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1.0 Objective 
 

The main aim of this chapter is to learn about the evolution of computer systems, various 

attributes on which performance of system is measured, classification of computers on 

their ability to perform multiprocessing and various trends towards parallel processing. 

1.1 Introduction 

From an application point of view, the mainstream of usage of computer is experiencing 

a trend of four ascending levels of sophistication: 
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 Data processing 
 

      Information processing 

      Knowledge processing 

      Intelligence processing 

With more and more data structures developed, many users are shifting to computer roles 

from pure data processing to information processing. A high degree of parallelism has 

been found at these levels. As the accumulated knowledge bases expanded rapidly in 

recent years, there grew a strong demand to use computers for knowledge processing. 

Intelligence is very difficult to create; its processing even more so. Todays computers are 

very fast and obedient and have many reliable memory cells to be qualified for data-

information-knowledge processing. 

Parallel processing is emerging as one of the key technology in area of modern 

computers. Parallel appears in various forms such as lookahead, vectorization 

concurrency, simultaneity, data parallelism, interleaving, overlapping, multiplicity, 

replication, multiprogramming, multithreading and distributed computing at different 

processing level. 

1.2 The state of computing 
 

Modern computers are equipped with powerful hardware technology at the same time 

loaded with sophisticated software packages. To access the art of computing we firstly 

review the history of computers then study the attributes used for analysis of performance 

of computers. 

1.2.1 Evolution of computer system 
 

Presently the technology involved in designing of its hardware components of computers 

and its overall architecture is changing very rapidly for example: processor clock rate 

increase about 20% a year, its logic capacity improve at about 30% in a year; memory 

speed at increase about 10% in a year and memory capacity at about 60% increase a year 

also the disk capacity increase at a 60% a year and so overall cost per bit improves about 

25% a year. 

But before we go further with design and organization issues of parallel computer 

architecture it is necessary to understand how computers had evolved. Initially, man used 

simple mechanical devices – abacus (about 500 BC) , knotted string, and the slide rule for 
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computation. Early computing was entirely mechanical like : mechanical adder/subtracter 
 

(Pascal, 1642) difference engine design (Babbage, 1827) binary mechanical computer 
 

(Zuse, 1941) electromechanical decimal machine (Aiken, 1944). Some of these machines 
 

used the idea of a stored program a famous example of it is the Jacquard Loom and 
 

Babbage’s Analytical Engine which is also often considered as the first real computer. 
 

Mechanical and electromechanical machines have limited speed and reliability because of 
 

the many moving parts. Modern machines use electronics for most information 
 

transmission. 
 

Computing is normally thought of as being divided into generations. Each successive 
 

generation is marked by sharp changes in hardware and software technologies. With 
 

some exceptions, most of the advances introduced in one generation are carried through 
 

to later generations. We are currently in the fifth generation. 
 

Ist generation of computers ( 1945-54) 
 

The first generation computers where based on vacuum tube technology. The first large 

electronic computer was ENIAC (Electronic Numerical Integrator and Calculator), which 

used high speed vacuum tube technology and were designed primarily to calculate the 

trajectories of missiles. They used separate memory block for program and data. Later in 

1946 John Von Neumann introduced the concept of stored program, in which data and 

program where stored in same memory block. Based on this concept EDVAC (Electronic 

Discrete Variable Automatic Computer) was built in 1951. On this concept IAS (Institute 

of advance studies, Princeton) computer was built whose main characteristic was CPU 

consist of two units (Program flow control and execution unit). 

In general key features of this generation of computers where 
 

1) The switching device used where vacuum tube having switching time between 0.1 to 1 

milliseconds. 

2) One of major concern for computer manufacturer of this era was that each of the 

computer designs had a unique design. As each computer has unique design one cannot 

upgrade or replace one component with other computer. Programs that were written for 

one machine could not execute on another machine, even though other computer was also 

designed from the same company. This created a major concern for designers as there 

were no upward-compatible machines or computer architectures with multiple, differing 
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implementations. And designers always tried to manufacture a new machine that should 
 

be upward compatible with the older machines. 
 

3) Concept of specialized registers where introduced for example index registers were 
 

introduced in the Ferranti Mark I, concept of register that save the return-address 
 

instruction was introduced in UNIVAC I, also concept of immediate operands in IBM 
 

704 and the detection of invalid operations in IBM 650 were introduced. 
 

4) Punch card or paper tape were the devices used at that time for storing the program. By 
 

the end of the 1950s IBM 650 became one of popular computers of that time and it used 
 

the drum memory on which programs were loaded from punch card or paper tape. Some 
 

high-end machines also introduced the concept of core memory which was able to 
 

provide higher speeds. Also hard disks started becoming popular. 
 

5) In the early 1950s as said earlier were design specific hence most of them were 
 

designed for some particular numerical processing tasks. Even many of them used 
 

decimal numbers as their base number system for designing instruction set. In such 
 

machine there were actually ten vacuum tubes per digit in each register. 
 

6) Software used was machine level language and assembly language. 
 

7) Mostly designed for scientific calculation and later some systems were developed for 
 

simple business systems. 

8) Architecture features 

Vacuum tubes and relay memories 
 

CPU driven by a program counter (PC) and accumulator 

Machines had only fixed-point arithmetic 

9) Software and Applications 
 

Machine and assembly language 

Single user at a time 

No subroutine linkage mechanisms 
 

Programmed I/O required continuous use of CPU 

10) examples: ENIAC, Princeton IAS, IBM 701 

IInd generation of computers (1954 – 64) 
 

The transistors were invented by Bardeen, Brattain and Shockely in 1947 at Bell Labs 

and by the 1950s these transistors made an electronic revolution as the transistor is 
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smaller, cheaper and dissipate less heat as compared to vacuum tube. Now the transistors 
 

were used instead of a vacuum tube to construct computers. Another major invention was 
 

invention of magnetic cores for storage. These cores where used to large random access 
 

memories. These generation computers has better processing speed, larger memory 
 

capacity, smaller size as compared to pervious generation computer. 
 

The key features of this generation computers were 
 

1) The IInd generation computer were designed using Germanium transistor, this 

technology was much more reliable than vacuum tube technology. 

2) Use of transistor technology reduced the switching time 1 to 10 microseconds thus 

provide overall speed up. 

2) Magnetic cores were used main memory with capacity of 100 KB. Tapes and disk 

peripheral memory were used as secondary memory. 

3) Introduction to computer concept of instruction sets so that same program can be 

executed on different systems. 

4) High level languages, FORTRAN, COBOL, Algol, BATCH operating system. 
 

5) Computers were now used for extensive business applications, engineering design, 

optimation using Linear programming, Scientific research 

6) Binary number system very used. 

7) Technology and Architecture 

Discrete transistors and core memories 
 

I/O processors, multiplexed memory access 

Floating-point arithmetic available 

Register Transfer Language (RTL) developed 

8) Software and Applications 

High-level languages (HLL): FORTRAN, COBOL, ALGOL with compilers and 

subroutine libraries 

Batch operating system was used although mostly single user at a time 

9) Example : CDC 1604, UNIVAC LARC, IBM 7090 

IIIrd Generation computers(1965 to 1974) 
 

In 1950 and 1960 the discrete components ( transistors, registers capacitors) were 

manufactured packaged in a separate containers. To design a computer these discrete 

 
 

5 



 

unit were soldered or wired together on a circuit boards. Another revolution in computer 
 

designing came when in the 1960s, the Apollo guidance computer and Minuteman 
 

missile were able to develop an integrated circuit (commonly called ICs). These ICs 
 

made the circuit designing more economical and practical. The IC based computers are 
 

called third generation computers. As integrated circuits, consists of transistors, resistors, 
 

capacitors on single chip eliminating wired interconnection, the space required for the 
 

computer was greatly reduced. By the mid-1970s, the use of ICs in computers became 
 

very common. Price of transistors reduced very greatly. Now it was possible to put all 
 

components required for designing a CPU on a single printed circuit board. This 
 

advancement of technology resulted in development of minicomputers, usually with 16- 
 

bit words size these system have a memory of range of 4k to 64K.This began a new era 
 

of microelectronics where it could be possible design small identical chips ( a thin wafer 
 

of silicon’s). Each chip has many gates plus number of input output pins. 
 

Key features of IIIrd Generation computers: 
 

1) The use of silicon based ICs, led to major improvement of computer system. Switching 

speed of transistor went by a factor of 10 and size was reduced by a factor of 10, 

reliability increased by a factor of 10, power dissipation reduced by a factor of 10. This 

cumulative effect of this was the emergence of extremely powerful CPUS with the 

capacity of carrying out 1 million instruction per second. 

2) The size of main memory reached about 4MB by improving the design of magnetic 

core memories also in hard disk of 100 MB become feasible. 

3) On line system become feasible. In particular dynamic production control systems, 

airline reservation systems, interactive query systems, and real time closed lop process 

control systems were implemented. 

4) Concept of Integrated database management systems were emerged. 

5) 32 bit instruction formats 

6) Time shared concept of operating system. 

7) Technology and Architecture features 

Integrated circuits (SSI/MSI) 

Microprogramming 

Pipelining, cache memories, lookahead processing 
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8) Software and Applications 
 

Multiprogramming and time-sharing operating systems 
 

Multi-user applications 
 

9) Examples : IBM 360/370, CDC 6600, TI ASC, DEC PDP-82 
 

IVth Generation computer ((1975 to 1990) 
 

The microprocessor was invented as a single VLSI (Very large Scale Integrated circuit) 

chip CPU. Main Memory chips of 1MB plus memory addresses were introduced as single 

VLSI chip. The caches were invented and placed within the main memory and 

microprocessor. These VLSIs and VVSLIs greatly reduced the space required in a 

computer and increased significantly the computational speed. 

1) Technology and Architecture feature 

LSI/VLSI circuits, 

semiconductor memory 

Multiprocessors, 

vector supercomputers, 

multicomputers 

Shared or distributed memory 

Vector processors 

Software and Applications 

Multprocessor operating systems, 

languages, 

compilers, 
 

parallel software tools 
 

Examples : VAX 9000, Cray X-MP, IBM 3090, BBN TC2000 

Fifth Generation computers( 1990 onwards) 

In the mid-to-late 1980s, in order to further improve the performance of the system the 

designers start using a technique known as “instruction pipelining”. The idea is to break 

the program into small instructions and the processor works on these instructions in 

different stages of completion. For example, the processor while calculating the result of 

the current instruction also retrieves the operands for the next instruction. Based on this 

concept later superscalar processor were designed, here to execute multiple instructions 
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in parallel we have multiple execution unit i.e., separate arithmetic-logic units (ALUs). 
 

Now instead executing single instruction at a time, the system divide program into 
 

several independent instructions and now CPU will look for several similar instructions 
 

that are not dependent on each other, and execute them in parallel. The example of this 
 

design are VLIW and EPIC. 
 

1) Technology and Architecture features 
 

ULSI/VHSIC processors, memory, and switches 
 

High-density packaging 
 

Scalable architecture 
 

Vector processors 
 

2) Software and Applications 
 

Massively parallel processing 
 

Grand challenge applications 
 

Heterogenous processing 
 

3) Examples : Fujitsu VPP500, Cray MPP, TMC CM-5, Intel Paragon 
 

Elements of Modern Computers 
 

The hardware, software, and programming elements of modern computer systems can be 

characterized by looking at a variety of factors in context of parallel computing these 

factors are: 



 



 



 



 

 

 

 
 

Computing problems 
 

Algorithms and data structures 
 

Hardware resources 
 

Operating systems 
 

System software support 
 

Compiler support 

 

Computing Problems 
 

 Numerical computing complex mathematical formulations tedious integer or 

floating -point computation 



 Transaction processing accurate transactions large database management 

information retrieval 

 Logical Reasoning logic inferences symbolic manipulations 
 
 



 

Algorithms and Data Structures 
 

 Traditional algorithms and data structures are designed for sequential machines. 
 

 New, specialized algorithms and data structures are needed to exploit the 

capabilities of parallel architectures. 

 These often require interdisciplinary interactions among theoreticians, 

experimentalists, and programmers. 

Hardware Resources 
 

 The architecture of a system is shaped only partly by the hardware resources. 
 

  The operating system and applications also significantly influence the overall 

architecture. 

 Not only must the processor and memory architectures be considered, but also the 

architecture of the device interfaces (which often include their advanced 

processors). 

Operating System 
 

 Operating systems manage the allocation and deallocation of resources during 

user program execution. 

     UNIX, Mach, and OSF/1 provide support for multiprocessors and multicomputers 

     multithreaded kernel functions virtual memory management file subsystems 

network communication services 
 

 An OS plays a significant role in mapping hardware resources to algorithmic and 

data structures. 

System Software Support 
 

  Compilers, assemblers, and loaders are traditional tools for developing programs 

in high-level languages. With the operating system, these tools determine the bind 

of resources to applications, and the effectiveness of this determines the efficiency 

of hardware utilization and the system’s programmability. 

  Most programmers still employ a sequential mind set, abetted by a lack of popular 

parallel software support. 

System Software Support 
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 Parallel software can be developed using entirely new languages designed 

specifically with parallel support as its goal, or by using extensions to existing 

sequential languages. 

 New languages have obvious advantages (like new constructs specifically for 

parallelism), but require additional programmer education and system software. 

 The most common approach is to extend an existing language. 

Compiler Support 

  Preprocessors use existing sequential compilers and specialized libraries to 

implement parallel constructs 

  Precompilers perform some program flow analysis, dependence checking, and 

limited parallel optimzations 

 Parallelizing Compilers requires full detection of parallelism in source code, and 

transformation of sequential code into parallel constructs 

 Compiler directives are often inserted into source code to aid compiler 

parallelizing efforts 

1.2.3 Flynn's Classical Taxonomy 
 

Among mentioned above the one widely used since 1966, is Flynn's Taxonomy. This 

taxonomy distinguishes multi-processor computer architectures according two 

independent dimensions of Instruction stream and Data stream. An instruction stream is 

sequence of instructions executed by machine. And a data stream is a sequence of data 

including input, partial or temporary results used by instruction stream. Each of these 

dimensions can have only one of two possible states: Single or Multiple. Flynn’s 

classification depends on the distinction between the performance of control unit and the 

data processing unit rather than its operational and structural interconnections. Following 

are the four category of Flynn classification and characteristic feature of each of them. 

1. Single instruction stream, single data stream (SISD) 
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Figure 1.1 Execution of instruction in SISD processors 
 

The figure 1.1 is represents a organization of simple SISD computer having one control 
 

unit, one processor unit and single memory unit. 
 
 
 
 
 

Figure 1.2 SISD processor organization 
 

  They are also called scalar processor i.e., one instruction at a time and each 

instruction have only one set of operands. 

 Single instruction: only one instruction stream is being acted on by the CPU 

during any one clock cycle 

  Single data: only one data stream is being used as input during any one clock 

cycle 

 Deterministic execution 
 

 Instructions are executed sequentially. 
 

 This is the oldest and until recently, the most prevalent form of computer 

 Examples: most PCs, single CPU workstations and mainframes 

b) Single instruction stream, multiple data stream (SIMD) processors 

 A type of parallel computer 

  Single instruction: All processing units execute the same instruction issued by the 

control unit at any given clock cycle as shown in figure 13.5 where there are 

multiple processor executing instruction given by one control unit. 
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 Multiple data: Each processing unit can operate on a different data element as 

shown if figure below the processor are connected to shared memory or 

interconnection network providing multiple data to processing unit 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3 SIMD processor organization 
 

 This type of machine typically has an instruction dispatcher, a very high-

bandwidth internal network, and a very large array of very small-capacity 

instruction units. 

 Thus single instruction is executed by different processing unit on different set of 

data as shown in figure 1.3. 

 Best suited for specialized problems characterized by a high degree of regularity, 

such as image processing and vector computation. 

 Synchronous (lockstep) and deterministic execution 
 

 Two varieties: Processor Arrays e.g., Connection Machine CM-2, Maspar MP-1, 

MP-2 and Vector Pipelines processor e.g., IBM 9000, Cray C90, Fujitsu VP, NEC 

SX-2, Hitachi S820 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.4 Execution of instructions in SIMD processors 
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c) Multiple instruction stream, single data stream (MISD) 
 

 A single data stream is fed into multiple processing units. 
 

 Each processing unit operates on the data independently via independent 

instruction streams as shown in figure 1.5 a single data stream is forwarded to 

different processing unit which are connected to different control unit and execute 

instruction given to it by control unit to which it is attached. 

 
 
 
 
 
 
 
 
 
 

Figure 1.5 MISD processor organization 
 

 Thus in these computers same data flow through a linear array of processors 

executing different instruction streams as shown in figure 1.6. 

  This architecture is also known as systolic arrays for pipelined execution of 

specific instructions. 

 Few actual examples of this class of parallel computer have ever existed. One is 

the experimental Carnegie-Mellon C.mmp computer (1971). 

 Some conceivable uses might be: 
 

1. multiple frequency filters operating on a single signal stream 
 

2. multiple cryptography algorithms attempting to crack a single coded message. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6 Execution of instructions in MISD processors 
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d) Multiple instruction stream, multiple data stream (MIMD) 
 

 Multiple Instruction: every processor may be executing a different instruction 

stream 

 Multiple Data: every processor may be working with a different data stream as 

shown in figure 1.7 multiple data stream is provided by shared memory. 

 Can be categorized as loosely coupled or tightly coupled depending on sharing of 

data and control 

 Execution can be synchronous or asynchronous, deterministic or non-

deterministic 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.7 MIMD processor organizations 
 

 As shown in figure 1.8 there are different processor each processing different 

task. 

 Examples: most current supercomputers, networked parallel computer "grids" and 

multi-processor SMP computers - including some types of PCs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.8 execution of instructions MIMD processors 
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Here the some popular computer architecture and there types 
 

SISD IBM 701, IBM 1620, IBM 7090, PDP VAX11/ 780 
 

SISD (With multiple functional units) IBM360/91 (3); IBM 370/168 UP 
 

SIMD (Word Slice Processing) Illiac – IV ; PEPE 
 

SIMD (Bit Slice processing ) STARAN; MPP; DAP 
 

MIMD (Loosely Coupled) IBM 370/168 MP; Univac 1100/80 
 

MIMD(Tightly Coupled) Burroughs- D – 825 
 

1.2.4 PERFORMANCE ATTRIBUTES 

Performance of a system depends on 

     hardware technology 

     architectural features 

 efficient resource management 

 algorithm design 

 data structures 
 

 language efficiency 

 programmer skill 

 compiler technology 
 

When we talk about performance of computer system we would describe how quickly a 

given system can execute a program or programs. Thus we are interested in knowing the 

turnaround time. Turnaround time depends on: 

 disk and memory accesses 

 input and output 

 compilation time 
 

 operating system overhead 

 CPU time 

An ideal performance of a computer system means a perfect match between the machine 

capability and program behavior. The machine capability can be improved by using 

better hardware technology and efficient resource management. But as far as program 

behavior is concerned it depends on code used, compiler used and other run time 

conditions. Also a machine performance may vary from program to program. Because 

there are too many programs and it is impractical to test a CPU's speed on all of them, 
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benchmarks were developed. Computer architects have come up with a variety of metrics 
 

to describe the computer performance. 
 

Clock rate and CPI / IPC : Since I/O and system overhead frequently overlaps 
 

processing by other programs, it is fair to consider only the CPU time used by a program, 
 

and the user CPU time is the most important factor. CPU is driven by a clock with a 
 

constant cycle time (usually measured in nanoseconds, which controls the rate of internal 
 

operations in the CPU. The clock mostly has the constant cycle time (t in nanoseconds). 

The inverse of the cycle time is the clock rate (f = 1/, measured in megahertz). A shorter 

clock cycle time, or equivalently a larger number of cycles per second, implies more 

operations can be performed per unit time. The size of the program is determined by the 

instruction count (Ic). The size of a program is determined by its instruction count, Ic, the 

number of machine instructions to be executed by the program. Different machine 

instructions require different numbers of clock cycles to execute. CPI (cycles per 

instruction) is thus an important parameter. 

Average CPI 
 

It is easy to determine the average number of cycles per instruction for a particular 

processor if we know the frequency of occurrence of each instruction type. 

Of course, any estimate is valid only for a specific set of programs (which defines the 

instruction mix), and then only if there are sufficiently large number of instructions. 

In general, the term CPI is used with respect to a particular instruction set and a given 

program mix. The time required to execute a program containing Ic instructions is just T 

= Ic * CPI * . 

Each instruction must be fetched from memory, decoded, then operands fetched from 

memory, the instruction executed, and the results stored. 

The time required to access memory is called the memory cycle time, which is usually k 

times the processor cycle time . The value of k depends on the memory technology and 

the processor-memory interconnection scheme. The processor cycles required for each 

instruction (CPI) can be attributed to cycles needed for instruction decode and execution 

(p), and cycles needed for memory references (m* k). 

The total time needed to execute a program can then be rewritten as 

T = Ic* (p + m*k)*. 
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MIPS: The millions of instructions per second, this is calculated by dividing the number 
 

of instructions executed in a running program by time required to run the program. The 
 

MIPS rate is directly proportional to the clock rate and inversely proportion to the CPI. 
 

All four systems attributes (instruction set, compiler, processor, and memory 
 

technologies) affect the MIPS rate, which varies also from program to program. MIPS 
 

does not proved to be effective as it does not account for the fact that different systems 
 

often require different number of instruction to implement the program. It does not 
 

inform about how many instructions are required to perform a given task. With the 
 

variation in instruction styles, internal organization, and number of processors per system 
 

it is almost meaningless for comparing two systems. 
 

MFLOPS (pronounced ``megaflops'') stands for ``millions of floating point operations 
 

per second.'' This is often used as a ``bottom-line'' figure. If one know ahead of time how 
 

many operations a program needs to perform, one can divide the number of operations by 
 

the execution time to come up with a MFLOPS rating. For example, the standard 

algorithm for multiplying n*n matrices requires 2n
3 
– n operations (n

2 
inner products, 

with n multiplications and n-1additions in each product). Suppose you compute the 

product of two 100 *100 matrices in 0.35 seconds. Then the computer achieves 

(2(100)
3 

– 100)/0.35 = 5,714,000 ops/sec = 5.714 MFLOPS 
 

The term ``theoretical peak MFLOPS'' refers to how many operations per second would 

be possible if the machine did nothing but numerical operations. It is obtained by 

calculating the time it takes to perform one operation and then computing how many of 

them could be done in one second. For example, if it takes 8 cycles to do one floating 

point multiplication, the cycle time on the machine is 20 nanoseconds, and arithmetic 

operations are not overlapped with one another, it takes 160ns for one multiplication, and 

(1,000,000,000 nanosecond/1sec)*(1 multiplication / 160 nanosecond) = 6.25*10
6 

multiplication /sec so the theoretical peak performance is 6.25 MFLOPS. Of course, 

programs are not just long sequences of multiply and add instructions, so a machine 

rarely comes close to this level of performance on any real program. Most machines will 

achieve less than 10% of their peak rating, but vector processors or other machines with 

internal pipelines that have an effective CPI near 1.0 can often achieve 70% or more of 

their theoretical peak on small programs. 
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Throughput rate : Another important factor on which system’s performance is measured 
 

is throughput of the system which is basically how many programs a system can execute 
 

per unit time Ws. In multiprogramming the system throughput is often lower than the 
 

CPU throughput Wp which is defined as 
 

Wp = f/(Ic * CPI) 
 

Unit of Wp is programs/second. 
 

Ws <Wp as in multiprogramming environment there is always additional overheads like 
 

timesharing operating system etc. An Ideal behavior is not achieved in parallel computers 
 

because while executing a parallel algorithm, the processing elements cannot devote 
 

100% of their time to the computations of the algorithm. Efficiency is a measure of the 
 

fraction of time for which a PE is usefully employed. In an ideal parallel system 
 

efficiency is equal to one. In practice, efficiency is between zero and one 
 

s of overhead associated with parallel execution 
 

Speed or Throughput (W/Tn) - the execution rate on an n processor system, measured in 
 

FLOPs/unit-time or instructions/unit-time. 
 

Speedup (Sn = T1/Tn) - how much faster in an actual machine, n processors compared to 
 

1 will perform the workload. The ratio T1/T∞is called the asymptotic speedup. 
 

Efficiency (En = Sn/n) - fraction of the theoretical maximum speedup achieved by n 

processors 

Degree of Parallelism (DOP) - for a given piece of the workload, the number of 

processors that can be kept busy sharing that piece of computation equally. Neglecting 

overhead, we assume that if k processors work together on any workload, the workload 

gets done k times as fast as a sequential execution. 

Scalability - The attributes of a computer system which allow it to be gracefully and 

linearly scaled up or down in size, to handle smaller or larger workloads, or to obtain 

proportional decreases or increase in speed on a given application. The applications run 

on a scalable machine may not scale well. Good scalability requires the algorithm and the 

machine to have the right properties 

Thus in general there are five performance factors (Ic, p, m, k, t) which are influenced by 

four system attributes: 

 instruction-set architecture (affects Ic and p) 
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 compiler technology (affects Ic and p and m) 
 

  CPU implementation and control (affects p *t ) cache and memory hierarchy 

(affects memory access latency, k ´t) 

 Total CPU time can be used as a basis in estimating the execution rate of a 

processor. 

Programming Environments 
 

Programmability depends on the programming environment provided to the users. 

Conventional computers are used in a sequential programming environment with tools 

developed for a uniprocessor computer. Parallel computers need parallel tools that allow 

specification or easy detection of parallelism and operating systems that can perform 

parallel scheduling of concurrent events, shared memory allocation, and shared peripheral 

and communication links. 

Implicit Parallelism 
 

Use a conventional language (like C, Fortran, Lisp, or Pascal) to write the program. 

Use a parallelizing compiler to translate the source code into parallel code. 

The compiler must detect parallelism and assign target machine resources. 

Success relies heavily on the quality of the compiler. 

Explicit Parallelism 
 

Programmer writes explicit parallel code using parallel dialects of common languages. 

Compiler has reduced need to detect parallelism, but must still preserve existing 

parallelism and assign target machine resources. 

Needed Software Tools 
 

Parallel extensions of conventional high-level languages. 
 

Integrated environments to provide different levels of program abstraction validation, 

testing and debugging performance prediction and monitoring visualization support to aid 

program development, performance measurement graphics display and animation of 

computational results 

1.3 MULTIPROCESSOR AND MULTICOMPUTERS 
 

Two categories of parallel computers are discussed below namely shared common 

memory or unshared distributed memory. 

1.3.1 Shared memory multiprocessors 
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 Shared memory parallel computers vary widely, but generally have in common 

the ability for all processors to access all memory as global address space. 

 Multiple processors can operate independently but share the same memory 

resources. 

  Changes in a memory location effected by one processor are visible to all other 

processors. 

 Shared memory machines can be divided into two main classes based upon 

memory access times: UMA , NUMA and COMA. 

 

Uniform Memory Access (UMA): 
 
 

 Most commonly represented today by Symmetric Multiprocessor (SMP) 
 

machines 
 

 Identical processors 
 

 Equal access and access times to memory 
 

 Sometimes called CC-UMA - Cache Coherent UMA. Cache coherent means if 
 

one processor updates a location in shared memory, all the other processors know 
 

about the update. Cache coherency is accomplished at the hardware level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.9 Shared Memory (UMA) 
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Non-Uniform Memory Access (NUMA): 
 
 

 Often made by physically linking two or more SMPs 
 

 One SMP can directly access memory of another SMP 
 

 Not all processors have equal access time to all memories 
 

 Memory access across link is slower 
 
 

If cache coherency is maintained, then may also be called CC-NUMA - Cache Coherent 

NUMA 

 
 
 
 
 
 
 
 
 
 
 
 
 

figure 1.10 Shared Memory (NUMA) 
 

The COMA model : The COMA model is a special case of NUMA machine in which 
 

the distributed main memories are converted to caches. All caches form a global address 
 

space and there is no memory hierarchy at each processor node. 
 

Advantages: 
 
 

 Global address space provides a user-friendly programming perspective to 
 

memory 
 

 Data sharing between tasks is both fast and uniform due to the proximity of 
 

memory to CPUs 
 
 

Disadvantages: 
 
 

 Primary disadvantage is the lack of scalability between memory and CPUs. 
 

Adding more CPUs can geometrically increases traffic on the shared memory- 
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CPU path, and for cache coherent systems, geometrically increase traffic 
 

associated with cache/memory management. 
 

 Programmer responsibility for synchronization constructs that insure "correct" 
 

access of global memory. 
 

 Expense: it becomes increasingly difficult and expensive to design and produce 
 

shared memory machines with ever increasing numbers of processors. 
 
 

1.3.2 Distributed Memory 
 
 

 Like shared memory systems, distributed memory systems vary widely but share 
 

a common characteristic. Distributed memory systems require a communication 
 

network to connect inter-processor memory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.11 distributed memory systems 
 
 

 Processors have their own local memory. Memory addresses in one processor do 
 

not map to another processor, so there is no concept of global address space 
 

across all processors. 
 

 Because each processor has its own local memory, it operates independently. 
 

Changes it makes to its local memory have no effect on the memory of other 
 

processors. Hence, the concept of cache coherency does not apply. 
 

 When a processor needs access to data in another processor, it is usually the task 
 

of the programmer to explicitly define how and when data is communicated. 
 

Synchronization between tasks is likewise the programmer's responsibility. 
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 Modern multicomputer use hardware routers to pass message. Based on the 
 

interconnection and routers and channel used the multicomputers are divided into 
 

generation 

o 1
st 

generation : based on board technology using hypercube architecture 

and software controlled message switching. 

o 2
nd 

Generation: implemented with mesh connected architecture, hardware 

message routing and software environment for medium distributed – 

grained computing. 

o 3
rd 

Generation : fine grained multicomputer like MIT J-Machine. 
 

 The network "fabric" used for data transfer varies widely, though it can be as 

simple as Ethernet. 

 

Advantages: 
 
 

 Memory is scalable with number of processors. Increase the number of processors 
 

and the size of memory increases proportionately. 
 

 Each processor can rapidly access its own memory without interference and 
 

without the overhead incurred with trying to maintain cache coherency. 
 

 Cost effectiveness: can use commodity, off-the-shelf processors and networking. 
 
 

Disadvantages: 
 
 

 The programmer is responsible for many of the details associated with data 
 

communication between processors. 
 

 It may be difficult to map existing data structures, based on global memory, to 
 

this memory organization. 
 

 Non-uniform memory access (NUMA) times 
 
 

1.4 MULTIVECTOR AND SIMD COMPUTERS 
 

A vector operand contains an ordered set of n elements, where n is called the length of 

the vector. Each element in a vector is a scalar quantity, which may be a floating point 

number, an integer, a logical value or a character. 
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A vector processor consists of a scalar processor and a vector unit, which could be 
 

thought of as an independent functional unit capable of efficient vector operations. 
 

1.4.1Vector Hardware 
 

Vector computers have hardware to perform the vector operations efficiently. Operands 

can not be used directly from memory but rather are loaded into registers and are put 

back in registers after the operation. Vector hardware has the special ability to overlap or 

pipeline operand processing. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.12 Vector Hardware 
 

Vector functional units pipelined, fully segmented each stage of the pipeline performs a 

step of the function on different operand(s) once pipeline is full, a new result is produced 

each clock period (cp). 

Pipelining 
 

The pipeline is divided up into individual segments, each of which is completely 

independent and involves no hardware sharing. This means that the machine can be 

working on separate operands at the same time. This ability enables it to produce one 

result per clock period as soon as the pipeline is full. The same instruction is obeyed 

repeatedly using the pipeline technique so the vector processor processes all the elements 

of a vector in exactly the same way. The pipeline segments arithmetic operation such as 

floating point multiply into stages passing the output of one stage to the next stage as 

input. The next pair of operands may enter the pipeline after the first stage has processed 

the previous pair of operands. The processing of a number of operands may be carried out 

simultaneously. 

The loading of a vector register is itself a pipelined operation, with the ability to load one 

element each clock period after some initial startup overhead. 

 
 

24 



 

1.4.2 SIMD Array Processors 
 

The Synchronous parallel architectures coordinate Concurrent operations in lockstep 

through global clocks, central control units, or vector unit controllers. A synchronous 

array of parallel processors is called an array processor. These processors are composed 

of N identical processing elements (PES) under the supervision of a one control unit (CU) 

This Control unit is a computer with high speed registers, 

local memory and arithmetic logic unit.. An array processor is basically a single 

instruction and multiple data (SIMD) computers. There are N data streams; one per 

processor, so different data can be used in each processor. The figure below show a 

typical SIMD or array processor 

 
 
 
 
 
 
 
 
 
 

Figure 1.13 Configuration of SIMD Array Processor 
 

These processors consist of a number of memory modules which can be either global or 

dedicated to each processor. Thus the main memory is the aggregate of the memory 

modules. These Processing elements and memory unit communicate with each other 

through an interconnection network. SIMD processors are especially designed for 

performing vector computations. SIMD has two basic architectural organizations 

a. Array processor using random access memory 
 

b. Associative processors using content addressable memory. 
 

All N identical processors operate under the control of a single instruction stream issued 

by a central control unit. The popular examples of this type of SIMD configuration is 

ILLIAC IV, CM-2, MP-1. Each PEi is essentially an arithmetic logic unit (ALU) with 

attached working registers and local memory PEMi for the storage of distributed data. 

The CU also has its own main memory for the storage of program. The function of CU is 

to decode the instructions and determine where the decoded instruction should be 

executed. The PE perform same function (same instruction) synchronously in a lock step 

fashion under command of CU. In order to maintain synchronous operations a global 
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clock is used. Thus at each step i.e., when global clock pulse changes all processors 
 

execute the same instruction, each on a different data (single instruction multiple data). 
 

SIMD machines are particularly useful at in solving problems involved with vector 
 

calculations where one can easily exploit data parallelism. In such calculations the same 
 

set of instruction is applied to all subsets of data. Lets do addition to two vectors each 
 

having N element and there are N/2 processing elements in the SIMD. The same addition 
 

instruction is issued to all N/2 processors and all processor elements will execute the 
 

instructions simultaneously. It takes 2 steps to add two vectors as compared to N steps on 
 

a SISD machine. The distributed data can be loaded into PEMs from an external source 
 

via the system bus or via system broadcast mode using the control bus. 
 

The array processor can be classified into two category depending how the memory units 
 

are organized. It can be 
 

a. Dedicated memory organization 
 

b. Global memory organization 
 

A SIMD computer C is characterized by the following set of parameter 
 

C= <N,F,I,M> 
 

Where N= the number of PE in the system . For example the iliac –IV has N=64 , the 
 

BSP has N= 16. 
 

F= a set of data routing function provided by the interconnection network 
 

I= The set of machine instruction for scalar vector, data routing and network 

manipulation operations 

M = The set of the masking scheme where each mask partitions the set of PEs into 

disjoint subsets of enabled PEs and disabled PEs. 

 
 

1.5 PRAM AND VLSI MODELS 
 

1.5.1 PRAM model (Parallel Random Access Machine): 
 

PRAM Parallel random access machine; a theoretical model of parallel computation in 

which an arbitrary but finite number of processors can access any value in an arbitrarily 

large shared memory in a single time step. Processors may execute different instruction 

streams, but work synchronously. This model assumes a shared memory, multiprocessor 

machine as shown: 
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1. The machine size n can be arbitrarily large 
 

2. The machine is synchronous at the instruction level. That is, each processor is 
 

executing it's own series of instructions, and the entire machine operates at a basic time 
 

step (cycle). Within each cycle, each processor executes exactly one operation or does 
 

nothing, i.e. it is idle. An instruction can be any random access machine instruction, such 
 

as: fetch some operands from memory, perform an ALU operation on the data, and store 
 

the result back in memory. 
 

3. All processors implicitly synchronize on each cycle and the synchronization overhead 
 

is assumed to be zero. Communication is done through reading and writing of shared 
 

variables. 
 

4. Memory access can be specified to be UMA, NUMA, EREW, CREW, or CRCW with 
 

a defined conflict policy. 
 

The PRAM model can apply to SIMD class machines if all processors execute identical 
 

instructions on the same cycle, or to MIMD class machines if the processors are 
 

executing different instructions. Load imbalance is the only form of overhead in the 
 

PRAM model. 
 
 

The four most important variations of the PRAM are: 
 
 

 EREW - Exclusive read, exclusive write; any memory location may only be 

accessed once in any one step. Thus forbids more than one processor from reading 

or writing the same memory cell simultaneously. 

 CREW - Concurrent read, exclusive write; any memory location may be read any 

number of times during a single step, but only written to once, with the write 

taking place after the reads. 

  ERCW – This allows exclusive read or concurrent writes to the same memory 

location. 

 CRCW - Concurrent read, concurrent write; any memory location may be written 

to or read from any number of times during a single step. A CRCW PRAM model 

must define some rule for resolving multiple writes, such as giving priority to the 

lowest-numbered processor or choosing amongst processors randomly. The 

PRAM is popular because it is theoretically tractable and because it gives 
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algorithm designers a common target. However, PRAMs cannot be emulated 
 

optimally on all architectures. 
 
 

1.5.2 VLSI Model: 
 

Parallel computers rely on the use of VLSI chips to fabricate the major components such 
 

as processor arrays memory arrays and large scale switching networks. The rapid advent 
 

of very large scale intergrated (VSLI) technology now computer architects are trying to 

implement parallel algorithms directly in hardware. An AT
2 

model is an example for two 

dimension VLSI chips 

1.6 Summary 
 

Architecture has gone through evolutional, rather than revolutional change. 
 

Sustaining features are those that are proven to improve performance. Starting with the 

von Neumann architecture (strictly sequential), architectures have evolved to include 

processing lookahead, parallelism, and pipelining. Also a variety of parallel architectures 

are discussed like SIMD, MIMD, Associative Processor, Array Processor, 

multicomputers, Mutiprocessor. The performance of system is measured as CPI, MIPS. It 

depends on the clock rate lets say t. If C is the total number of clock cycles needed to 

execute a given program, then total CPU time can be estimated as 

T= C * t = C / f. 
 

Other relationships are easily observed: 

CPI = C / Ic 

T =Ic * CPI * t 

T =Ic * CPI / f 

Processor speed is often measured in terms of millions of instructions per second, 

frequently called the MIPS rate of the processor. The multiprocessor architecture can be 

broadly classified as tightly coupled multiprocessor and loosely coupled multiprocessor. 

A tightly coupled Multiprocessor is also called a UMA, for uniform memory access, 

because each CPU can access memory data at the same (uniform) amount of time. This is 

the true multiprocessor. A loosely coupled Multiprocessor is called a NUMA. Each of its 

node computers can access their local memory data at one (relatively fast) speed, and 

 
 
 
 
 

28 



 

remote memory data at a much slower speed. PRAM and VSLI are the advance 
 

technologies that are used for designing the architecture. 
 

1.7 Keywords 
 
 

multiprocessor A computer in which processors can execute separate instruction 

streams, but have access to a single address space. Most multiprocessors are shared 

memory machines, constructed by connecting several processors to one or more memory 

banks through a bus or switch. 

 

multicomputer A computer in which processors can execute separate instruction 
 

streams, have their own private memories and cannot directly access one another's 
 

memories. Most multicomputers are disjoint memory machines, constructed by joining 
 

nodes (each containing a microprocessor and some memory) via links. 
 
 

MIMD Multiple Instruction, Multiple Data; a category of Flynn's taxonomy in which 
 

many instruction streams are concurrently applied to multiple data sets. A MIMD 
 

architecture is one in which heterogeneous processes may execute at different rates. 
 
 

MIPS one Million Instructions Per Second. A performance rating usually referring to 
 

integer or non-floating point instructions 
 

vector processor A computer designed to apply arithmetic operations to long vectors or 
 

arrays. Most vector processors rely heavily on pipelining to achieve high performance 
 

pipelining Overlapping the execution of two or more operations 
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o Grain packing and scheduling 

 Program flow mechanism 

 System interconnect architecture. 
 

o Network properties and routing 
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o Dynamic connection network 

 Summary 

 Keywords 

2.0 Objective 

In this lesson we will study about fundamental properties of programs how parallelism 

can be introduced in program. We will study about the granularity, partitioning of 

programs , program flow mechanism and compilation support for parallelism. 

Interconnection architecture both static and dynamic type will be discussed. 

2.1 Introduction 
 

The advantage of multiprocessors lays when parallelism in the program is popularly 

exploited and implemented using multiple processors. Thus in order to implement the 

parallelism we should understand the various conditions of parallelism. 
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What are various bottlenecks in implementing parallelism? Thus for full implementation 
 

of parallelism there are three significant areas to be understood namely computation 
 

models for parallel computing, interprocessor communication in parallel architecture and 
 

system integration for incorporating parallel systems. Thus multiprocessor system poses a 
 

number of problems that are not encountered in sequential processing such as designing a 
 

parallel algorithm for the application, partitioning of the application into tasks, 
 

coordinating communication and synchronization, and scheduling of the tasks onto the 
 

machine. 
 

2.2 Condition of parallelism 
 

The ability to execute several program segments in parallel requires each segment to be 

independent of the other segments. We use a dependence graph to describe the relations. 

The nodes of a dependence graph correspond to the program statement (instructions), and 

directed edges with different labels are used to represent the ordered relations among the 

statements. The analysis of dependence graphs shows where opportunity exists for 

parallelization and vectorization. 

2.2.1 Data and resource Dependence 
 

Data dependence: The ordering relationship between statements is indicated by the data 

dependence. Five type of data dependence are defined below: 

1. Flow dependence: A statement S2 is flow dependent on S1 if an execution path exists 

from s1 to S2 and if at least one output (variables assigned) of S1feeds in as input 

 
(operands to be used) to S2 also called RAW hazard and denoted as 

 

2. Antidependence: Statement S2 is antidependent on the statement S1 if S2 follows S1 in 
 

the program order and if the output of S2 overlaps the input to S1 also called RAW 
 

hazard and denoted as 
 

3. Output dependence : two statements are output dependent if they produce (write) the 
 

same output variable. Also called WAW hazard and denoted as 
 

4. I/O dependence: Read and write are I/O statements. I/O dependence occurs not 
 

because the same variable is involved but because the same file referenced by both I/O 
 

statement. 
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5. Unknown dependence: The dependence relation between two statements cannot be 
 

determined in the following situations: 
 

 The subscript of a variable is itself subscribed( indirect addressing) 

 The subscript does not contain the loop index variable. 

 A variable appears more than once with subscripts having different coefficients 

of the loop variable. 

 The subscript is non linear in the loop index variable. 
 

Parallel execution of program segments which do not have total data independence can 

produce non-deterministic results. 

Consider the following fragment of any program: 

S1 Load R1, A 

S2 Add R2, R1 

S3 Move R1, R3 

S4 Store B, R1 

• here the Forward dependency S1to S2, S3 to S4, S2 to S2 

• Anti-dependency from S2to S3 

• Output dependency S1 toS3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Dependence graph 
 

Control Dependence: This refers to the situation where the order of the execution of 

statements cannot be determined before run time. For example all condition statement, 

where the flow of statement depends on the output. Different paths taken after a 

conditional branch may depend on the data hence we need to eliminate this data 

dependence among the instructions. This dependence also exists between operations 

 
 

32 



 

performed in successive iterations of looping procedure. Control dependence often 
 

prohibits parallelism from being exploited. 
 

Control-independent example: 
 

for (i=0;i<n;i++) { 
 

a[i] = c[i]; 
 

if (a[i] < 0) a[i] = 1; 
 

} 
 

Control-dependent example: 

for (i=1;i<n;i++) { 

if (a[i-1] < 0) a[i] = 

1; } 

Control dependence also avoids parallelism to being exploited. Compilers are used to 

eliminate this control dependence and exploit the parallelism. 

Resource dependence: 
 

Data and control dependencies are based on the independence of the work to be done. 

Resource independence is concerned with conflicts in using shared resources, such as 

registers, integer and floating point ALUs, etc. ALU conflicts are called ALU 

dependence. Memory (storage) conflicts are called storage dependence. 

Bernstein’s Conditions - 1 
 

Bernstein’s conditions are a set of conditions which must exist if two processes can 

execute in parallel. 

Notation 
 

Ii is the set of all input variables for a process Pi . Ii is also called the read set or domain 

of Pi. Oi is the set of all output variables for a process Pi .Oi is also called write set 

If P1 and P2 can execute in parallel (which is written as P1 || P2), then: 
 
 
 
 
 
 
 
 
 

Bernstein’s Conditions - 2 
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In terms of data dependencies, Bernstein’s conditions imply that two processes can 
 

execute in parallel if they are flow-independent, antiindependent, and output- 
 

independent. The parallelism relation || is commutative (Pi || Pj implies Pj || Pi ), but not 
 

transitive (Pi || Pj and Pj || Pk does not imply Pi || Pk ) . Therefore, || is not an equivalence 
 

relation. Intersection of the input sets is allowed. 
 

2.2.2 Hardware and software parallelism 
 

Hardware parallelism is defined by machine architecture and hardware multiplicity i.e., 

functional parallelism times the processor parallelism .It can be characterized by the 

number of instructions that can be issued per machine cycle. If a processor issues k 

instructions per machine cycle, it is called a k-issue processor. Conventional processors 

are one-issue machines. This provide the user the information about peak attainable 

performance. Examples. Intel i960CA is a three-issue processor (arithmetic, memory 

access, branch). IBM RS -6000 is a four-issue processor (arithmetic, floating-point, 

memory access, branch).A machine with n k-issue processors should be able to handle a 

maximum of nk threads simultaneously. 

Software Parallelism 
 

Software parallelism is defined by the control and data dependence of programs, and is 

revealed in the program’s flow graph i.e., it is defined by dependencies with in the code 

and is a function of algorithm, programming style, and compiler optimization. 

2.2.3 The Role of Compilers 
 

Compilers used to exploit hardware features to improve performance. Interaction 

between compiler and architecture design is a necessity in modern computer 

development. It is not necessarily the case that more software parallelism will improve 

performance in conventional scalar processors. The hardware and compiler should be 

designed at the same time. 

2.3Program Partitioning & Scheduling 

2.3.1 Grain size and latency 

The size of the parts or pieces of a program that can be considered for parallel execution 

can vary. The sizes are roughly classified using the term “granule size,” or simply 

“granularity.” The simplest measure, for example, is the number of instructions in a 
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program part. Grain sizes are usually described as fine, medium or coarse, depending on 
 

the level of parallelism involved. 
 

Latency 
 

Latency is the time required for communication between different subsystems in a 

computer. Memory latency, for example, is the time required by a processor to access 

memory. Synchronization latency is the time required for two processes to synchronize 

their execution. Computational granularity and communication latency are closely 

related. Latency and grain size are interrelated and some general observation are 

 As grain size decreases, potential parallelism increases, and overhead also 

increases. 

 Overhead is the cost of parallelizing a task. The principle overhead is 

communication latency. 

  As grain size is reduced, there are fewer operations between communication, and 

hence the impact of latency increases. 

 Surface to volume: inter to intra-node comm. 

Levels of Parallelism 

Instruction Level Parallelism 
 

This fine-grained, or smallest granularity level typically involves less than 20 instructions 

per grain. The number of candidates for parallel execution varies from 2 to thousands, 

with about five instructions or statements (on the average) being the average level of 

parallelism. 

Advantages: 
 

There are usually many candidates for parallel execution 
 

Compilers can usually do a reasonable job of finding this parallelism 

Loop-level Parallelism 

Typical loop has less than 500 instructions. If a loop operation is independent between 

iterations, it can be handled by a pipeline, or by a SIMD machine. Most optimized 

program construct to execute on a parallel or vector machine. Some loops (e.g. recursive) 

are difficult to handle. Loop-level parallelism is still considered fine grain computation. 

Procedure-level Parallelism 
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Medium-sized grain; usually less than 2000 instructions. Detection of parallelism is more 
 

difficult than with smaller grains; interprocedural dependence analysis is difficult and 
 

history-sensitive. Communication requirement less than instruction level SPMD (single 
 

procedure multiple data) is a special case Multitasking belongs to this level. 
 

Subprogram-level Parallelism 
 

Job step level; grain typically has thousands of instructions; medium- or coarse-grain 

level. Job steps can overlap across different jobs. Multiprograming conducted at this level 

No compilers available to exploit medium- or coarse-grain parallelism at present. 

Job or Program-Level Parallelism 
 

Corresponds to execution of essentially independent jobs or programs on a parallel 

computer. This is practical for a machine with a small number of powerful processors, 

but impractical for a machine with a large number of simple processors (since each 

processor would take too long to process a single job). 

Communication Latency 
 

Balancing granularity and latency can yield better performance. Various latencies 

attributed to machine architecture, technology, and communication patterns used. 

Latency imposes a limiting factor on machine scalability. Ex. Memory latency increases 

as memory capacity increases, limiting the amount of memory that can be used with a 

given tolerance for communication latency. 

Interprocessor Communication Latency 
 

 Needs to be minimized by system designer 
 

  Affected by signal delays and communication patterns Ex. n communicating tasks 

may require n (n - 1)/2 communication links, and the complexity grows 

quadratically, effectively limiting the number of processors in the system. 

Communication Patterns 
 

 Determined by algorithms used and architectural support provided 

 Patterns include permutations broadcast multicast conference 

 Tradeoffs often exist between granularity of parallelism and communication 

demand. 

2.3.2 Grain Packing and Scheduling 

Two questions: 
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How can I partition a program into parallel “pieces” to yield the shortest execution time? 
 

What is the optimal size of parallel grains? 
 

There is an obvious tradeoff between the time spent scheduling and synchronizing 
 

parallel grains and the speedup obtained by parallel execution. 
 

One approach to the problem is called “grain packing.” 
 

Program Graphs and Packing 
 

A program graph is similar to a dependence graph Nodes = { (n,s) }, where n = node 

name, s = size (larger s = larger grain size). 

Edges = { (v,d) }, where v = variable being “communicated,” and d = communication 

delay. 

Packing two (or more) nodes produces a node with a larger grain size and possibly more 

edges to other nodes. Packing is done to eliminate unnecessary communication delays or 

reduce overall scheduling overhead. 

Scheduling 
 

A schedule is a mapping of nodes to processors and start times such that communication 

delay requirements are observed, and no two nodes are executing on the same processor 

at the same time. Some general scheduling goals 

  Schedule all fine-grain activities in a node to the same processor to minimize 

communication delays. 

 Select grain sizes for packing to achieve better schedules for a particular parallel 

machine. 

Node Duplication 
 

Grain packing may potentially eliminate interprocessor communication, but it may not 

always produce a shorter schedule. By duplicating nodes (that is, executing some 

instructions on multiple processors), we may eliminate some interprocessor 

communication, and thus produce a shorter schedule. 

Program partitioning and scheduling 
 

Scheduling and allocation is a highly important issue since an inappropriate scheduling of 

tasks can fail to exploit the true potential of the system and can offset the gain from 

parallelization. In this paper we focus on the scheduling aspect. The objective of 

scheduling is to minimize the completion time of a parallel application by properly 
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allocating the tasks to the processors. In a broad sense, the scheduling problem exists in 
 

two forms: static and dynamic. In static scheduling, which is usually done at compile 
 

time, the characteristics of a parallel program (such as task processing times, 
 

communication, data dependencies, and synchronization requirements) are known before 
 

program execution 
 

A parallel program, therefore, can be represented by a node- and edge-weighted directed 
 

acyclic graph (DAG), in which the node weights represent task processing times and the 
 

edge weights represent data dependencies as well as the communication times between 
 

tasks. In dynamic scheduling only, a few assumptions about the parallel program can be 
 

made before execution, and thus, scheduling decisions have to be made on-the-fly. The 
 

goal of a dynamic scheduling algorithm as such includes not only the minimization of the 
 

program completion time but also the minimization of the scheduling overhead which 
 

constitutes a significant portion of the cost paid for running the scheduler. In general 
 

dynamic scheduling is an NP hard problem. 
 

2.4 Program flow mechanism 
 

Conventional machines used control flow mechanism in which order of program 
 

execution explicitly stated in user programs. Dataflow machines which instructions can 
 

be executed by determining operand availability. 
 

Reduction machines trigger an instruction’s execution based on the demand for its 

results. 

Control Flow vs. Data Flow In Control flow computers the next instruction is executed 

when the last instruction as stored in the program has been executed where as in Data 

flow computers an instruction executed when the data (operands) required for executing 

that instruction is available 

Control flow machines used shared memory for instructions and data. Since variables are 

updated by many instructions, there may be side effects on other instructions. These side 

effects frequently prevent parallel processing. Single processor systems are inherently 

sequential. 

Instructions in dataflow machines are unordered and can be executed as soon as their 

operands are available; data is held in the instructions themselves. Data tokens are passed 

from an instruction to its dependents to trigger execution. 
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Data Flow Features 
 

No need for shared memory program counter control sequencer Special mechanisms are 

required to detect data availability match data tokens with instructions needing them 

enable chain reaction of asynchronous instruction execution 

A Dataflow Architecture – 1 The Arvind machine (MIT) has N PEs and an N -by –N 

interconnection network. Each PE has a token-matching mechanism that dispatches only 

instructions with data tokens available. Each datum is tagged with 

 address of instruction to which it belongs 
 

 context in which the instruction is being executed 
 

Tagged tokens enter PE through local path (pipelined), and can also be communicated to 

other PEs through the routing network. Instruction address(es) effectively replace the 

program counter in a control flow machine. Context identifier effectively replaces the 

frame base register in a control flow machine. Since the dataflow machine matches the 

data tags from one instruction with successors, synchronized instruction execution is 

implicit. 

An I-structure in each PE is provided to eliminate excessive copying of data structures. 

Each word of the I-structure has a two-bit tag indicating whether the value is empty, full, 

or has pending read requests. 

This is a retreat from the pure dataflow approach. Special compiler technology needed for 

dataflow machines. 

Demand-Driven Mechanisms 
 

Data-driven machines select instructions for execution based on the availability of their 

operands; this is essentially a bottom-up approach. 

Demand-driven machines take a top-down approach, attempting to execute the 

instruction (a demander) that yields the final result. This triggers the execution of 

instructions that yield its operands, and so forth. The demand-driven approach matches 

naturally with functional programming languages (e.g. LISP and SCHEME). 

Pattern driven computers : An instruction is executed when we obtain a particular data 

patterns as output. There are two types of pattern driven computers 
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String-reduction model: each demander gets a separate copy of the expression string to 
 

evaluate each reduction step has an operator and embedded reference to demand the 
 

corresponding operands each operator is suspended while arguments are evaluated 
 

Graph-reduction model: expression graph reduced by evaluation of branches or 
 

subgraphs, possibly in parallel, with demanders given pointers to results of reductions. 
 

based on sharing of pointers to arguments; traversal and reversal of pointers continues 
 

until constant arguments are encountered. 
 

2.5 System interconnect architecture. 
 

Various types of interconnection networks have been suggested for SIMD computers. 

These are basically classified have been classified on network topologies into two 

categories namely 

 Static Networks 
 

 Dynamic Networks 
 

Static versus Dynamic Networks 
 

The topological structure of an SIMD array processor is mainly characterized by the data 

routing network used in interconnecting the processing elements. 

The topological structure of an SIMD array processor is mainly characterized by the data 

routing network used in the interconnecting the processing elements. To execute the 

communication the routing function f is executed and via the interconnection network the 

PEi copies the content of its Ri register into the Rf(i) register of PEf(i). The f(i) the 

processor identified by the mapping function f. The data routing operation occurs in all 

active PEs simultaneously. 

2.5.1 Network properties and routing 
 

The goals of an interconnection network are to provide low-latency high data transfer rate 

wide communication bandwidth. Analysis includes latency bisection bandwidth data-

routing functions scalability of parallel architecture 

These Network usually represented by a graph with a finite number of nodes linked by 

directed or undirected edges. 

Number of nodes in graph = network size . 
 

Number of edges (links or channels) incident on a node = node degree d (also note in and 

out degrees when edges are directed). 
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Node degree reflects number of I/O ports associated with a node, and should ideally be 
 

small and constant. 
 

Network is symmetric if the topology is the same looking from any node; these are easier 
 

to implement or to program. 
 

Diameter : The maximum distance between any two processors in the network or in 
 

other words we can say Diameter, is the maximum number of (routing) processors 
 

through which a message must pass on its way from source to reach destination. Thus 
 

diameter measures the maximum delay for transmitting a message from one processor to 
 

another as it determines communication time hence smaller the diameter better will be 
 

the network topology. 
 

Connectivity: How many paths are possible between any two processors i.e., the 
 

multiplicity of paths between two processors. Higher connectivity is desirable as it 
 

minimizes contention. 
 

Arch connectivity of the network: the minimum number of arcs that must be removed for 
 

the network to break it into two disconnected networks. The arch connectivity of various 
 

network are as follows 
 

• 1 for linear arrays and binary trees 
 

• 2 for rings and 2-d meshes 

• 4 for 2-d torus 

• d for d-dimensional hypercubes 
 

Larger the arch connectivity lesser the conjunctions and better will be network topology. 

Channel width : The channel width is the number of bits that can communicated 

simultaneously by a interconnection bus connecting two processors 

Bisection Width and Bandwidth: In order divide the network into equal halves we require 

the remove some communication links. The minimum number of such communication 

links that have to be removed are called the Bisection Width. Bisection width basically 

provide us the information about the largest number of messages which can be sent 

simultaneously (without needing to use the same wire or routing processor at the same 

time and so delaying one another), no matter which processors are sending to which 

other processors. Thus larger the bisection width is the better the network topology is 

considered. Bisection Bandwidth is the minimum volume of communication allowed 
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between two halves of the network with equal numbers of processors This is important 
 

for the networks with weighted arcs where the weights correspond to the link width i.e., 
 

(how much data it can transfer). The Larger bisection width the better network topology 
 

is considered. 
 

Cost the cost of networking can be estimated on variety of criteria where we consider the 
 

the number of communication links or wires used to design the network as the basis of 
 

cost estimation. Smaller the better the cost 
 

Data Routing Functions: A data routing network is used for inter –PE data exchange. It 
 

can be static as in case of hypercube routing network or dynamic such as multistage 
 

network. Various type of data routing functions are Shifting, Rotating, Permutation (one 
 

to one), Broadcast (one to all), Multicast (many to many), Personalized broadcast (one to 
 

many), Shuffle, Exchange Etc. 
 

Permutations 
 

Given n objects, there are n ! ways in which they can be reordered (one of which is no 

reordering). A permutation can be specified by giving the rule for reordering a group of 

objects. Permutations can be implemented using crossbar switches, multistage networks, 

shifting, and broadcast operations. The time required to perform permutations of the 

connections between nodes often dominates the network performance when n is large. 

Perfect Shuffle and Exchange 

Stone suggested the special permutation that entries according to the mapping of the k-bit 

binary number a b … k to b c … k a (that is, shifting 1 bit to the left and wrapping it 

around to the least significant bit position). The inverse perfect shuffle reverses the effect 

of the perfect shuffle. 

Hypercube Routing Functions 
 

If the vertices of a n-dimensional cube are labeled with n-bit numbers so that only one bit 

differs between each pair of adjacent vertices, then n routing functions are defined by the 

bits in the node (vertex) address. For example, with a 3-dimensional cube, we can easily 

identify routing functions that exchange data between nodes with addresses that differ in 

the least significant, most significant, or middle bit. 

Factors Affecting Performance 
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Functionality – how the network supports data routing, interrupt handling, 
 

synchronization, request/message combining, and coherence 
 

Network latency – worst-case time for a unit message to be transferred 
 

Bandwidth – maximum data rate 
 

Hardware complexity – implementation costs for wire, logic, switches, connectors, etc. 
 

Scalability – how easily does the scheme adapt to an increasing number of processors, 
 

memories, etc.? 
 

2.5.2 Static connection Networks 
 

In static network the interconnection network is fixed and permanent interconnection 

path between two processing elements and data communication has to follow a fixed 

route to reach the destination processing element. Thus it Consist of a number of point-

to-point links. Topologies in the static networks can be classified according to the 

dimension required for layout i.e., it can be 1-D, 2-D, 3-D or hypercube. 

One dimensional topologies include Linear array as shown in figure 2.2 (a) used in some 

pipeline architecture. 

Various 2-D topologies are 
 

 The ring (figure 2.2(b)) 

 Star (figure 2.2(c)) 

 Tree (figure 2.2(d)) 

 Mesh (figure 2.2(e)) 

 Systolic Array (figure 2.2(f)) 

3-D topologies include 

 Completely connected chordal ring (figure 2.2(g)) 

 Chordal ring (figure 2.2(h)) 

 3 cube (figure 2.2(i)) 
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Figure 2.2 Static interconnection network topologies. 
 

Torus architecture is also one of popular network topology it is extension of the mesh by 

having wraparound connections Figure below is a 2D Torus This architecture of torus is 

a symmetric topology unlike mesh which is not. The wraparound connections reduce the 

torus diameter and at the same time restore the symmetry. It can be 

o 1-D torus 

2-D torus 

3-D torus 

The torus topology is used in Cray T3E 
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Figure 2.3 Torus technology 
 

We can have further higher dimension circuits for example 3-cube connected cycle. A D- 
 

dimension W-wide hypercube contains W nodes in each dimension and there is a 
 

connection to a node in each dimension. The mesh and the cube architecture are actually 
 

2-D and 3-D hypercube respectively. The below figure we have hypercube with 
 

dimension 4. 
 
 
 
 
 
 
 
 
 
 

Figure 2.4 4-D hypercube. 
 

2.5.3 Dynamic connection Networks 
 

The dynamic networks are those networks where the route through which data move 

from one PE to another is established at the time communication has to be performed. 

Usually all processing elements are equidistant and an interconnection path is established 

when two processing element want to communicate by use of switches. Such systems are 

more difficult to expand as compared to static network. Examples: Bus-based, Crossbar, 

Multistage Networks. Here the Routing is done by comparing the bit-level representation 
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of source and destination addresses. If there is a match goes to next stage via pass- 
 

through else in case of it mismatch goes via cross-over using the switch. 
 

There are two classes of dynamic networks namely 

 single stage network 

 multi stage 
 

2.5.3.1 Single Stage Networks 
 

A single stage switching network with N input selectors (IS) and N output selectors (OS). 

Here at each network stage there is a 1- to-D demultiplexer corresponding to each IS such 

that 1<D<N and each OS is an M-to-1 multiplexer such that 1<M<=N. Cross bar network 

is a single stage network with D=M=N. In order to establish a desired connecting path 

different path control signals will be applied to all IS and OS selectors. The single stage 

network is also called as recirculating network as in this network connection the single 

data items may have to recirculate several time through the single stage before reaching 

their final destinations. The number of recirculation depends on the connectivity in the 

single stage network. In general higher the hardware connectivity the lesser is the number 

of recirculation. In cross bar network only one circulation is needed to establish the 

connection path. The cost of completed connected cross bar network is O(N2) which is 

very high as compared to other most recirculating networks which have cost O(N log N) 

or lower hence are more cost effective for large value of N. 

2.5.3.2 Multistage Networks 
 

Many stages of interconnected switches form a multistage SIMD network. It is basicaaly 

consist of three characteristic features 

 The switch box, 
 

 The network topology 

 The control structure 

Many stages of interconnected switches form a multistage SIMD networks. Eachbox is 

essentially an interchange device with two inputs and two outputs. The four possible 

states of a switch box are which are shown in figure 3.6 

 Straight 
 

 Exchange 
 

 Upper Broadcast 
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 Lower broadcast. 
 

A two function switch can assume only two possible state namely state or exchange 

states. However a four function switch box can be any of four possible states. A 

multistage network is capable of connecting any input terminal to any output terminal. 

Multi-stage networks are basically constructed by so called shuffle-exchange switching 

element, which is basically a 2 x 2 crossbar. Multiple layers of these elements are 

connected and form the network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5 A two-by-two switching box and its four interconnection states 
 

A multistage network is capable of connecting an arbitrary input terminal to an arbitrary 

output terminal. Generally it is consist of n stages where N = 2
n 

is the number of input 

and output lines. And each stage use N/2 switch boxes. The interconnection patterns from 

one stage to another stage is determined by network topology. Each stage is connected to 

the next stage by at least N paths. The total wait time is proportional to the number stages 

i.e., n and the total cost depends on the total number of switches used and that is Nlog2N. 

The control structure can be individual stage control i.e., the same control signal is used 

to set all switch boxes in the same stages thus we need n control signal. The second 

control structure is individual box control where a separate control signal is used to set 

the state of each switch box. This provide flexibility at the same time require n2/2 control 

signal which increases the complexity of the control circuit. In between path is use of 

partial stage control. 
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Examples of Multistage Networks  

Banyan 

 Baseline  

Cube 

 Delta  

Flip 

 Indirect cube  

Omega 

Multistage network can be of two types 
 

  One side networks : also called full switch having input output port on the same 

side 

 Two sided multistage network : which have an input side and an output side. It 

can be further divided into three class 

o Blocking: In Blocking networks, simultaneous connections of more than 

one terminal pair may result conflicts in the use of network 

communication links. Examples of blocking network are the Data 

Manipulator, Flip, N cube, omega, baseline. All multistage networks that 

are based on shuffle-exchange elements, are based on the concept of 

blocking network because not all possible here to make the input-output 

connections at the same time as one path might block another. The figure 

2.6 (a) show an omega network. 

o Rearrangeable : In rearrangeable network, a network can perform all 

possible connections between inputs and outputs by rearranging its 

existing connections so that a connection path for a new input-output pair 

can always be established. An example of this network topology is Benes 

Network ( see figure 2.6 (b) showing a 8** Benes network)which support 

synchronous data permutation and a synchronous interprocessor 

communication. 

o Non blocking : A non –blocking network is the network which can handle 

all possible connections without blocking. There two possible cases first 

one is the Clos network ( see figure 2.6(c)) where a one to one connection 
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is made between input and output. Another case of one to many 
 

connections can be obtained by using crossbars instead of the shuffle- 
 

exchange elements. The cross bar switch network can connect every input 
 

port to a free output port without blocking. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6 Several Multistage Interconnection Networks 
 

Mesh-Connected Illiac Networks 
 

A single stage recirculating network has been implemented in the ILLiac –IV array with 

N= 64 PEs. Here in mesh network nodes are arranged as a q-dimensional lattice. The 
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neighboring nodes are only allowed to communicate the data in one step i.e., each PEi is 
 

allowed to send the data to any one of PE(i+1) , PE (i-1), Pe(i+r) and PE(i-r) where r= 
 

square root N( in case of Iliac r=8). In a periodic mesh, nodes on the edge of the mesh 
 

have wrap-around connections to nodes on the other side this is also called a toroidal 
 

mesh. 
 

Mesh Metrics 
 

For a q-dimensional non-periodic lattice with kq nodes: 

• Network connectivity = q 

• Network diameter = q(k-1) 

• Network narrowness = k/2 

• Bisection width = kq-1 

• Expansion Increment = kq-1 

• Edges per node = 2q 

Thus we observe the output of IS k is connected to inputs of OSj where j = k-1,K+1,k-

r,k+r as shown in figure below. 

 
 
 
 
 
 
 
 
 
 

Figure2.7 routing function of mesh Topology 
 

Similarly the OSj gets input from ISk for K= j-1, j+1,j-r,j+r. The topology is formerly 

described by the four routing functions: 

• R+1(i)= (i+1) mod N => (0,1,2…,14,15) 

• R-1(i)= (i-1) mod N => (15,14,…,2,1,0) 

• R+r(i)= (i+r) mod N => (0,4,8,12)(1,5,9,13)(2,6,10,14)(3,7,11,15) 

• R-r(i)= (i-r) mod N => (15,11,7,3)(14,10,6,2)(13,9,5,1)(12,8,4,0) 

The figure given below show how each PEi is connected to its four nearest neighbors in 

the mesh network. It is same as that used for IILiac –IV except that w had reduced it for 

N=16 and r=4. The index are calculated as module N. 
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Figure 2.8 Mesh Connections 
 

Thus the permutation cycle according to routing function will be as follows: 

Horizontally, all PEs of all rows form a linear circular list as governed by the following 

two permutations, each with a single cycle of order N. The permutation cycles (a b c) (d 

e) stands for permutation a->b, b->c, c->a and d->e, e->d in a circular fashion with each 

pair of parentheses. 

R+1 = (0 1 2 ….N-1) 

R–1 = (N-1 ….. 2 1 0). 

Similarly we have vertical permutation also and now by combining the two permutation 

each with four cycles of order four each the shift distance for example for a network of N 

= 16 and r = square root(16) = 4, is given as follows: 

R +4 = (0 4 8 12)(1 5 9 13)(2 6 10 14)(3 7 11 15) 

R –4 = (12 8 4 0)(13 9 5 1)(14 10 6 2)(15 11 7 3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9 Mesh Redrawn 
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Each PEi is directly connected to its four neighbors in the mesh network. The graph 
 

shows that in one step a PE can reach to four PEs, seven PEs in two step and eleven PEs 
 

in three steps. In general it takes I steps ( recirculations) to route data from PEi to another 
 

PEj for a network of size N where I is upper –bound given by 
 

I<= square root(N) -1 
 

Thus in above example for N=16 it will require at most 3 steps to route data from one PE 
 

to another PE and for Illiac –IV network with 64 PE need maximum of 7 steps for routing 
 

data from one PE to Another. 
 

Cube Interconnection Networks 
 

The cube network can be implemented as either a recirculating network or as a multistage 

network for SIMD machine. It can be 1-D i.e., a single line with two pE each at end of a 

line, a square with four PEs at the corner in case of 2-D, a cube for 3-D and hypercube in 

4-D. in case of n-dimension hypercube each processor connects to 2n neighbors. This can 

be also visualized as the unit (hyper) cube embedded in d-dimensional Euclidean space, 

with one corner at 0 and lying in the positive orthant. The processors can be thought of as 

lying at the corners of the cube, with their (x1,x2,...,xd) coordinates identical to their 

processor numbers, and connected to their nearest neighbors on the cube. The popular 

examples where cube topology is used are : iPSC, nCUBE, SGI O2K. 

Vertical lines connect vertices (PEs) whose address differ in the most significant 

bit position. Vertices at both ends of the diagonal lines differ in the middle bit position. 

Horizontal lines differ in the least significant bit position. The unit – cube concept can be 

extended to an n- dimensional unit space called an n cube with n bits per vertex. A cube 

network for an SIMD machine with N PEs corresponds to an n cube where n = log2 N. 

We use binary sequence to represent the vertex (PE) address of the cube. Two processors 

are neighbors if and only if their binary address differs only in one digit place 
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For an n-dimensional cube network of N PEs is specified by the following n routing 
 

functions 
 

Ci (An-1 …. A1 A0)= An-1…Ai+1 A’i Ai-1……A0 for i =0,1,2,…,n-1 
 

A n- dimension cube each PE located at the corner is directly connected to n neighbors. 
 

The addresses of neighboring PE differ in exactly one bit position. Pease’s binary n cube 
 

the flip flop network used in staran and programmable switching network proposed for 
 

Phoenix are examples of cube networks. 
 

In a recirculating cube network each ISa for 0<=A+< N-1 is connected to n OSs whose 
 

addresses are An-1…Ai+1 A’i Ai-1……A0 . When the PE addresses are considered as 
 

the corners of an m-dimensional cube this network connects each PE to its m neighbors. 
 

The interconnections of the PEs corresponding to the three routing function C0, C1 and 
 

C2 are shown separately in below figure. 
 

• Examples 
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Figure 2.10 The recirculating Network 
 

It takes n<= log2 N steps to rotate data from any PE to another. 

Example: N=8 => n=3 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.11 Possible routing in multistage Cube network for N = 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.12 A multistage Cube network for N = 8 
 

The same set of cube routing functions i.e., C0,C1, C2 can also be implemented by three 
 

stage network. Two functions switch box is used which can provide either straight and 
 

exchange routing is used for constructing multistage cube networks. The stages are 
 

numbered as 0 at input end and increased to n-1 at the output stage i.e., the stage I 
 

implements the Ci routing function or we can say at ith stage connect the input line to the 
 

output line that differ from it only at the ith bit position. 
 

This connection was used in the early series of Intel Hypercubes, and in the CM-2. 
 

Suppose there are 8 process ring elements so 3 bits are required for there address. and 
 

that processor 000 is the root. The children of the root are gotten by toggling the first 
 

address bit, and so are 000 and 100 (so 000 doubles as root and left child). The children 
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of the children are gotten by toggling the next address bit, and so are 000, 010, 100 and 
 

110. Note that each node also plays the role of the left child. Finally, the leaves are gotten 
 

by toggling the third bit. Having one child identified with the parent causes no problems 
 

as long as algorithms use just one row of the tree at a time. Here is a picture. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.13 A tree embedded in 3-D hypercube 
 

Shuffle-Exchange Omega Networks 

A shuffle-exchange network consists of n=2
k 

nodes and it is based on two routing 
 

functions shuffle (S) and exchange (E). Let A= An-1…A1A0be the address of a PE than 
 

a shuffle function is given by: 
 

S(A)=S(An-1…A1A0)=A.n-2…A1A0An-1, 0<A<1 
 

The cyclic shifting of the bits in A to the left for one bit osition is performed by the S 
 

function. Which is effectively like shuffling the bottom half of a card deck into the top 
 

half as shown in figure below. 
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Figure 2.14 Perfect shuffle and inverse perfect shuffle 
 

There are two type of shuffle the perfect shuffle cuts the deck into two halves from the 
 

centre and intermix them evenly. Perfect shuffle provide the routing connections of node 
 

i with node 2i mod(n-1), except for node n-1 which is connected to itself. The inverse 
 

perfect shuffle does the opposite to restore the original order it is denoted as exchange 
 

routing function E and is defined as : 
 

E(An-1…A1A0)= (An-1…A1A0’) 
 

This obtained by complementing the least significant digit means data exchange 
 

between two PEs with adjacent addresses. The E(A) is same as the cube routing function 

as described earlier. Exchange routing function connects nodes whose numbers differ in 

their lowest bit. 

The shuffle exchange function can be implemented as either a recirculating network or 

multistage network. The implementation of shuffle and exchange network through 

recirculating network is shown below. Use of shuffle and exchange topology for parallel 

processing was proposed by Stone. It is used for solving many parallel algorithms 

efficiently. The example where it is used include FFT (fast Fourier transform), sorting, 

matrix transposition , polynomial evaluations etc. 
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Figure2.15 shuffle and exchange recirculating network for N=8 
 

The shuffle –exchange function have been implemented as multistage Omega network by 
 

LAwrie. An N by N omega network, consists of n identical stages. Between two adjacent 
 

column there is a perfect shuffle interconnection. Thus after each stage there is a N/2 
 

four-function interchange boxes under independent box control. The four functions are 
 

namely straight exchange upper broadcast and lower broadcast. The shuffle connects 
 

output P n-l...Pl P0 of stage i to input P n-2...PlP0Pn-l of stage i-1. Each interchange box 
 

in an omega network is controlled by the n-bit destination tags associated with the data 
 

on its input lines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

57 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.16 
 

The diameter is m=log_2 p, since all message must traverse m stages. The bisection 
 

width is p. This network was used in the IBM RP3, BBN Butterfly, and NYU 
 

Ultracomputer. If we compare the omega network with cube network we find Omega 
 

network can perform one to many connections while n-cube cannot. However as far as 
 

bijections connections n-cube and Omega network they perform more or less same. 
 

2.6 Summary 
 

Fine-grain exploited at instruction or loop levels, assisted by the compiler. 

Medium-grain (task or job step) requires programmer and compiler support. 

Coarse-grain relies heavily on effective OS support. 

Shared-variable communication used at fine- and medium grain levels. 
 

Message passing can be used for medium- and coarse grain communication, but fine -

grain really need better technique because of heavier communication requirements. 

Control flow machines give complete control, but are less efficient than other approaches. 

Data flow (eager evaluation) machines have high potential for parallelism and throughput 

and freedom from side effects, but have high control overhead, lose time waiting for 

unneeded arguments, and difficulty in manipulating data structures. Reduction (lazy 
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evaluation) machines have high parallelism potential, easy manipulation of data 
 

structures, and only execute required instructions. But they do not share objects with 
 

changing local state, and do require time to propagate tokens 
 

Summary of properties of various static network 
 
 
 
 
 
 
 
 
 
 
 
 

Summary of properties of various dynamic networks 
 

Network Characteristics Bus System Multistage Network Crossbar Switch 

Minimum Latency for 
 

unit data transfer 

Constant O(log k n) Constant 

Bandwidth per processor O(w/n) to O(w) O(w) to O(nw) O(w) to O(nw) 

Wiring Complexity O(w) O(nw log k n) O(n
2
w) 

Switching complexity O(n) O(n log k n) O(n
2
) 

Connectivity and routing 
 

capability 

Only one to one 
 

at a time 

Some permutations 
 

and broadcast , if 
 

network unblocked 

All permutations 
 

one at a time. 

Metrics of dynamic connected nework 
 
 
 
 
 
 
 
 
 
 
 

2.7 Keywords 
 

Dependence graph : A directed graph whose nodes represent calculations and whose 

edges represent dependencies among those calculations. If the calculation represented by 

 
 

59 



 

node k depends on the calculations represented by nodes i and j, then the dependence 
 

graph contains the edges i-k and j-k. 
 

data dependency : a situation existing between two statements if one statement can store 
 

into a location that is later accessed by the other statement 
 

granularity The size of operations done by a process between communications events. A 
 

fine grained process may perform only a few arithmetic operations between processing 
 

one message and the next, whereas a coarse grained process may perform millions 
 

control-flow computers refers to an architecture with one or more program counters that 
 

determine the order in which instructions are executed. 
 

dataflow A model of parallel computing in which programs are represented as 
 

dependence graphs and each operation is automatically blocked until the values on which 
 

it depends are available. The parallel functional and parallel logic programming models 
 

are very similar to the dataflow model. 
 

network A physical communication medium. A network may consist of one or more 
 

buses, a switch, or the links joining processors in a multicomputer. 
 

Static networks: point-to-point direct connections that will not change during program 
 

execution 
 

Dynamic networks: switched channels dynamically configured to match user program 

communication demands include buses, crossbar switches, and multistage networks 

routing The act of moving a message from its source to its destination. A routing 

technique is a way of handling the message as it passes through individual nodes. 

Diameter D of a network is the maximum shortest path between any two nodes, measured 

by the number of links traversed; this should be as small as possible (from a 

communication point of view). 

Channel bisection width b = minimum number of edges cut to split a network into two 

parts each having the same number of nodes. Since each channel has w bit wires, the wire 

bisection width B = bw. Bisection width provides good indication of maximum 

communication bandwidth along the bisection of a network, and all other cross sections 

should be bounded by the bisection width. 

Wire (or channel) length = length (e.g. weight) of edges between nodes. 
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