal

operations in the CPU. The clock mostly has the constant cycle time (t in nanoseconds).

The inverse of the cycle time is the clock rate (f = 1/, measured in megahertz). A shorter

clock cycle time, or equivalently a larger number of cycles per second, implies more

operations can be performed per unit time. The size of the program is determined by the

instruction count (Ic). The size of a program is determined by its instruction count, Ic, the

number of machine instructions to be executed by the program. Different machine

instructions require different numbers of clock cycles to execute. CPI (cycles per

instruction) is thus an important parameter.

Average CPI

It is easy to determine the average number of cycles per instruction for a particular

processor if we know the frequency of occurrence of each instruction type.

Of course, any estimate is valid only for a specific set of programs (which defines the

instruction mix), and then only if there are sufficiently large number of instructions.

In general, the term CPI is used with respect to a particular instruction set and a given

program mix. The time required to execute a program containing Ic instructions is just T

= Ic * CPI * .

Each instruction must be fetched from memory, decoded, then operands fetched from

memory, the instruction executed, and the results stored.

The time required to access memory is called the memory cycle time, which is usually k

times the processor cycle time . The value of k depends on the memory technology and

the processor-memory interconnection scheme. The processor cycles required for each

instruction (CPI) can be attributed to cycles needed for instruction decode and execution

(p), and cycles needed for memory references (m* k).

The total time needed to execute a program can then be rewritten as

T = Ic* (p + m*k)*.

16

MIPS: The millions of instructions per second, this is calculated by dividing the number

of instructions executed in a running program by time required to run the program. The

MIPS rate is directly proportional to the clock rate and inversely proportion to the CPI.

All four systems attributes (instruction set, compiler, processor, and memory

technologies) affect the MIPS rate, which varies also from program to program. MIPS

does not proved to be effective as it does not account for the fact that different systems

often require different number of instruction to implement the program. It does not

inform about how many instructions are required to perform a given task. With the

variation in instruction styles, internal organization, and number of processors per system

it is almost meaningless for comparing two systems.

MFLOPS (pronounced ``megaflops'') stands for ``millions of floating point operations

per second.'' This is often used as a ``bottom-line'' figure. If one know ahead of time how

many operations a program needs to perform, one can divide the number of operations by

the execution time to come up with a MFLOPS rating. For example, the standard

algorithm for multiplying n*n matrices requires 2n
3
– n operations (n

2
inner products,

with n multiplications and n-1additions in each product). Suppose you compute the

product of two 100 *100 matrices in 0.35 seconds. Then the computer achieves

(2(100)
3

– 100)/0.35 = 5,714,000 ops/sec = 5.714 MFLOPS

The term ``theoretical peak MFLOPS'' refers to how many operations per second would

be possible if the machine did nothing but numerical operations. It is obtained by

calculating the time it takes to perform one operation and then computing how many of

them could be done in one second. For example, if it takes 8 cycles to do one floating

point multiplication, the cycle time on the machine is 20 nanoseconds, and arithmetic

operations are not overlapped with one another, it takes 160ns for one multiplication, and

(1,000,000,000 nanosecond/1sec)*(1 multiplication / 160 nanosecond) = 6.25*10
6

multiplication /sec so the theoretical peak performance is 6.25 MFLOPS. Of course,

programs are not just long sequences of multiply and add instructions, so a machine

rarely comes close to this level of performance on any real program. Most machines will

achieve less than 10% of their peak rating, but vector processors or other machines with

internal pipelines that have an effective CPI near 1.0 can often achieve 70% or more of

their theoretical peak on small programs.

17

Throughput rate : Another important factor on which system’s performance is measured

is throughput of the system which is basically how many programs a system can execute

per unit time Ws. In multiprogramming the system throughput is often lower than the

CPU throughput Wp which is defined as

Wp = f/(Ic * CPI)

Unit of Wp is programs/second.

Ws <Wp as in multiprogramming environment there is always additional overheads like

timesharing operating system etc. An Ideal behavior is not achieved in parallel computers

because while executing a parallel algorithm, the processing elements cannot devote

100% of their time to the computations of the algorithm. Efficiency is a measure of the

fraction of time for which a PE is usefully employed. In an ideal parallel system

efficiency is equal to one. In practice, efficiency is between zero and one

s of overhead associated with parallel execution

Speed or Throughput (W/Tn) - the execution rate on an n processor system, measured in

FLOPs/unit-time or instructions/unit-time.

Speedup (Sn = T1/Tn) - how much faster in an actual machine, n processors compared to

1 will perform the workload. The ratio T1/T∞is called the asymptotic speedup.

Efficiency (En = Sn/n) - fraction of the theoretical maximum speedup achieved by n

processors

Degree of Parallelism (DOP) - for a given piece of the workload, the number of

processors that can be kept busy sharing that piece of computation equally. Neglecting

overhead, we assume that if k processors work together on any workload, the workload

gets done k times as fast as a sequential execution.

Scalability - The attributes of a computer system which allow it to be gracefully and

linearly scaled up or down in size, to handle smaller or larger workloads, or to obtain

proportional decreases or increase in speed on a given application. The applications run

on a scalable machine may not scale well. Good scalability requires the algorithm and the

machine to have the right properties

Thus in general there are five performance factors (Ic, p, m, k, t) which are influenced by

four system attributes:

 instruction-set architecture (affects Ic and p)

18

 compiler technology (affects Ic and p and m)

 CPU implementation and control (affects p *t) cache and memory hierarchy

(affects memory access latency, k ´t)

 Total CPU time can be used as a basis in estimating the execution rate of a

processor.

Programming Environments

Programmability depends on the programming environment provided to the users.

Conventional computers are used in a sequential programming environment with tools

developed for a uniprocessor computer. Parallel computers need parallel tools that allow

specification or easy detection of parallelism and operating systems that can perform

parallel scheduling of concurrent events, shared memory allocation, and shared peripheral

and communication links.

Implicit Parallelism

Use a conventional language (like C, Fortran, Lisp, or Pascal) to write the program.

Use a parallelizing compiler to translate the source code into parallel code.

The compiler must detect parallelism and assign target machine resources.

Success relies heavily on the quality of the compiler.

Explicit Parallelism

Programmer writes explicit parallel code using parallel dialects of common languages.

Compiler has reduced need to detect parallelism, but must still preserve existing

parallelism and assign target machine resources.

Needed Software Tools

Parallel extensions of conventional high-level languages.

Integrated environments to provide different levels of program abstraction validation,

testing and debugging performance prediction and monitoring visualization support to aid

program development, performance measurement graphics display and animation of

computational results

1.3 MULTIPROCESSOR AND MULTICOMPUTERS

Two categories of parallel computers are discussed below namely shared common

memory or unshared distributed memory.

1.3.1 Shared memory multiprocessors

19

 Shared memory parallel computers vary widely, but generally have in common

the ability for all processors to access all memory as global address space.

 Multiple processors can operate independently but share the same memory

resources.

 Changes in a memory location effected by one processor are visible to all other

processors.

 Shared memory machines can be divided into two main classes based upon

memory access times: UMA , NUMA and COMA.

Uniform Memory Access (UMA):

 Most commonly represented today by Symmetric Multiprocessor (SMP)

machines

 Identical processors

 Equal access and access times to memory

 Sometimes called CC-UMA - Cache Coherent UMA. Cache coherent means if

one processor updates a location in shared memory, all the other processors know

about the update. Cache coherency is accomplished at the hardware level.

Figure 1.9 Shared Memory (UMA)

20

Non-Uniform Memory Access (NUMA):

 Often made by physically linking two or more SMPs

 One SMP can directly access memory of another SMP

 Not all processors have equal access time to all memories

 Memory access across link is slower

If cache coherency is maintained, then may also be called CC-NUMA - Cache Coherent

NUMA

figure 1.10 Shared Memory (NUMA)

The COMA model : The COMA model is a special case of NUMA machine in which

the distributed main memories are converted to caches. All caches form a global address

space and there is no memory hierarchy at each processor node.

Advantages:

 Global address space provides a user-friendly programming perspective to

memory

 Data sharing between tasks is both fast and uniform due to the proximity of

memory to CPUs

Disadvantages:

 Primary disadvantage is the lack of scalability between memory and CPUs.

Adding more CPUs can geometrically increases traffic on the shared memory-

21

CPU path, and for cache coherent systems, geometrically increase traffic

associated with cache/memory management.

 Programmer responsibility for synchronization constructs that insure "correct"

access of global memory.

 Expense: it becomes increasingly difficult and expensive to design and produce

shared memory machines with ever increasing numbers of processors.

1.3.2 Distributed Memory

 Like shared memory systems, distributed memory systems vary widely but share

a common characteristic. Distributed memory systems require a communication

network to connect inter-processor memory.

Figure 1.11 distributed memory systems

 Processors have their own local memory. Memory addresses in one processor do

not map to another processor, so there is no concept of global address space

across all processors.

 Because each processor has its own local memory, it operates independently.

Changes it makes to its local memory have no effect on the memory of other

processors. Hence, the concept of cache coherency does not apply.

 When a processor needs access to data in another processor, it is usually the task

of the programmer to explicitly define how and when data is communicated.

Synchronization between tasks is likewise the programmer's responsibility.

22

 Modern multicomputer use hardware routers to pass message. Based on the

interconnection and routers and channel used the multicomputers are divided into

generation

o 1
st

generation : based on board technology using hypercube architecture

and software controlled message switching.

o 2
nd

Generation: implemented with mesh connected architecture, hardware

message routing and software environment for medium distributed –

grained computing.

o 3
rd

Generation : fine grained multicomputer like MIT J-Machine.

 The network "fabric" used for data transfer varies widely, though it can be as

simple as Ethernet.

Advantages:

 Memory is scalable with number of processors. Increase the number of processors

and the size of memory increases proportionately.

 Each processor can rapidly access its own memory without interference and

without the overhead incurred with trying to maintain cache coherency.

 Cost effectiveness: can use commodity, off-the-shelf processors and networking.

Disadvantages:

 The programmer is responsible for many of the details associated with data

communication between processors.

 It may be difficult to map existing data structures, based on global memory, to

this memory organization.

 Non-uniform memory access (NUMA) times

1.4 MULTIVECTOR AND SIMD COMPUTERS

A vector operand contains an ordered set of n elements, where n is called the length of

the vector. Each element in a vector is a scalar quantity, which may be a floating point

number, an integer, a logical value or a character.

23

A vector processor consists of a scalar processor and a vector unit, which could be

thought of as an independent functional unit capable of efficient vector operations.

1.4.1Vector Hardware

Vector computers have hardware to perform the vector operations efficiently. Operands

can not be used directly from memory but rather are loaded into registers and are put

back in registers after the operation. Vector hardware has the special ability to overlap or

pipeline operand processing.

Figure 1.12 Vector Hardware

Vector functional units pipelined, fully segmented each stage of the pipeline performs a

step of the function on different operand(s) once pipeline is full, a new result is produced

each clock period (cp).

Pipelining

The pipeline is divided up into individual segments, each of which is completely

independent and involves no hardware sharing. This means that the machine can be

working on separate operands at the same time. This ability enables it to produce one

result per clock period as soon as the pipeline is full. The same instruction is obeyed

repeatedly using the pipeline technique so the vector processor processes all the elements

of a vector in exactly the same way. The pipeline segments arithmetic operation such as

floating point multiply into stages passing the output of one stage to the next stage as

input. The next pair of operands may enter the pipeline after the first stage has processed

the previous pair of operands. The processing of a number of operands may be carried out

simultaneously.

The loading of a vector register is itself a pipelined operation, with the ability to load one

element each clock period after some initial startup overhead.

24

1.4.2 SIMD Array Processors

The Synchronous parallel architectures coordinate Concurrent operations in lockstep

through global clocks, central control units, or vector unit controllers. A synchronous

array of parallel processors is called an array processor. These processors are composed

of N identical processing elements (PES) under the supervision of a one control unit (CU)

This Control unit is a computer with high speed registers,

local memory and arithmetic logic unit.. An array processor is basically a single

instruction and multiple data (SIMD) computers. There are N data streams; one per

processor, so different data can be used in each processor. The figure below show a

typical SIMD or array processor

Figure 1.13 Configuration of SIMD Array Processor

These processors consist of a number of memory modules which can be either global or

dedicated to each processor. Thus the main memory is the aggregate of the memory

modules. These Processing elements and memory unit communicate with each other

through an interconnection network. SIMD processors are especially designed for

performing vector computations. SIMD has two basic architectural organizations

a. Array processor using random access memory

b. Associative processors using content addressable memory.

All N identical processors operate under the control of a single instruction stream issued

by a central control unit. The popular examples of this type of SIMD configuration is

ILLIAC IV, CM-2, MP-1. Each PEi is essentially an arithmetic logic unit (ALU) with

attached working registers and local memory PEMi for the storage of distributed data.

The CU also has its own main memory for the storage of program. The function of CU is

to decode the instructions and determine where the decoded instruction should be

executed. The PE perform same function (same instruction) synchronously in a lock step

fashion under command of CU. In order to maintain synchronous operations a global

25

clock is used. Thus at each step i.e., when global clock pulse changes all processors

execute the same instruction, each on a different data (single instruction multiple data).

SIMD machines are particularly useful at in solving problems involved with vector

calculations where one can easily exploit data parallelism. In such calculations the same

set of instruction is applied to all subsets of data. Lets do addition to two vectors each

having N element and there are N/2 processing elements in the SIMD. The same addition

instruction is issued to all N/2 processors and all processor elements will execute the

instructions simultaneously. It takes 2 steps to add two vectors as compared to N steps on

a SISD machine. The distributed data can be loaded into PEMs from an external source

via the system bus or via system broadcast mode using the control bus.

The array processor can be classified into two category depending how the memory units

are organized. It can be

a. Dedicated memory organization

b. Global memory organization

A SIMD computer C is characterized by the following set of parameter

C= <N,F,I,M>

Where N= the number of PE in the system . For example the iliac –IV has N=64 , the

BSP has N= 16.

F= a set of data routing function provided by the interconnection network

I= The set of machine instruction for scalar vector, data routing and network

manipulation operations

M = The set of the masking scheme where each mask partitions the set of PEs into

disjoint subsets of enabled PEs and disabled PEs.

1.5 PRAM AND VLSI MODELS

1.5.1 PRAM model (Parallel Random Access Machine):

PRAM Parallel random access machine; a theoretical model of parallel computation in

which an arbitrary but finite number of processors can access any value in an arbitrarily

large shared memory in a single time step. Processors may execute different instruction

streams, but work synchronously. This model assumes a shared memory, multiprocessor

machine as shown:

26

1. The machine size n can be arbitrarily large

2. The machine is synchronous at the instruction level. That is, each processor is

executing it's own series of instructions, and the entire machine operates at a basic time

step (cycle). Within each cycle, each processor executes exactly one operation or does

nothing, i.e. it is idle. An instruction can be any random access machine instruction, such

as: fetch some operands from memory, perform an ALU operation on the data, and store

the result back in memory.

3. All processors implicitly synchronize on each cycle and the synchronization overhead

is assumed to be zero. Communication is done through reading and writing of shared

variables.

4. Memory access can be specified to be UMA, NUMA, EREW, CREW, or CRCW with

a defined conflict policy.

The PRAM model can apply to SIMD class machines if all processors execute identical

instructions on the same cycle, or to MIMD class machines if the processors are

executing different instructions. Load imbalance is the only form of overhead in the

PRAM model.

The four most important variations of the PRAM are:

 EREW - Exclusive read, exclusive write; any memory location may only be

accessed once in any one step. Thus forbids more than one processor from reading

or writing the same memory cell simultaneously.

 CREW - Concurrent read, exclusive write; any memory location may be read any

number of times during a single step, but only written to once, with the write

taking place after the reads.

 ERCW – This allows exclusive read or concurrent writes to the same memory

location.

 CRCW - Concurrent read, concurrent write; any memory location may be written

to or read from any number of times during a single step. A CRCW PRAM model

must define some rule for resolving multiple writes, such as giving priority to the

lowest-numbered processor or choosing amongst processors randomly. The

PRAM is popular because it is theoretically tractable and because it gives

27

algorithm designers a common target. However, PRAMs cannot be emulated

optimally on all architectures.

1.5.2 VLSI Model:

Parallel computers rely on the use of VLSI chips to fabricate the major components such

as processor arrays memory arrays and large scale switching networks. The rapid advent

of very large scale intergrated (VSLI) technology now computer architects are trying to

implement parallel algorithms directly in hardware. An AT
2

model is an example for two

dimension VLSI chips

1.6 Summary

Architecture has gone through evolutional, rather than revolutional change.

Sustaining features are those that are proven to improve performance. Starting with the

von Neumann architecture (strictly sequential), architectures have evolved to include

processing lookahead, parallelism, and pipelining. Also a variety of parallel architectures

are discussed like SIMD, MIMD, Associative Processor, Array Processor,

multicomputers, Mutiprocessor. The performance of system is measured as CPI, MIPS. It

depends on the clock rate lets say t. If C is the total number of clock cycles needed to

execute a given program, then total CPU time can be estimated as

T= C * t = C / f.

Other relationships are easily observed:

CPI = C / Ic

T =Ic * CPI * t

T =Ic * CPI / f

Processor speed is often measured in terms of millions of instructions per second,

frequently called the MIPS rate of the processor. The multiprocessor architecture can be

broadly classified as tightly coupled multiprocessor and loosely coupled multiprocessor.

A tightly coupled Multiprocessor is also called a UMA, for uniform memory access,

because each CPU can access memory data at the same (uniform) amount of time. This is

the true multiprocessor. A loosely coupled Multiprocessor is called a NUMA. Each of its

node computers can access their local memory data at one (relatively fast) speed, and

28

remote memory data at a much slower speed. PRAM and VSLI are the advance

technologies that are used for designing the architecture.

1.7 Keywords

multiprocessor A computer in which processors can execute separate instruction

streams, but have access to a single address space. Most multiprocessors are shared

memory machines, constructed by connecting several processors to one or more memory

banks through a bus or switch.

multicomputer A computer in which processors can execute separate instruction

streams, have their own private memories and cannot directly access one another's

memories. Most multicomputers are disjoint memory machines, constructed by joining

nodes (each containing a microprocessor and some memory) via links.

MIMD Multiple Instruction, Multiple Data; a category of Flynn's taxonomy in which

many instruction streams are concurrently applied to multiple data sets. A MIMD

architecture is one in which heterogeneous processes may execute at different rates.

MIPS one Million Instructions Per Second. A performance rating usually referring to

integer or non-floating point instructions

vector processor A computer designed to apply arithmetic operations to long vectors or

arrays. Most vector processors rely heavily on pipelining to achieve high performance

pipelining Overlapping the execution of two or more operations

29

Program & network properties

  Objective

 Introduction

 Condition of parallelism

o Data dependence and resource dependence

o Hardware and software dependence

o The role of compiler

 Program partitioning and scheduling

o Grain size and latency

o Grain packing and scheduling

 Program flow mechanism

 System interconnect architecture.

o Network properties and routing

o Static connection network

o Dynamic connection network

 Summary

 Keywords

2.0 Objective

In this lesson we will study about fundamental properties of programs how parallelism

can be introduced in program. We will study about the granularity, partitioning of

programs , program flow mechanism and compilation support for parallelism.

Interconnection architecture both static and dynamic type will be discussed.

2.1 Introduction

The advantage of multiprocessors lays when parallelism in the program is popularly

exploited and implemented using multiple processors. Thus in order to implement the

parallelism we should understand the various conditions of parallelism.

30

What are various bottlenecks in implementing parallelism? Thus for full implementation

of parallelism there are three significant areas to be understood namely computation

models for parallel computing, interprocessor communication in parallel architecture and

system integration for incorporating parallel systems. Thus multiprocessor system poses a

number of problems that are not encountered in sequential processing such as designing a

parallel algorithm for the application, partitioning of the application into tasks,

coordinating communication and synchronization, and scheduling of the tasks onto the

machine.

2.2 Condition of parallelism

The ability to execute several program segments in parallel requires each segment to be

independent of the other segments. We use a dependence graph to describe the relations.

The nodes of a dependence graph correspond to the program statement (instructions), and

directed edges with different labels are used to represent the ordered relations among the

statements. The analysis of dependence graphs shows where opportunity exists for

parallelization and vectorization.

2.2.1 Data and resource Dependence

Data dependence: The ordering relationship between statements is indicated by the data

dependence. Five type of data dependence are defined below:

1. Flow dependence: A statement S2 is flow dependent on S1 if an execution path exists

from s1 to S2 and if at least one output (variables assigned) of S1feeds in as input

(operands to be used) to S2 also called RAW hazard and denoted as

2. Antidependence: Statement S2 is antidependent on the statement S1 if S2 follows S1 in

the program order and if the output of S2 overlaps the input to S1 also called RAW

hazard and denoted as

3. Output dependence : two statements are output dependent if they produce (write) the

same output variable. Also called WAW hazard and denoted as

4. I/O dependence: Read and write are I/O statements. I/O dependence occurs not

because the same variable is involved but because the same file referenced by both I/O

statement.

31

5. Unknown dependence: The dependence relation between two statements cannot be

determined in the following situations:

 The subscript of a variable is itself subscribed(indirect addressing)

 The subscript does not contain the loop index variable.

 A variable appears more than once with subscripts having different coefficients

of the loop variable.

 The subscript is non linear in the loop index variable.

Parallel execution of program segments which do not have total data independence can

produce non-deterministic results.

Consider the following fragment of any program:

S1 Load R1, A

S2 Add R2, R1

S3 Move R1, R3

S4 Store B, R1

• here the Forward dependency S1to S2, S3 to S4, S2 to S2

• Anti-dependency from S2to S3

• Output dependency S1 toS3

Figure 2.1 Dependence graph

Control Dependence: This refers to the situation where the order of the execution of

statements cannot be determined before run time. For example all condition statement,

where the flow of statement depends on the output. Different paths taken after a

conditional branch may depend on the data hence we need to eliminate this data

dependence among the instructions. This dependence also exists between operations

32

performed in successive iterations of looping procedure. Control dependence often

prohibits parallelism from being exploited.

Control-independent example:

for (i=0;i<n;i++) {

a[i] = c[i];

if (a[i] < 0) a[i] = 1;

}

Control-dependent example:

for (i=1;i<n;i++) {

if (a[i-1] < 0) a[i] =

1; }

Control dependence also avoids parallelism to being exploited. Compilers are used to

eliminate this control dependence and exploit the parallelism.

Resource dependence:

Data and control dependencies are based on the independence of the work to be done.

Resource independence is concerned with conflicts in using shared resources, such as

registers, integer and floating point ALUs, etc. ALU conflicts are called ALU

dependence. Memory (storage) conflicts are called storage dependence.

Bernstein’s Conditions - 1

Bernstein’s conditions are a set of conditions which must exist if two processes can

execute in parallel.

Notation

Ii is the set of all input variables for a process Pi . Ii is also called the read set or domain

of Pi. Oi is the set of all output variables for a process Pi .Oi is also called write set

If P1 and P2 can execute in parallel (which is written as P1 || P2), then:

Bernstein’s Conditions - 2

33

In terms of data dependencies, Bernstein’s conditions imply that two processes can

execute in parallel if they are flow-independent, antiindependent, and output-

independent. The parallelism relation || is commutative (Pi || Pj implies Pj || Pi), but not

transitive (Pi || Pj and Pj || Pk does not imply Pi || Pk) . Therefore, || is not an equivalence

relation. Intersection of the input sets is allowed.

2.2.2 Hardware and software parallelism

Hardware parallelism is defined by machine architecture and hardware multiplicity i.e.,

functional parallelism times the processor parallelism .It can be characterized by the

number of instructions that can be issued per machine cycle. If a processor issues k

instructions per machine cycle, it is called a k-issue processor. Conventional processors

are one-issue machines. This provide the user the information about peak attainable

performance. Examples. Intel i960CA is a three-issue processor (arithmetic, memory

access, branch). IBM RS -6000 is a four-issue processor (arithmetic, floating-point,

memory access, branch).A machine with n k-issue processors should be able to handle a

maximum of nk threads simultaneously.

Software Parallelism

Software parallelism is defined by the control and data dependence of programs, and is

revealed in the program’s flow graph i.e., it is defined by dependencies with in the code

and is a function of algorithm, programming style, and compiler optimization.

2.2.3 The Role of Compilers

Compilers used to exploit hardware features to improve performance. Interaction

between compiler and architecture design is a necessity in modern computer

development. It is not necessarily the case that more software parallelism will improve

performance in conventional scalar processors. The hardware and compiler should be

designed at the same time.

2.3Program Partitioning & Scheduling

2.3.1 Grain size and latency

The size of the parts or pieces of a program that can be considered for parallel execution

can vary. The sizes are roughly classified using the term “granule size,” or simply

“granularity.” The simplest measure, for example, is the number of instructions in a

34

program part. Grain sizes are usually described as fine, medium or coarse, depending on

the level of parallelism involved.

Latency

Latency is the time required for communication between different subsystems in a

computer. Memory latency, for example, is the time required by a processor to access

memory. Synchronization latency is the time required for two processes to synchronize

their execution. Computational granularity and communication latency are closely

related. Latency and grain size are interrelated and some general observation are

 As grain size decreases, potential parallelism increases, and overhead also

increases.

 Overhead is the cost of parallelizing a task. The principle overhead is

communication latency.

 As grain size is reduced, there are fewer operations between communication, and

hence the impact of latency increases.

 Surface to volume: inter to intra-node comm.

Levels of Parallelism

Instruction Level Parallelism

This fine-grained, or smallest granularity level typically involves less than 20 instructions

per grain. The number of candidates for parallel execution varies from 2 to thousands,

with about five instructions or statements (on the average) being the average level of

parallelism.

Advantages:

There are usually many candidates for parallel execution

Compilers can usually do a reasonable job of finding this parallelism

Loop-level Parallelism

Typical loop has less than 500 instructions. If a loop operation is independent between

iterations, it can be handled by a pipeline, or by a SIMD machine. Most optimized

program construct to execute on a parallel or vector machine. Some loops (e.g. recursive)

are difficult to handle. Loop-level parallelism is still considered fine grain computation.

Procedure-level Parallelism

35

Medium-sized grain; usually less than 2000 instructions. Detection of parallelism is more

difficult than with smaller grains; interprocedural dependence analysis is difficult and

history-sensitive. Communication requirement less than instruction level SPMD (single

procedure multiple data) is a special case Multitasking belongs to this level.

Subprogram-level Parallelism

Job step level; grain typically has thousands of instructions; medium- or coarse-grain

level. Job steps can overlap across different jobs. Multiprograming conducted at this level

No compilers available to exploit medium- or coarse-grain parallelism at present.

Job or Program-Level Parallelism

Corresponds to execution of essentially independent jobs or programs on a parallel

computer. This is practical for a machine with a small number of powerful processors,

but impractical for a machine with a large number of simple processors (since each

processor would take too long to process a single job).

Communication Latency

Balancing granularity and latency can yield better performance. Various latencies

attributed to machine architecture, technology, and communication patterns used.

Latency imposes a limiting factor on machine scalability. Ex. Memory latency increases

as memory capacity increases, limiting the amount of memory that can be used with a

given tolerance for communication latency.

Interprocessor Communication Latency

 Needs to be minimized by system designer

 Affected by signal delays and communication patterns Ex. n communicating tasks

may require n (n - 1)/2 communication links, and the complexity grows

quadratically, effectively limiting the number of processors in the system.

Communication Patterns

 Determined by algorithms used and architectural support provided

 Patterns include permutations broadcast multicast conference

 Tradeoffs often exist between granularity of parallelism and communication

demand.

2.3.2 Grain Packing and Scheduling

Two questions:

36

How can I partition a program into parallel “pieces” to yield the shortest execution time?

What is the optimal size of parallel grains?

There is an obvious tradeoff between the time spent scheduling and synchronizing

parallel grains and the speedup obtained by parallel execution.

One approach to the problem is called “grain packing.”

Program Graphs and Packing

A program graph is similar to a dependence graph Nodes = { (n,s) }, where n = node

name, s = size (larger s = larger grain size).

Edges = { (v,d) }, where v = variable being “communicated,” and d = communication

delay.

Packing two (or more) nodes produces a node with a larger grain size and possibly more

edges to other nodes. Packing is done to eliminate unnecessary communication delays or

reduce overall scheduling overhead.

Scheduling

A schedule is a mapping of nodes to processors and start times such that communication

delay requirements are observed, and no two nodes are executing on the same processor

at the same time. Some general scheduling goals

 Schedule all fine-grain activities in a node to the same processor to minimize

communication delays.

 Select grain sizes for packing to achieve better schedules for a particular parallel

machine.

Node Duplication

Grain packing may potentially eliminate interprocessor communication, but it may not

always produce a shorter schedule. By duplicating nodes (that is, executing some

instructions on multiple processors), we may eliminate some interprocessor

communication, and thus produce a shorter schedule.

Program partitioning and scheduling

Scheduling and allocation is a highly important issue since an inappropriate scheduling of

tasks can fail to exploit the true potential of the system and can offset the gain from

parallelization. In this paper we focus on the scheduling aspect. The objective of

scheduling is to minimize the completion time of a parallel application by properly

37

allocating the tasks to the processors. In a broad sense, the scheduling problem exists in

two forms: static and dynamic. In static scheduling, which is usually done at compile

time, the characteristics of a parallel program (such as task processing times,

communication, data dependencies, and synchronization requirements) are known before

program execution

A parallel program, therefore, can be represented by a node- and edge-weighted directed

acyclic graph (DAG), in which the node weights represent task processing times and the

edge weights represent data dependencies as well as the communication times between

tasks. In dynamic scheduling only, a few assumptions about the parallel program can be

made before execution, and thus, scheduling decisions have to be made on-the-fly. The

goal of a dynamic scheduling algorithm as such includes not only the minimization of the

program completion time but also the minimization of the scheduling overhead which

constitutes a significant portion of the cost paid for running the scheduler. In general

dynamic scheduling is an NP hard problem.

2.4 Program flow mechanism

Conventional machines used control flow mechanism in which order of program

execution explicitly stated in user programs. Dataflow machines which instructions can

be executed by determining operand availability.

Reduction machines trigger an instruction’s execution based on the demand for its

results.

Control Flow vs. Data Flow In Control flow computers the next instruction is executed

when the last instruction as stored in the program has been executed where as in Data

flow computers an instruction executed when the data (operands) required for executing

that instruction is available

Control flow machines used shared memory for instructions and data. Since variables are

updated by many instructions, there may be side effects on other instructions. These side

effects frequently prevent parallel processing. Single processor systems are inherently

sequential.

Instructions in dataflow machines are unordered and can be executed as soon as their

operands are available; data is held in the instructions themselves. Data tokens are passed

from an instruction to its dependents to trigger execution.

38

Data Flow Features

No need for shared memory program counter control sequencer Special mechanisms are

required to detect data availability match data tokens with instructions needing them

enable chain reaction of asynchronous instruction execution

A Dataflow Architecture – 1 The Arvind machine (MIT) has N PEs and an N -by –N

interconnection network. Each PE has a token-matching mechanism that dispatches only

instructions with data tokens available. Each datum is tagged with

 address of instruction to which it belongs

 context in which the instruction is being executed

Tagged tokens enter PE through local path (pipelined), and can also be communicated to

other PEs through the routing network. Instruction address(es) effectively replace the

program counter in a control flow machine. Context identifier effectively replaces the

frame base register in a control flow machine. Since the dataflow machine matches the

data tags from one instruction with successors, synchronized instruction execution is

implicit.

An I-structure in each PE is provided to eliminate excessive copying of data structures.

Each word of the I-structure has a two-bit tag indicating whether the value is empty, full,

or has pending read requests.

This is a retreat from the pure dataflow approach. Special compiler technology needed for

dataflow machines.

Demand-Driven Mechanisms

Data-driven machines select instructions for execution based on the availability of their

operands; this is essentially a bottom-up approach.

Demand-driven machines take a top-down approach, attempting to execute the

instruction (a demander) that yields the final result. This triggers the execution of

instructions that yield its operands, and so forth. The demand-driven approach matches

naturally with functional programming languages (e.g. LISP and SCHEME).

Pattern driven computers : An instruction is executed when we obtain a particular data

patterns as output. There are two types of pattern driven computers

39

String-reduction model: each demander gets a separate copy of the expression string to

evaluate each reduction step has an operator and embedded reference to demand the

corresponding operands each operator is suspended while arguments are evaluated

Graph-reduction model: expression graph reduced by evaluation of branches or

subgraphs, possibly in parallel, with demanders given pointers to results of reductions.

based on sharing of pointers to arguments; traversal and reversal of pointers continues

until constant arguments are encountered.

2.5 System interconnect architecture.

Various types of interconnection networks have been suggested for SIMD computers.

These are basically classified have been classified on network topologies into two

categories namely

 Static Networks

 Dynamic Networks

Static versus Dynamic Networks

The topological structure of an SIMD array processor is mainly characterized by the data

routing network used in interconnecting the processing elements.

The topological structure of an SIMD array processor is mainly characterized by the data

routing network used in the interconnecting the processing elements. To execute the

communication the routing function f is executed and via the interconnection network the

PEi copies the content of its Ri register into the Rf(i) register of PEf(i). The f(i) the

processor identified by the mapping function f. The data routing operation occurs in all

active PEs simultaneously.

2.5.1 Network properties and routing

The goals of an interconnection network are to provide low-latency high data transfer rate

wide communication bandwidth. Analysis includes latency bisection bandwidth data-

routing functions scalability of parallel architecture

These Network usually represented by a graph with a finite number of nodes linked by

directed or undirected edges.

Number of nodes in graph = network size .

Number of edges (links or channels) incident on a node = node degree d (also note in and

out degrees when edges are directed).

40

Node degree reflects number of I/O ports associated with a node, and should ideally be

small and constant.

Network is symmetric if the topology is the same looking from any node; these are easier

to implement or to program.

Diameter : The maximum distance between any two processors in the network or in

other words we can say Diameter, is the maximum number of (routing) processors

through which a message must pass on its way from source to reach destination. Thus

diameter measures the maximum delay for transmitting a message from one processor to

another as it determines communication time hence smaller the diameter better will be

the network topology.

Connectivity: How many paths are possible between any two processors i.e., the

multiplicity of paths between two processors. Higher connectivity is desirable as it

minimizes contention.

Arch connectivity of the network: the minimum number of arcs that must be removed for

the network to break it into two disconnected networks. The arch connectivity of various

network are as follows

• 1 for linear arrays and binary trees

• 2 for rings and 2-d meshes

• 4 for 2-d torus

• d for d-dimensional hypercubes

Larger the arch connectivity lesser the conjunctions and better will be network topology.

Channel width : The channel width is the number of bits that can communicated

simultaneously by a interconnection bus connecting two processors

Bisection Width and Bandwidth: In order divide the network into equal halves we require

the remove some communication links. The minimum number of such communication

links that have to be removed are called the Bisection Width. Bisection width basically

provide us the information about the largest number of messages which can be sent

simultaneously (without needing to use the same wire or routing processor at the same

time and so delaying one another), no matter which processors are sending to which

other processors. Thus larger the bisection width is the better the network topology is

considered. Bisection Bandwidth is the minimum volume of communication allowed

41

between two halves of the network with equal numbers of processors This is important

for the networks with weighted arcs where the weights correspond to the link width i.e.,

(how much data it can transfer). The Larger bisection width the better network topology

is considered.

Cost the cost of networking can be estimated on variety of criteria where we consider the

the number of communication links or wires used to design the network as the basis of

cost estimation. Smaller the better the cost

Data Routing Functions: A data routing network is used for inter –PE data exchange. It

can be static as in case of hypercube routing network or dynamic such as multistage

network. Various type of data routing functions are Shifting, Rotating, Permutation (one

to one), Broadcast (one to all), Multicast (many to many), Personalized broadcast (one to

many), Shuffle, Exchange Etc.

Permutations

Given n objects, there are n ! ways in which they can be reordered (one of which is no

reordering). A permutation can be specified by giving the rule for reordering a group of

objects. Permutations can be implemented using crossbar switches, multistage networks,

shifting, and broadcast operations. The time required to perform permutations of the

connections between nodes often dominates the network performance when n is large.

Perfect Shuffle and Exchange

Stone suggested the special permutation that entries according to the mapping of the k-bit

binary number a b … k to b c … k a (that is, shifting 1 bit to the left and wrapping it

around to the least significant bit position). The inverse perfect shuffle reverses the effect

of the perfect shuffle.

Hypercube Routing Functions

If the vertices of a n-dimensional cube are labeled with n-bit numbers so that only one bit

differs between each pair of adjacent vertices, then n routing functions are defined by the

bits in the node (vertex) address. For example, with a 3-dimensional cube, we can easily

identify routing functions that exchange data between nodes with addresses that differ in

the least significant, most significant, or middle bit.

Factors Affecting Performance

42

Functionality – how the network supports data routing, interrupt handling,

synchronization, request/message combining, and coherence

Network latency – worst-case time for a unit message to be transferred

Bandwidth – maximum data rate

Hardware complexity – implementation costs for wire, logic, switches, connectors, etc.

Scalability – how easily does the scheme adapt to an increasing number of processors,

memories, etc.?

2.5.2 Static connection Networks

In static network the interconnection network is fixed and permanent interconnection

path between two processing elements and data communication has to follow a fixed

route to reach the destination processing element. Thus it Consist of a number of point-

to-point links. Topologies in the static networks can be classified according to the

dimension required for layout i.e., it can be 1-D, 2-D, 3-D or hypercube.

One dimensional topologies include Linear array as shown in figure 2.2 (a) used in some

pipeline architecture.

Various 2-D topologies are

 The ring (figure 2.2(b))

 Star (figure 2.2(c))

 Tree (figure 2.2(d))

 Mesh (figure 2.2(e))

 Systolic Array (figure 2.2(f))

3-D topologies include

 Completely connected chordal ring (figure 2.2(g))

 Chordal ring (figure 2.2(h))

 3 cube (figure 2.2(i))

43

Figure 2.2 Static interconnection network topologies.

Torus architecture is also one of popular network topology it is extension of the mesh by

having wraparound connections Figure below is a 2D Torus This architecture of torus is

a symmetric topology unlike mesh which is not. The wraparound connections reduce the

torus diameter and at the same time restore the symmetry. It can be

o 1-D torus

2-D torus

3-D torus

The torus topology is used in Cray T3E

44

Figure 2.3 Torus technology

We can have further higher dimension circuits for example 3-cube connected cycle. A D-

dimension W-wide hypercube contains W nodes in each dimension and there is a

connection to a node in each dimension. The mesh and the cube architecture are actually

2-D and 3-D hypercube respectively. The below figure we have hypercube with

dimension 4.

Figure 2.4 4-D hypercube.

2.5.3 Dynamic connection Networks

The dynamic networks are those networks where the route through which data move

from one PE to another is established at the time communication has to be performed.

Usually all processing elements are equidistant and an interconnection path is established

when two processing element want to communicate by use of switches. Such systems are

more difficult to expand as compared to static network. Examples: Bus-based, Crossbar,

Multistage Networks. Here the Routing is done by comparing the bit-level representation

45

of source and destination addresses. If there is a match goes to next stage via pass-

through else in case of it mismatch goes via cross-over using the switch.

There are two classes of dynamic networks namely

 single stage network

 multi stage

2.5.3.1 Single Stage Networks

A single stage switching network with N input selectors (IS) and N output selectors (OS).

Here at each network stage there is a 1- to-D demultiplexer corresponding to each IS such

that 1<D<N and each OS is an M-to-1 multiplexer such that 1<M<=N. Cross bar network

is a single stage network with D=M=N. In order to establish a desired connecting path

different path control signals will be applied to all IS and OS selectors. The single stage

network is also called as recirculating network as in this network connection the single

data items may have to recirculate several time through the single stage before reaching

their final destinations. The number of recirculation depends on the connectivity in the

single stage network. In general higher the hardware connectivity the lesser is the number

of recirculation. In cross bar network only one circulation is needed to establish the

connection path. The cost of completed connected cross bar network is O(N2) which is

very high as compared to other most recirculating networks which have cost O(N log N)

or lower hence are more cost effective for large value of N.

2.5.3.2 Multistage Networks

Many stages of interconnected switches form a multistage SIMD network. It is basicaaly

consist of three characteristic features

 The switch box,

 The network topology

 The control structure

Many stages of interconnected switches form a multistage SIMD networks. Eachbox is

essentially an interchange device with two inputs and two outputs. The four possible

states of a switch box are which are shown in figure 3.6

 Straight

 Exchange

 Upper Broadcast

46

 Lower broadcast.

A two function switch can assume only two possible state namely state or exchange

states. However a four function switch box can be any of four possible states. A

multistage network is capable of connecting any input terminal to any output terminal.

Multi-stage networks are basically constructed by so called shuffle-exchange switching

element, which is basically a 2 x 2 crossbar. Multiple layers of these elements are

connected and form the network.

Figure 2.5 A two-by-two switching box and its four interconnection states

A multistage network is capable of connecting an arbitrary input terminal to an arbitrary

output terminal. Generally it is consist of n stages where N = 2
n

is the number of input

and output lines. And each stage use N/2 switch boxes. The interconnection patterns from

one stage to another stage is determined by network topology. Each stage is connected to

the next stage by at least N paths. The total wait time is proportional to the number stages

i.e., n and the total cost depends on the total number of switches used and that is Nlog2N.

The control structure can be individual stage control i.e., the same control signal is used

to set all switch boxes in the same stages thus we need n control signal. The second

control structure is individual box control where a separate control signal is used to set

the state of each switch box. This provide flexibility at the same time require n2/2 control

signal which increases the complexity of the control circuit. In between path is use of

partial stage control.

47

Examples of Multistage Networks

Banyan

 Baseline

Cube

 Delta

Flip

 Indirect cube

Omega

Multistage network can be of two types

 One side networks : also called full switch having input output port on the same

side

 Two sided multistage network : which have an input side and an output side. It

can be further divided into three class

o Blocking: In Blocking networks, simultaneous connections of more than

one terminal pair may result conflicts in the use of network

communication links. Examples of blocking network are the Data

Manipulator, Flip, N cube, omega, baseline. All multistage networks that

are based on shuffle-exchange elements, are based on the concept of

blocking network because not all possible here to make the input-output

connections at the same time as one path might block another. The figure

2.6 (a) show an omega network.

o Rearrangeable : In rearrangeable network, a network can perform all

possible connections between inputs and outputs by rearranging its

existing connections so that a connection path for a new input-output pair

can always be established. An example of this network topology is Benes

Network (see figure 2.6 (b) showing a 8** Benes network)which support

synchronous data permutation and a synchronous interprocessor

communication.

o Non blocking : A non –blocking network is the network which can handle

all possible connections without blocking. There two possible cases first

one is the Clos network (see figure 2.6(c)) where a one to one connection

48

is made between input and output. Another case of one to many

connections can be obtained by using crossbars instead of the shuffle-

exchange elements. The cross bar switch network can connect every input

port to a free output port without blocking.

Figure 2.6 Several Multistage Interconnection Networks

Mesh-Connected Illiac Networks

A single stage recirculating network has been implemented in the ILLiac –IV array with

N= 64 PEs. Here in mesh network nodes are arranged as a q-dimensional lattice. The

49

neighboring nodes are only allowed to communicate the data in one step i.e., each PEi is

allowed to send the data to any one of PE(i+1) , PE (i-1), Pe(i+r) and PE(i-r) where r=

square root N(in case of Iliac r=8). In a periodic mesh, nodes on the edge of the mesh

have wrap-around connections to nodes on the other side this is also called a toroidal

mesh.

Mesh Metrics

For a q-dimensional non-periodic lattice with kq nodes:

• Network connectivity = q

• Network diameter = q(k-1)

• Network narrowness = k/2

• Bisection width = kq-1

• Expansion Increment = kq-1

• Edges per node = 2q

Thus we observe the output of IS k is connected to inputs of OSj where j = k-1,K+1,k-

r,k+r as shown in figure below.

Figure2.7 routing function of mesh Topology

Similarly the OSj gets input from ISk for K= j-1, j+1,j-r,j+r. The topology is formerly

described by the four routing functions:

• R+1(i)= (i+1) mod N => (0,1,2…,14,15)

• R-1(i)= (i-1) mod N => (15,14,…,2,1,0)

• R+r(i)= (i+r) mod N => (0,4,8,12)(1,5,9,13)(2,6,10,14)(3,7,11,15)

• R-r(i)= (i-r) mod N => (15,11,7,3)(14,10,6,2)(13,9,5,1)(12,8,4,0)

The figure given below show how each PEi is connected to its four nearest neighbors in

the mesh network. It is same as that used for IILiac –IV except that w had reduced it for

N=16 and r=4. The index are calculated as module N.

50

Figure 2.8 Mesh Connections

Thus the permutation cycle according to routing function will be as follows:

Horizontally, all PEs of all rows form a linear circular list as governed by the following

two permutations, each with a single cycle of order N. The permutation cycles (a b c) (d

e) stands for permutation a->b, b->c, c->a and d->e, e->d in a circular fashion with each

pair of parentheses.

R+1 = (0 1 2 ….N-1)

R–1 = (N-1 ….. 2 1 0).

Similarly we have vertical permutation also and now by combining the two permutation

each with four cycles of order four each the shift distance for example for a network of N

= 16 and r = square root(16) = 4, is given as follows:

R +4 = (0 4 8 12)(1 5 9 13)(2 6 10 14)(3 7 11 15)

R –4 = (12 8 4 0)(13 9 5 1)(14 10 6 2)(15 11 7 3)

Figure 4.9 Mesh Redrawn

51

Each PEi is directly connected to its four neighbors in the mesh network. The graph

shows that in one step a PE can reach to four PEs, seven PEs in two step and eleven PEs

in three steps. In general it takes I steps (recirculations) to route data from PEi to another

PEj for a network of size N where I is upper –bound given by

I<= square root(N) -1

Thus in above example for N=16 it will require at most 3 steps to route data from one PE

to another PE and for Illiac –IV network with 64 PE need maximum of 7 steps for routing

data from one PE to Another.

Cube Interconnection Networks

The cube network can be implemented as either a recirculating network or as a multistage

network for SIMD machine. It can be 1-D i.e., a single line with two pE each at end of a

line, a square with four PEs at the corner in case of 2-D, a cube for 3-D and hypercube in

4-D. in case of n-dimension hypercube each processor connects to 2n neighbors. This can

be also visualized as the unit (hyper) cube embedded in d-dimensional Euclidean space,

with one corner at 0 and lying in the positive orthant. The processors can be thought of as

lying at the corners of the cube, with their (x1,x2,...,xd) coordinates identical to their

processor numbers, and connected to their nearest neighbors on the cube. The popular

examples where cube topology is used are : iPSC, nCUBE, SGI O2K.

Vertical lines connect vertices (PEs) whose address differ in the most significant

bit position. Vertices at both ends of the diagonal lines differ in the middle bit position.

Horizontal lines differ in the least significant bit position. The unit – cube concept can be

extended to an n- dimensional unit space called an n cube with n bits per vertex. A cube

network for an SIMD machine with N PEs corresponds to an n cube where n = log2 N.

We use binary sequence to represent the vertex (PE) address of the cube. Two processors

are neighbors if and only if their binary address differs only in one digit place

52

For an n-dimensional cube network of N PEs is specified by the following n routing

functions

Ci (An-1 …. A1 A0)= An-1…Ai+1 A’i Ai-1……A0 for i =0,1,2,…,n-1

A n- dimension cube each PE located at the corner is directly connected to n neighbors.

The addresses of neighboring PE differ in exactly one bit position. Pease’s binary n cube

the flip flop network used in staran and programmable switching network proposed for

Phoenix are examples of cube networks.

In a recirculating cube network each ISa for 0<=A+< N-1 is connected to n OSs whose

addresses are An-1…Ai+1 A’i Ai-1……A0 . When the PE addresses are considered as

the corners of an m-dimensional cube this network connects each PE to its m neighbors.

The interconnections of the PEs corresponding to the three routing function C0, C1 and

C2 are shown separately in below figure.

• Examples

53

Figure 2.10 The recirculating Network

It takes n<= log2 N steps to rotate data from any PE to another.

Example: N=8 => n=3

Figure 2.11 Possible routing in multistage Cube network for N = 8

Figure 2.12 A multistage Cube network for N = 8

The same set of cube routing functions i.e., C0,C1, C2 can also be implemented by three

stage network. Two functions switch box is used which can provide either straight and

exchange routing is used for constructing multistage cube networks. The stages are

numbered as 0 at input end and increased to n-1 at the output stage i.e., the stage I

implements the Ci routing function or we can say at ith stage connect the input line to the

output line that differ from it only at the ith bit position.

This connection was used in the early series of Intel Hypercubes, and in the CM-2.

Suppose there are 8 process ring elements so 3 bits are required for there address. and

that processor 000 is the root. The children of the root are gotten by toggling the first

address bit, and so are 000 and 100 (so 000 doubles as root and left child). The children

54

of the children are gotten by toggling the next address bit, and so are 000, 010, 100 and

110. Note that each node also plays the role of the left child. Finally, the leaves are gotten

by toggling the third bit. Having one child identified with the parent causes no problems

as long as algorithms use just one row of the tree at a time. Here is a picture.

Figure 2.13 A tree embedded in 3-D hypercube

Shuffle-Exchange Omega Networks

A shuffle-exchange network consists of n=2
k

nodes and it is based on two routing

functions shuffle (S) and exchange (E). Let A= An-1…A1A0be the address of a PE than

a shuffle function is given by:

S(A)=S(An-1…A1A0)=A.n-2…A1A0An-1, 0<A<1

The cyclic shifting of the bits in A to the left for one bit osition is performed by the S

function. Which is effectively like shuffling the bottom half of a card deck into the top

half as shown in figure below.

55

Figure 2.14 Perfect shuffle and inverse perfect shuffle

There are two type of shuffle the perfect shuffle cuts the deck into two halves from the

centre and intermix them evenly. Perfect shuffle provide the routing connections of node

i with node 2i mod(n-1), except for node n-1 which is connected to itself. The inverse

perfect shuffle does the opposite to restore the original order it is denoted as exchange

routing function E and is defined as :

E(An-1…A1A0)= (An-1…A1A0’)

This obtained by complementing the least significant digit means data exchange

between two PEs with adjacent addresses. The E(A) is same as the cube routing function

as described earlier. Exchange routing function connects nodes whose numbers differ in

their lowest bit.

The shuffle exchange function can be implemented as either a recirculating network or

multistage network. The implementation of shuffle and exchange network through

recirculating network is shown below. Use of shuffle and exchange topology for parallel

processing was proposed by Stone. It is used for solving many parallel algorithms

efficiently. The example where it is used include FFT (fast Fourier transform), sorting,

matrix transposition , polynomial evaluations etc.

56

Figure2.15 shuffle and exchange recirculating network for N=8

The shuffle –exchange function have been implemented as multistage Omega network by

LAwrie. An N by N omega network, consists of n identical stages. Between two adjacent

column there is a perfect shuffle interconnection. Thus after each stage there is a N/2

four-function interchange boxes under independent box control. The four functions are

namely straight exchange upper broadcast and lower broadcast. The shuffle connects

output P n-l...Pl P0 of stage i to input P n-2...PlP0Pn-l of stage i-1. Each interchange box

in an omega network is controlled by the n-bit destination tags associated with the data

on its input lines.

57

Figure 2.16

The diameter is m=log_2 p, since all message must traverse m stages. The bisection

width is p. This network was used in the IBM RP3, BBN Butterfly, and NYU

Ultracomputer. If we compare the omega network with cube network we find Omega

network can perform one to many connections while n-cube cannot. However as far as

bijections connections n-cube and Omega network they perform more or less same.

2.6 Summary

Fine-grain exploited at instruction or loop levels, assisted by the compiler.

Medium-grain (task or job step) requires programmer and compiler support.

Coarse-grain relies heavily on effective OS support.

Shared-variable communication used at fine- and medium grain levels.

Message passing can be used for medium- and coarse grain communication, but fine -

grain really need better technique because of heavier communication requirements.

Control flow machines give complete control, but are less efficient than other approaches.

Data flow (eager evaluation) machines have high potential for parallelism and throughput

and freedom from side effects, but have high control overhead, lose time waiting for

unneeded arguments, and difficulty in manipulating data structures. Reduction (lazy

58

evaluation) machines have high parallelism potential, easy manipulation of data

structures, and only execute required instructions. But they do not share objects with

changing local state, and do require time to propagate tokens

Summary of properties of various static network

Summary of properties of various dynamic networks

Network Characteristics Bus System Multistage Network Crossbar Switch

Minimum Latency for

unit data transfer

Constant O(log k n) Constant

Bandwidth per processor O(w/n) to O(w) O(w) to O(nw) O(w) to O(nw)

Wiring Complexity O(w) O(nw log k n) O(n
2
w)

Switching complexity O(n) O(n log k n) O(n
2
)

Connectivity and routing

capability

Only one to one

at a time

Some permutations

and broadcast , if

network unblocked

All permutations

one at a time.

Metrics of dynamic connected nework

2.7 Keywords

Dependence graph : A directed graph whose nodes represent calculations and whose

edges represent dependencies among those calculations. If the calculation represented by

59

node k depends on the calculations represented by nodes i and j, then the dependence

graph contains the edges i-k and j-k.

data dependency : a situation existing between two statements if one statement can store

into a location that is later accessed by the other statement

granularity The size of operations done by a process between communications events. A

fine grained process may perform only a few arithmetic operations between processing

one message and the next, whereas a coarse grained process may perform millions

control-flow computers refers to an architecture with one or more program counters that

determine the order in which instructions are executed.

dataflow A model of parallel computing in which programs are represented as

dependence graphs and each operation is automatically blocked until the values on which

it depends are available. The parallel functional and parallel logic programming models

are very similar to the dataflow model.

network A physical communication medium. A network may consist of one or more

buses, a switch, or the links joining processors in a multicomputer.

Static networks: point-to-point direct connections that will not change during program

execution

Dynamic networks: switched channels dynamically configured to match user program

communication demands include buses, crossbar switches, and multistage networks

routing The act of moving a message from its source to its destination. A routing

technique is a way of handling the message as it passes through individual nodes.

Diameter D of a network is the maximum shortest path between any two nodes, measured

by the number of links traversed; this should be as small as possible (from a

communication point of view).

Channel bisection width b = minimum number of edges cut to split a network into two

parts each having the same number of nodes. Since each channel has w bit wires, the wire

bisection width B = bw. Bisection width provides good indication of maximum

communication bandwidth along the bisection of a network, and all other cross sections

should be bounded by the bisection width.

Wire (or channel) length = length (e.g. weight) of edges between nodes.

60

