
S. J. P. N. TRUST’S

HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI
Accredited at 'A' Grade by NAAC

Programmes Accredited by NBA: CSE, ECE, EEE & ME.

Department of Computer Science & Engineering

Course: Artificial Intelligence and Machine Learning
(18CS71)

Module 1
Introduction to Artificial Intelligence

Dr. Mahesh G. Huddar
Associate Professor, Dept. of Computer Science & Engg.,

Hirasugar Institute of Technology, Nidasoshi

CSE, HIT, Nidasoshi

What is Artificial Intelligence?

• It is a branch of Computer Science that pursues creating the

computers or machines as intelligent as human beings.

• It is the science and engineering of making intelligent machines,

especially intelligent computer programs.

• It is related to the similar task of using computers to understand

human intelligence, but AI does not have to confine itself to

methods that are biologically observable

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

What is Artificial Intelligence?

Definition: Artificial Intelligence is the study of how to make computers do

things, which, at the moment, people do better.

According to the father of Artificial Intelligence, John McCarthy, it is “The

science and engineering of making intelligent machines, especially intelligent

computer programs”.

Artificial Intelligence is a way of making a computer, a computer-controlled

robot, or a software think intelligently, in the similar manner the intelligent

humans think.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

What is Artificial Intelligence?

Examples:

• Speech recognition,

• Face detection and recognition,

• Object detection and recognition,

• Learning new skills,

• Decision making,

• Abstract thinking

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

How …?

• AI is accomplished by studying how human brain thinks and how

humans learn, decide, and work while trying to solve a problem, and

then using the outcomes of this study as a basis of developing

intelligent software and systems.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Why Artificial Intelligence?

It has gained prominence recently due, in part, to big data, or the increase in

speed, size and variety of data businesses are now collecting. AI can perform

tasks such as identifying patterns in the data more efficiently than humans,

enabling businesses to gain more insight out of their data.

From a business perspective AI is a set of very powerful tools, and

methodologies for using those tools to solve business problems.

From a programming perspective, AI includes the study of symbolic

programming, problem solving, and search.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

AI Vocabulary

• Intelligence relates to tasks involving higher mental processes, e.g. creativity,

solving problems, pattern recognition, classification, learning, induction,

deduction, building analogies, optimization, language processing, knowledge

and many more. Intelligence is the computational part of the ability to achieve

goals.

• Intelligent behaviour is depicted by perceiving one’s environment, acting in

complex environments, learning and understanding from experience,

reasoning to solve problems and discover hidden knowledge, applying

knowledge successfully in new situations, thinking abstractly, using analogies,

communicating with others and more.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

AI Vocabulary

• Science based goals of AI pertain to developing concepts, mechanisms and

understanding biological intelligent behaviour. The emphasis is on

understanding intelligent behaviour.

• Engineering based goals of AI relate to developing concepts, theory and

practice of building intelligent machines. The emphasis is on system

building.

• Applications of AI refers to problem solving, search and control strategies,

speech recognition, natural language understanding, computer vision,

expert systems, etc.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

AI Vocabulary

• AI Techniques depict how we represent, manipulate and reason with

knowledge in order to solve problems. Knowledge is a collection of ‘facts’.

To manipulate these facts by a program, a suitable representation is

required. A good representation facilitates problem solving.

• Learning means that programs learn from what facts or behaviour can

represent. Learning denotes changes in the systems that are adaptive in

other words, it enables the system to do the same task(s) more efficiently

next time.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Task Domains of AI

Mundane Tasks:

Perception

Vision

Speech

Natural Languages

Understanding

Generation

Translation

Common sense reasoning

Robot Control

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

Formal Tasks

Games : chess, checkers etc

Mathematics: Geometry, logic, Proving

properties of programs

Expert Tasks:

Engineering (Design, Fault finding,

Manufacturing planning)

Scientific Analysis

Medical Diagnosis

Financial Analysis

CSE, HIT, Nidasoshi

AI Problems
• A person who knows how to perform tasks from several of the categories shown in

above list learn the necessary skills in a standard order.

– First perceptual, linguistic, and commonsense skills are learned.

– Later expert skills such as engineering, medicine, or finance are acquired

• Earlier skills are easier, for this reason much of the initial work in AI work was

concentrated in those early areas.

• The problem areas where now AI is flourishing most as a practical discipline are

primarily the domains that require only specialized expertise without the assistance of

commonsense knowledge.

• Expert systems (AI programs) now are up for day-to-day tasks that aim at solving part,

or perhaps all, of practical, significant problem that previously required high human

expertise.
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

 STEPS TO SOLVE A PROBLEM

To solve the problem of building a system you should take the following steps:

Define the problem accurately including detailed specifications and what

constitutes a suitable solution.

Scrutinize the problem carefully, for some features may have a central affect on

the chosen method of solution.

Segregate and represent the background knowledge needed in the solution of

the problem.

Choose the best solving techniques for the problem to solve a solution.

 Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Tic Tac Toe

Three programs are presented :

The programs in the Series increase in

Their complexity

Use of generalization

Clarity of their knowledge

Extensibility of their approach

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Introductory Problem: Tic-Tac-Toe

 X X

 o

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Introductory Problem: Tic-Tac-Toe
Program 1:
Data Structures:
Board: 9 element vector representing the board, with 1-9 for each square. An element
contains the value 0 if it is blank, 1 if it is filled by X, or 2 if it is filled with a O
Movetable: A large vector of 19,683 elements (3^9), each element is 9-element
vector.

Algorithm:

1. View the vector as a ternary number. Convert it to a
 decimal number.

2. Use the computed number as an index into
 Move-Table and access the vector stored there.

3. Set the new board to that vector.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Introductory Problem: Tic-Tac-Toe
Comments:
This program is very efficient in time.

1. A lot of space to store the Move-Table.

2. A lot of work to specify all the entries in the

 Move-Table.

3. Difficult to extend.

 Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Introductory Problem: Tic-Tac-Toe

 1 2 3

 4 5 6

 7 8 9

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Introductory Problem: Tic-Tac-Toe
Program 2:
Data Structure: A nine element vector representing the board. But instead of using 0,1
and 2 in each element, we store 2 for blank, 3 for X and 5 for O
Functions:
Make2: returns 5 if the center sqaure is blank. Else any other balnk sq
Posswin(p): Returns 0 if the player p cannot win on his next move; otherwise it returns
the number of the square that constitutes a winning move. If the product is 18
(3x3x2), then X can win. If the product is 50 (5x5x2) then O can win.
Go(n): Makes a move in the square n

Strategy:

Turn = 1 Go(1)
Turn = 2 If Board[5] is blank, Go(5), else Go(1)
Turn = 3 If Board[9] is blank, Go(9), else Go(3)
Turn = 4 If Posswin(X)  0, then Go(Posswin(X))
.......

 Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Introductory Problem: Tic-Tac-Toe
Comments:

1. Not efficient in time, as it has to check several

 conditions before making each move.

2. Easier to understand the program’s strategy.

3. Hard to generalize.

 Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Introductory Problem: Tic-Tac-Toe

 8 3 4

 1 5 9

 6 7 2

15 - (8 + 5)
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Introductory Problem: Tic-Tac-Toe
Comments:

1. Checking for a possible win is quicker.

2. Human finds the row-scan approach easier, while

 computer finds the number-counting approach more

 efficient.

 Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

PROBLEMS, PROBLEM SPACES AND SEARCH

–State space search

–Search strategies

–Problem characteristics

–Design of search programs

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Introductory Problem: Tic-Tac-Toe
Program 3:

1. If it is a win, give it the highest rating.

2. Otherwise, consider all the moves the opponent
 could make next. Assume the opponent will make
 the move that is worst for us. Assign the rating of
 that move to the current node.

3. The best node is then the one with the highest
 rating.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

STATE SPACE SEARCH

A state space consists of

A (possibly infinite) set of states

The start state represents the initial problem

Each state represents some configuration reachable from the start state

Some states may be goal states (solutions)

A set of rules

Applying an operator to a state transforms it to another state in the state space

Not all operators are applicable to all states

State spaces are used extensively in Artificial Intelligence (AI)
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

STATE SPACE SEARCH - Example 1: Maze

A maze can be represented as a state space

Each state represents “where you are” in the maze

The start state represents your starting position

The goal state represents the exit from the maze

Rules (for a rectangular maze) are: move north, move south, move

east, and move west

Each rule takes you to a new state (maze location)

Rules may not always apply, because of walls in the maze
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

STATE SPACE SEARCH - Example 2: The 15-puzzle

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

The start state is some (almost) random configuration of

the tiles

The goal state is as shown

Rules are

Move empty space up

Move empty space down

Move empty space right

Move empty space left

Rules apply if not against edge

 3 10 13 7

 9 14 6 1

 4 15 2

 11 8 5 12

Start state:

 1 2 3 4

 5 6 7 8

 9 10 11 12

 13 14 15

Goal state:

CSE, HIT, Nidasoshi

STATE SPACE SEARCH - Example 3: Playing Chess

• Each position can be described by an 8-by-8 array.

• Initial position is the game opening position.

• Goal position is any position in which the opponent does not have

a legal move and his or her king is under attack.

• Legal moves can be described by a set of rules:

 - Left sides are matched against the current state.

 - Right sides describe the new resulting state.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

STATE SPACE SEARCH

• Many problems in AI take the form of state-space search.

• The states might be legal board configurations in a game, towns and cities in some sort of

route map, collections of mathematical propositions, etc.

• The state-space is the configuration of the possible states and how they connect to each other

e.g. the legal moves between states.

• When we don't have an algorithm which tells us definitively how to negotiate the state-space

we need to search the state-space to find an optimal path from a start state to a goal state.

• We can only decide what to do (or where to go), by considering the possible moves from the

current state, and trying to look ahead as far as possible.

• Chess, for example, is a very difficult state-space search problem.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

STATE SPACE SEARCH - SEARCHING FOR THE OPTIMUM

• State-space search is all about finding, in a state-space (which may be extremely large: e.g.

chess), some optimal state/node.

• `Optimal' can mean very different things depending on the nature of the domain being

searched.

• For a puzzle, `optimal' might mean the goal state e.g. connect4

• For a route-finder, like our problem, which searches for shortest routes between towns, or

components of an integrated circuit, `optimal' might mean the shortest path between two

towns/components.

• For a game such as chess, in which we typically can't see the goal state, `optimal' might mean

the best move we think we can make, looking ahead to see what effects the possible moves

have.
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

STATE SPACE SEARCH - SEARCHING FOR THE OPTIMUM

• The state space can be HUGE! (Combinatorial explosion)

• Theorem Proving: Infinite!

• Chess: 10 120 (in an average length game)

• Checkers: 1040

• Eight puzzle:181,440

• Right representation helps

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

STATE-SPACE REPRESENTATION: GENERAL OUTLINE

Select some way to represent states in the problem in an unambiguous way.

Formulate all actions that can be preformed in states:

 including their preconditions and effects

 == PRODUCTION RULES

Represent the initial state (s).

Formulate precisely when a state satisfies the goal of our problem.

Activate the production rules on the initial state and its descendants, until a goal state is

reached.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Example: the 8-puzzle

• Given: a board situation for the 8-puzzle:

• Problem: find a sequence of moves (allowed under the rules of the 8-puzzle game) that

transform this board situation in a desired goal situation

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

1 3 8

2 7

5 4 6

1 2 3

5 6 7
4 8

CSE, HIT, Nidasoshi

1 3 8
2 7
5 4 6

How to represent states? (repr.1)

 Ex.: using a 3 X 3 matrix

 How to formulate production rules? (repr. 2)

 Ex.:

 express how/when squares may be moved?

 Or: express how/when the blank space is moved?

 When is a rule applicable to a state? (matching)

 How to formulate when the goal criterion is satified and how to verify that it
is?

 How/which rules to activate? (control)

INITIAL ISSUES TO SOLVE:

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

 Each state-space representation defines a search tree:

1 3 8
2 7
5 4 6

1 3 8
2 7

5 4 6

1 3 8
2 7
5 4 6

1
3

8
2 7
5 4 6

1 3 8
2 7
5

4
6

9!/2
nodes!

goal

The (implicit) search tree

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

ISSUES AND TRADE-OFFS

1. How to choose the rules?

2. Should we search through the implicit tree or through an implicit graph?

3. Do we need an optimal solution, or just any solution?

 ‘optimal path problems’

4. Can we decompose states into components on which simple rules can in an

independent way?

 Problem reduction or decomposability

5. Should we search forwards from the initial state, or backwards from a goal state?

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

State Space Search: Water Jug Problem

• “You are given two jugs, a 4-litre one and a 3-litre one.

Neither has any measuring markers on it. There is a pump

that can be used to fill the jugs with water. How can you

get exactly 2 litres of water into 4-litre jug.”

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

State Space Search: Water Jug Problem

• State: (x, y)

 x = 0, 1, 2, 3, or 4 y = 0, 1, 2, 3

• x represents quantity of water in 4 gallon jug and y represents

quantity of water in 3 gallon jug

• Start state: (0, 0).

• Goal state: (2, n) for any n.

• Attempting to end up in a goal state.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

State Space Search: Water Jug Problem – Production Rules

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

State Space Search: Water Jug Problem – One Possible Solution

1. current state = (0, 0)

2. Loop until reaching the goal state (2, 0)

 - Apply a rule whose left side matches the current state

 - Set the new current state to be the resulting state

 (0, 0)

 (0, 3) – Rule 2

 (3, 0) - Rule 9

 (3, 3) - Rule 2

 (4, 2) – Rule 9

 (0, 2) - Rule 5

 (2, 0) – Rule 9

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

State Space Search: Water Jug Problem – One Possible Solution

1. current state = (0, 0)

2. Loop until reaching the goal state (2, 0)

 - Apply a rule whose left side matches the current state

 - Set the new current state to be the resulting state

 (0, 0)

 (4, 0) – Rule 1

 (1, 3) - Rule 3

 (1, 0) - Rule 6

 (0, 1) – Rule 3

 (4, 1) - Rule 1

 (2, 3) – Rule 6

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Production Systems

• Since search forms the core of many intelligent processes, it is useful to structure Al programs in a way

that facilitates describing and performing the search process.

• Production systems provide such structures.

• A production system consists of:

– A set of rules, each consisting of a left side (a pattern) that determines the applicability of the rule

and a right side that describes the operation to be performed if the rule is applied.;

– One or more knowledge/databases that contain whatever information is appropriate for the

particular task. Some pans of the database may be permanent, while other plans of it may pertain

only to the solution of the current problem. A control strategy that specifies the order in which the

rules will be compared to the database and a way of resolving the conflicts that arise when several

rules match at once.

– A rule applier.
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Control / Search Strategies

• So far, we have completely ignored the question of how to decide

which rule to apply next during the process of searching for a

solution to a problem.

• This question arises once often more than one rule (and sometimes

fewer than one rule) will have its left side match the current state.

• Even without a great deal of thought, it is clear that how such

decisions are made will have a crucial impact on how quickly. and

even whether, a problem is finally solved.
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Control / Search Strategies

• The first requirement of a good control strategy is that it causes

motion. Consider again the water jug problem. Suppose we

implemented the simple control strategy of starting each time at the

top of the list of rules and choosing the first applicable one. If we

did that, we would never solve the problem. We would continue

indefinitely filling the 4-gallon jug with water Control strategies that

do not cause motion will never lead to a solution.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Control / Search Strategies

• The second requirement of a good control strategy is that it be systematic.

Consider again the water jug problem. On each cycle, choose at random

from among the applicable rules. This strategy is better than the first. It

causes motion. It will lead to a solution eventually. But we are likely to

arrive at the same state several times during the process and to use many

more steps than are necessary. Because the control strategy is not

systematic, we may explore a particular useless sequence of operators

several times before we finally find a solution.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Search Strategies - Breadth-First Search

Algorithm: Breadth-First Search

1. Create a variable called NODE-LIST and set it to the initial state.

2. Until a goal state is found or NODE-LIST is empty:

a) Remove the first element from NODE-LIST and call it E. If NODE-LIST was empty.

quit.

b) For each way that each rule can match the state described in E do:

i. Apply the rule to generate a new state,

ii. If the new state is a goal state. quit and return this state.

iii. Otherwise, add the new state to the end of NODE-LIST Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Breadth-First Search - Example

• Step 1: Initially NODE-LIST contains only one node corresponding to the source
state A.

• NODE-LIST: A

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Breadth-First Search - Example

• Step 2: A is removed from NODE-LIST. The node is expanded, and its children B
and C are generated. They are placed at the back of NODE-LIST.

• NODE-LIST: B C

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Breadth-First Search - Example

• Step 3: Node B is removed from NODE-LIST and is expanded. Its children D, E are
generated and put at the back of NODE-LIST.

• NODE-LIST: C D E

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Breadth-First Search - Example

• Step 4: Node C is removed from NODE-LIST and is expanded. Its children D and G
are added to the back of NODE-LIST.

• NODE-LIST: D E D G

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Breadth-First Search - Example

• Step 5: Node D is removed from NODE-LIST. Its children C and F are generated and
added to the back of NODE-LIST.

• NODE-LIST: E D G C F

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Breadth-First Search - Example

• Step 6: Node E is removed from NODE-LIST. It has no children.

• NODE-LIST: D G C F

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Breadth-First Search - Example

• Step 7: D is expanded; B and F are put in OPEN.

• NODE-LIST: G C F B F

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Breadth-First Search - Example

• Step 8: G is selected for expansion. It is found to be a goal node. So the algorithm
returns the path A C G by following the parent pointers of the node corresponding
to G. The algorithm terminates.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Breadth-First Search

• Breadth first search is:

• One of the simplest search strategies

• Complete. If there is a solution, BFS is guaranteed to find it.

• If there are multiple solutions, then a minimal solution will be found

• The algorithm is optimal (i.e., admissible) if all operators have the same cost.
Otherwise, breadth first search finds a solution with the shortest path length.

• Advantages: Finds the path of minimal length to the goal.

• Disadvantages:

• Requires the generation and storage of a tree whose size is exponential the depth
of the shallowest goal node.

• The breadth first search algorithm cannot be effectively used unless the search
space is quite small.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Search Strategies

• Breadth-first search
 Expand all the nodes
 of one level first.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Search Strategies - Depth-First Search

Algorithm: Depth-First Search

1. If the initial state is a goal state, quit and return success.

2. Otherwise, do the following until success or failure is signaled:

a) Generate a successor, E, of the initial state. If there are no more successors,

signal failure.

b) Call Depth-First Search with E as the initial state.

c) If success is returned, signal success. Otherwise continue in this loop.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Depth-First Search - Example

• Step 1: Initially NODE-LIST contains only one node corresponding to the source
state A.

• NODE-LIST: A

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Depth-First Search - Example

• Step 2: A is removed from NODE-LIST . A is expanded and its children B and C are
put in front of NODE-LIST .

• NODE-LIST: B C

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Depth-First Search - Example

• Step 3: Node B is removed from NODE-LIST , and its children D and E are pushed
in front of NODE-LIST .

• NODE-LIST: D E C

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Depth-First Search - Example

• Step 4: Node D is removed from NODE-LIST . C and F are pushed in front of NODE-
LIST .

• NODE-LIST: C F E C

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Depth-First Search - Example

• Step 5: Node C is removed from NODE-LIST . Its child G is pushed in front of
NODE-LIST .

• NODE-LIST: G F E C

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Depth-First Search - Example

• Step 6: Node G is expanded and found to be a goal node.

• NODE-LIST: G F E C

• The solution path A-B-D-C-G is returned and the algorithm terminates.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Depth-First Search - Example

• Depth-first search
 Expand one of the nodes
 at the deepest level.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Search Strategies

Advantages of Depth-First Search

• Depth-first search requires less memory since only the nodes on the current

path are stored. This contrasts with breadth-first search, where all of the tree

that has so far been generated must be stored.

• Depth-first search may find a solution without examining much of the search

space at all. This contrasts with breadth-first search in which all parts of the

tree must be examined to level n before any nodes on level n + i can be

examined. This is particularly significant if many acceptable solutions exist.

Depth-first search can stop when one of them is found.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Problem Characteristics

To choose an appropriate method for a particular problem:

• Is the problem decomposable?

• Can solution steps be ignored or undone?

• Is the universe predictable?

• Is a good solution absolute or relative?

• Is the solution a state or a path?

• What is the role of knowledge?

• Does the task require human-interaction?
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Is the problem decomposable?

• Can the problem be broken down to smaller problems to be solved

independently?

• Decomposable problem can be solved easily.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Can solution steps be ignored or undone?

Theorem Proving

A lemma that has been proved can be ignored for next steps.

Ignorable!

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Can solution steps be ignored or undone?

The 8-Puzzle

Moves can be undone and backtracked.

Recoverable!

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Can solution steps be ignored or undone?

Playing Chess

Moves cannot be retracted.

Irrecoverable!

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Can solution steps be ignored or undone?

• Ignorable problems can be solved using a simple control structure

that never backtracks.

• Recoverable problems can be solved using backtracking.

• Irrecoverable problems can be solved by recoverable style methods

via planning.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Is the universe predictable?

Playing Bridge

• We cannot know exactly where all the cards are or what the other

players will do on their turns.

Uncertain outcome!

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Is the universe predictable?

• For certain-outcome problems, planning can used to generate a

sequence of operators that is guaranteed to lead to a solution.

• For uncertain-outcome problems, a sequence of generated

operators can only have a good probability of leading to a solution.

Plan revision is made as the plan is carried out and the necessary

feedback is provided.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Is a good solution absolute or relative?

1. Marcus was a man.

2. Marcus was a Pompeian.

3. Marcus was born in 40 A.D.

4. All men are mortal.

5. All Pompeians died when the volcano erupted in 79 A.D.

6. No mortal lives longer than 150 years.

7. It is now 2016 A.D.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

Is Marcus alive? CSE, HIT, Nidasoshi

Is a good solution absolute or relative?

1. Marcus was a man. axiom 1

4. All men are mortal. axiom 4

8. Marcus is mortal. 1, 4

3. Marcus was born in 40 A.D. axiom 3

7. It is now 1991 A.D. axiom 7

9. Marcus' age is 1951 years. 3, 7

6. No mortal lives longer than 150 years. axiom 6

10. Marcus is dead.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

OR

7. It is now 1991 A.D. axiom 7

5. All Pompeians died in 79 A.D. axiom 5

11. All Pompeians are dead now. 5, 7

2. Marcus was a Pompeian. axiom 2

12. Marcus is dead.

CSE, HIT, Nidasoshi

Is a good solution absolute or relative?

• The Travelling Salesman Problem

• We have to try all paths to find the shortest one.

• Any-path problems can be solved using heuristics that suggest good paths to

explore.

• For best-path problems, much more exhaustive search will be performed.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Is the solution a state or a path?

Finding a consistent interpretation for

“The bank president ate a dish of pasta salad with the fork”.

– “bank” refers to a financial situation or to a side of a river?

– “dish” or “pasta salad” was eaten?

– Does “pasta salad” contain pasta, as “dog food” does not contain “dog”?

– Which part of the sentence does “with the fork” modify?

 What if “with vegetables” is there?

No record of the processing is necessary.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Is the solution a state or a path?

• The Water Jug Problem

• The path that leads to the goal must be reported.

• A path-solution problem can be reformulated as a state-solution

problem by describing a state as a partial path to a solution.

• The question is whether that is natural or not.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

What is the role of knowledge

Playing Chess

• Consider again the problem of playing chess. Suppose you had unlimited computing power

available.

• How much knowledge would be required by a perfect program? The answer to this

question is very little—just the rules for determining legal moves and some simple control

mechanism that implements an appropriate search procedure.

• Additional knowledge about such things as good strategy and tactics could of course help

considerably to constrain the search and speed up the execution of the program.

• Knowledge is important only to constrain the search for a solution.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

What is the role of knowledge

Reading Newspaper
• Now consider the problem of scanning daily newspapers to decide which are supporting

the Democrats and which are supporting the Republicans in some upcoming election.
• Again assuming unlimited computing power, how much knowledge would be required by a

computer trying to solve this problem? This time the answer is a great deal.
• It would have to know such things as:

– The names of the candidates in each party.
– The fact that if the major thing you want to see done is have taxes lowered, you are

probably supporting the Republicans.
– The fact that if the major thing you want to see done is improved education for minority

students, you are probably supporting the Democrats.
– The fact that if you are opposed to big government, you are probably supporting the

Republicans.
– And so on ...

• Knowledge is required even to be able to recognize a solution.
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Does the task require human-interaction?

• Sometimes it is useful to program computers to solve problems in ways

that the majority of people would not be able to understand.

• This is fine if the level of the interaction between the computer and its

human users is problem-in solution-out.

• But increasingly we are building programs that require intermediate

interaction with people, both to provide additional input to the

program and to provide additional reassurance to the user.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Does the task require human-interaction?

• Solitary problem, in which there is no intermediate communication

and no demand for an explanation of the reasoning process.

• Conversational problem, in which intermediate communication is to

provide either additional assistance to the computer or additional

information to the user.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Problem Classification

• There is a variety of problem-solving methods, but there is no one

single way of solving all problems.

• Not all new problems should be considered as totally new. Solutions of

similar problems can be exploited.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Production system

• We have just examined a set of characteristics that distinguish various

classes of problems

• It has also been shown that production systems are a good way to

describe the operations that can be performed in a search for good

solution

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Classes / Categories of Production systems

Monotonic Production System: the application of a rule never prevents the later

application of another rule that could also have been applied at the time the first

rule was selected

Non-Monotonic Production system: is one in which this is not true

Partially commutative Production system: property that if application of a

particular sequence of rules transforms state x to state y, then permutation of

those rules allowable, also transforms state x into state y.

Commutative Production system: both monotonic and Partially commutative

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Relationship between classes of systems

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

Monotonic Non-Monotonic

Partially
Commutative

Theorem Proving Robot Navigation

Not Partially
commutative

Chemical Systhesis Bridge

CSE, HIT, Nidasoshi

Partially Commutative and Monotonic

• These production systems are useful for solving ignorable problems.

• Example: Theorem Proving

• They can be implemented without the ability to backtrack to previous states

when it is discovered that an incorrect path has been followed.

• This often results in a considerable increase in efficiency, particularly because

since the database will never have to be restored, It is not necessary to keep track

of where in the search process every change was made.

• They are good for problems where things do not change; new things get created.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Partially Commutative and Non-Monotonic

• Useful for problems in which changes occur but can be reversed and

in which order of operations is not critical.

• Example: Robot Navigation, 8-puzzle, blocks world

• Suppose the robot has the following ops: go North (N), go East (E),

go South (S), go West (W).

• To reach its goal, it does not matter whether the robot executes the

N-N-E or N-E-N.
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Not Partially Commutative

• Problems in which irreversible change occurs

• Example: chemical synthesis

• The ops can be :Add chemical x to the pot, Change the temperature to t

degrees.

• These ops may cause irreversible changes to the potion being brewed.

• The order in which they are performed can be very important in determining

the final output.

• (X+y) +z is not the same as (z+y) +x
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Issues in the design of search programs

• The direction in which to conduct the search (forward versus backward reasoning). We

can search forward through the state space from the start state to a goal state, or we can

search backward from the goal.

• How to select applicable rules (matching). Production systems typically spend most of their

time looking for rules to apply, so it is critical to have efficient procedures for matching

rules against states.

• How to represent each node of the search process (the knowledge representation

problem and the frame problem).

– For problems like chess, a node can be fully represented by a simple array.

– In more complex problem solving, however, it is inefficient and/or impossible to

represent all of the facts in the world and to determine all of the side effects an action

may have. Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Search Algorithms / Techniques

• Uninformed search algorithms or Brute-force algorithms, search

through the search space all possible candidates for the solution

checking whether each candidate satisfies the problem’s statement.

• Informed search algorithms use heuristic functions that are specific

to the problem, apply them to guide the search through the search

space to try to reduce the amount of time spent in searching.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Search Algorithms / Techniques

• A good heuristic will make an informed search dramatically outperform any

uninformed search: for example, the Traveling Salesman Problem (TSP), where

the goal is to find is a good solution instead of finding the best solution.

• In such problems, the search proceeds using current information about the

problem to predict which path is closer to the goal and follow it, although it does

not always guarantee to find the best possible solution.

• Such techniques help in finding a solution within reasonable time and space

(memory).

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Requirement of Search Algorithms / Techniques

• The first requirement is that it causes motion, in a game playing program, it moves on the

board and in the water jug problem, filling water is used to fill jugs. It means the control

strategies without the motion will never lead to the solution.

• The second requirement is that it is systematic, that is, it corresponds to the need for

global motion as well as for local motion. This is a clear condition that neither would it be

rational to fill a jug and empty it repeatedly, nor it would be worthwhile to move a piece

round and round on the board in a cyclic way in a game. We shall initially consider two

systematic approaches for searching. Searches can be classified by the order in which

operators are tried: depth-first, breadth-first, bounded depth-first.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Informed search Algorithms / Techniques

• Many Informed search Algorithms techniques are developed, using

heuristic functions.

• The algorithms that use heuristic functions are called heuristic

algorithms.

• Heuristic algorithms are not really intelligent; they appear to be

intelligent because they achieve better performance.

• Heuristic algorithms are more efficient because they take advantage of

feedback from the data to direct the search path.
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristics Search
• To find a solution in proper time rather than a complete solution in unlimited time we use

heuristics. ‘A heuristic function is a function that maps from problem state descriptions to
measures of desirability, usually represented as numbers’. Heuristic search methods use
knowledge about the problem domain and choose promising operators first. These
heuristic

• search methods use heuristic functions to evaluate the next state towards the goal state.
For finding a solution, by using the heuristic technique, one should carry out the following
steps:

1. Add domain—specific information to select what is the best path to continue searching
along.

2. Define a heuristic function h(n) that estimates the ‘goodness’ of a node n. Specifically, h(n) =
estimated cost(or distance) of minimal cost path from n to a goal state.

3. The term, heuristic means ‘serving to aid discovery’ and is an estimate, based on domain
specific information that is computable from the current state description of how close we
are to a goal.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristics Search

• Finding a route from one city to another city is an example of a search problem in

which different search orders and the use of heuristic knowledge are easily

understood.

1. State: The current city in which the traveller is located.

2. Operators: Roads linking the current city to other cities.

3. Cost Metric: The cost of taking a given road between cities.

4. Heuristic information: The search could be guided by the direction of the

goal city from the current city, or we could use airline distance as an estimate

of the distance to the goal.
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic search techniques

• For complex problems, the traditional algorithms, presented above, are unable to

find the solution within some practical time and space limits. Consequently, many

special techniques are developed, using heuristic functions.

– Blind search is not always possible, because it requires too much time or Space

(memory).

– Heuristics are rules of thumb; they do not guarantee a solution to a problem.

– Heuristic Search is a weak technique but can be effective if applied correctly; it

requires domain specific information.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Characteristics of heuristic search

• Heuristics are knowledge about domain, which help search and reasoning in its domain.

• Heuristic search incorporates domain knowledge to improve efficiency over blind search.

• Heuristic is a function that, when applied to a state, returns value as estimated merit of

state, with respect to goal.

– Heuristics might (for reasons) underestimate or overestimate the merit of a state with

respect to goal.

– Heuristics that underestimate are desirable and called admissible.

• Heuristic evaluation function estimates likelihood of given state leading to goal state.

• Heuristic search function estimates cost from current state to goal, presuming function is

efficient. Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic search compared with other search

• The Heuristic search is compared with Brute force or Blind search techniques below:

• Comparison of Algorithms

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

Brute force / Blind search Heuristic search

Can only search what it has knowledge
about already

Estimates ‘distance’ to goal state
through explored nodes

No knowledge about how far a node
node from goal state

Guides search process toward goal

Prefers states (nodes) that lead close to
and not away from goal State

CSE, HIT, Nidasoshi

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - GENERATE-AND-TEST

• The generate-and-test strategy is the simplest of all the approaches. It consists of

the following steps:

• Algorithm: Generate-and-Test

1. Generate a possible solution. For some problems. this means generating a

particular point in the problem space. For others, it means generating a path

from a start state.

2. Test to see if this is actually a solution by comparing the chosen point or the

endpoint of the chosen path to the set of acceptable goal states.

3. If a solution has been found, quit. Otherwise, return to step 1
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - GENERATE-AND-TEST

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - GENERATE-AND-TEST

• Generate-and-test, like depth-first search, requires that complete

solutions be generated for testing.

• In its most systematic form, it is only an exhaustive search of the problem

space.

• Solutions can also be generated randomly but solution is not guaranteed.

• This approach is what is known as British Museum algorithm: finding an

object in the British Museum by wandering randomly.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - GENERATE-AND-TEST

Systematic Generate-And-Test

• While generating complete solutions and generating random solutions are the two

extremes there exists another approach that lies in between. The approach is that the

search process proceeds systematically but some paths that unlikely to lead the solution

are not considered. This evaluation is performed by a heuristic function.

• Depth-first search tree with backtracking can be used to implement systematic generate-

and-test procedure. As per this procedure, if some intermediate states are likely to appear

often in the tree, it would be better to modify that procedure to traverse a graph rather

than a tree.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - GENERATE-AND-TEST
Generate-And-Test And Planning

• Exhaustive generate-and-test is very useful for simple problems. But for complex problems even

heuristic generate-and-test is not very effective technique. But this may be made effective by

combining with other techniques in such a way that the space in which to search is restricted. An AI

program DENDRAL, for example, uses plan-Generate-and-test technique. First, the planning process

uses constraint-satisfaction techniques and creates lists of recommended and contraindicated

substructures. Then the generate-and-test procedure uses the lists generated and required to explore

only a limited set of structures. Constrained in this way, generate-and-test proved highly effective. A

major weakness of planning is that it often produces inaccurate solutions as there is no feedback from

the world. But if it is used to produce only pieces of solutions then lack of detailed accuracy becomes

unimportant.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - GENERATE-AND-TEST

Example - Traveling Salesman Problem (TSP)

A salesman has a list of cities, each of which he must visit exactly once. There are

direct roads between each pair of cities on the list. Find the route the salesman

should follow for the shortest possible round trip that both starts and finishes at any

one of the cities.

• Traveler needs to visit n cities.

• Know the distance between each pair of cities.

• Want to know the shortest route that visits all the cities once.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - GENERATE-AND-TEST

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - GENERATE-AND-TEST

Search for Path Length of Path

1 ABCD 19

2 ABDC 18

3 ACBD 12

4 ACDB 13

5 ADBC 16

Dst…..

 Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

Search flow with Generate and Test

CSE, HIT, Nidasoshi

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - Simplest Hill Climbing

• In hill climbing the basic idea is to always head towards a state which is better

than the current one.

• So, if you are at town A and you can get to town B and town C (and your target is

town D) then you should make a move IF town B or C appear nearer to town D

than town A does.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - Simplest Hill Climbing
1. Evaluate the initial state. If it is also goal state then return it, otherwise continue with

the initial state as the current state.

2. Loop until the solution is found or until there are no new operators to be applied in the

current state

a) Select an operator that has not yet been applied to the current state and apply it to

produce new state

b) Evaluate the new state

i. If it is a goal state then return it and quit

ii. If it is not a goal state but it is better than the current state, then make it as

current state

iii. If it is not better than the current state, then continue in loop.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - Simplest Hill Climbing
• To understand the concept easily, we will take up a very simple example

• Key point while solving any hill-climbing problem is to choose an appropriate heuristic
function.

• Let's define such function h:

• h(x) = +1 for all the blocks in the support structure if the block is correctly positioned
otherwise -1 for all the blocks in the support structure.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - Simplest Hill Climbing

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - Steepest-Ascent Hill Climbing

• A variation on simple hill climbing.

• Instead of moving to the first state that is better, move to

the best possible state that is one move away.

• The order of operators does not matter.

• Not just climbing to a better state, climbing up the

steepest slope.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - Steepest-Ascent Hill Climbing

• Considers all the moves from the current state.

• Selects the best one as the next state.

• Basic hill climbing first applies one operator n gets new state. If it is
better that becomes current state whereas steepest climbing tests
all possible solutions n chooses best

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - Steepest-Ascent Hill Climbing
Algorithm

1. Evaluate the initial state. If it is also a goal state then return it and quit. Otherwise

continue with the initial state as the current state.

2. Loop until a solution is found or until a complete iteration produces no change to current

state:

a) Let SUCC be a state such that any possible successor of the current state will be better

than SUCC.

b) For each operator that applies to the current state do:

i. Apply the operator and generate a new state.

ii. Evaluate the new state. If it is a goal state, then return it and quit. If not compare it

to SUCC. If it is better, then set SUCC to this state. If it is not better, leave SUCC

alone.

c) IF the SUCC is better than current state, then set current state to SUCC. Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Hill-climbing

 This simple policy has three well-known drawbacks:

1. Local Maxima: a local maximum as opposed to
global maximum.

2. Plateaus: An area of the search space where
evaluation function is flat, thus requiring random
walk.

3. Ridge: Where there are steep slopes and the
search direction is not towards the top but towards
the side.

(a)

(b)

(c)

161

CSE, HIT, Nidasoshi

Hill-climbing

• In each of the previous cases (local maxima, plateaus & ridge), the
algorithm reaches a point at which no progress is being made.

• A solution is to do a random-restart hill-climbing - where random
initial states are generated, running each until it halts or makes no
discernible progress. The best result is then chosen.

162

CSE, HIT, Nidasoshi

163

Hill Climbing: Disadvantages

• Hill climbing is a local method:
 Decides what to do next by looking only at the “immediate”

consequences of its choices.

• Will terminate when at local optimum.

• The order of application of operators can make a big difference.

• Global information might be encoded in heuristic functions.

CSE, HIT, Nidasoshi

164

Hill Climbing: Disadvantages

B

C

D

A

B

C

Start Goal

Blocks World

A D

Local heuristic:

+1 for each block that is resting on the thing it is supposed to

be resting on.

-1 for each block that is resting on a wrong thing.

0 4

CSE, HIT, Nidasoshi

165

Hill Climbing: Disadvantages

B

C

D

B

C

D

A

A 0 2

CSE, HIT, Nidasoshi

166

Hill Climbing: Disadvantages

B

C

D

A

B

C D

A B

C

D A

0
0

0

B

C

D

A

2

CSE, HIT, Nidasoshi

167

Hill Climbing: Disadvantages

B

C

D

A

B

C

Start Goal

Blocks World

A D

Global heuristic:

For each block that has the correct support structure: +1 to

 every block in the support structure.

For each block that has a wrong support structure: -1 to

 every block in the support structure.

-6 6

CSE, HIT, Nidasoshi

168

Hill Climbing: Disadvantages

B

C

D

A

B

C D

A B

C

D A

-6
-2

-1

B

C

D

A

-3

There is no local maximum!
Moral: sometimes changing the heuristic
function is all we need

CSE, HIT, Nidasoshi

169

Hill Climbing: Conclusion

• Can be very inefficient in a large, rough problem space.

• Global heuristic may have to pay for computational complexity.

• Often useful when combined with other methods, getting it

started right in the right general neighbourhood.

CSE, HIT, Nidasoshi

173

Simulated Annealing

• A variation of hill climbing in which, at the beginning of the
process, some downhill moves may be made.

• Idea is to do enough exploration of the whole space early on, so

that the final solution is relatively insensitive to the starting state.

• Lowering the chances of getting caught at a local maximum, or
plateau, or a ridge.

CSE, HIT, Nidasoshi

174

Simulated Annealing

• Hill climbing with a twist:

– allow some moves downhill (to worse states)

– start out allowing large downhill moves (to much worse states)
and gradually allow only small downhill moves.

Based on physical process of annealing a metal to get the
best (minimal energy) state.

CSE, HIT, Nidasoshi

175

Simulated Annealing

Physical Annealing

• Physical substances are melted and then gradually cooled until
some solid state is reached.

• The goal is to produce a minimal-energy final state.

• This process is one of valley descending where the objective
function is the energy level

CSE, HIT, Nidasoshi

176

Simulated Annealing

• The rate at which the system is cooled is called annealing schedule

• Annealing schedule: if the temperature is lowered sufficiently slowly,
then the goal will be attained(global minimum).

• If cooled rapidly local minimum but not global minimum is reached

• If too slow time is wasted

• Nevertheless, there is some probability for a transition to a higher
energy state: e-E/T.

CSE, HIT, Nidasoshi

177

Simulated Annealing

• The search initially jumps around a lot, exploring many regions of
the state space.

• The jumping is gradually reduced and the search becomes a
simple hill climb (search for local optimum).

• The simulated annealing process lowers the temperature by slow
stages until the system ``freezes" and no further changes occur.

CSE, HIT, Nidasoshi

178

Simulated Annealing
Algorithm
1. Evaluate the initial state. If it is goal state then return

2. Initialize BEST-SO-FAR to the current state

3. Set T according to an annealing schedule

4. Loop until a solution is found or there are no new operators left to be
applied:

 - Selects and applies a new operator
 - Evaluate the new state:
 goal  quit

 compute E = Val(current state) - Val(new state)

 E < 0  new current state-if is is not goal state but better than the current
state then make it current. Set this state as BEST-SO-FAR

CSE, HIT, Nidasoshi

179

Simulated Annealing
Algorithm
 else  If it is not better than the current state make it the

 current state with probability p=e-E/T.

 Randomly generate number between [0 1], if

 p>number generated, move is accepted else do

 nothing

 - Revise T as necessary according to annealing schedule

5. Return BEST-SO-FAR as answer

CSE, HIT, Nidasoshi

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - Best-First Search

• Combines the advantages of both DFS and BFS into a single method.

• DFS is good because it allows a solution to be found without all

competing branches having to be expanded.

• BFS is good because it does not get branches on dead end paths.

• One way of combining the two is to follow a single path at a time,

but switch paths whenever some competing path looks more

promising than the current one does.
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - Best-First Search

• At each step of the BFS search process, we select the most

promising of the nodes we have generated so far.

• This is done by applying an appropriate heuristic function to each of

them.

• We then expand the chosen node by using the rules to generate its

successors

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - Best-First Search

• It proceeds in steps, expanding one node at each step, until it generates a node

that corresponds to a goal state.

• At each step, it picks the most promising of the nodes that have so far been

generated but not expanded.

• It generates the successors of the chosen node, applies the heuristic function to

them, and adds them to the list of open nodes, after checking to see if any of

them have been generated before.

• By doing this check, we can guarantee that each node only appears once in the

graph, although many nodes may point to it as a successor.
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - Best-First Search

• To implement such a graph-search procedure, we will need to use two lists of

nodes:

– OPEN — nodes that have been generated and have had the heuristic function

applied to them but which have not yet been examined (i.e., had their

successors generated).

– CLOSED — nodes that have already been examined. We need to keep these

nodes in memory if we want to search a graph rather than a tree, since

whenever a new node is generated, we need to check whether it has been

generated before.
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - Best-First Search

• We will also need a heuristic function that estimates the merits of each

node we generate. This will enable the algorithm to search more

promising paths first.

• Call this function f’.

• For many applications, it is convenient to define this function as the sum

of two components that we call g and h'.

• The function g is a measure of the cost of getting from the initial state to

the current node.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - Best-First Search

• Note that g is not an estimate of anything; it is known to be the exact sum of the

costs of applying each of the rules that were applied along the best path to the

node.

• The combined function then represents an estimate of the cost of getting from

the initial state to a goal state along the path that generated the current node.

• If more than one path generated the node, then the algorithm will record the

best one.

• Note that because g and h' must be added, it is important that h'

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - Best-First Search
Algorithm: Best-First Search

1. Start with OPEN containing just the initial state.

2. Until a goal is found or there are no nodes left on OPEN do:

a) Pick them best node on OPEN.

b) Generate its successors.

c) For each successor do:

i. if it has not been generated before, evaluate it, add it to OPEN, and record its

parent.

ii. If it has been generated before, change the parent if this new path is better than

the previous one. In that case, update the cost of getting to this node and to any

successors that this node may already have.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches - Best-First Search

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Heuristic Searches – A* Search
1. Start with OPEN containing only the initial node. Set that node's g value to 0, its h' value to

whatever it is, and its f' value to h’ + 0, or h'. Set CLOSED to the empty list.

2. Until a goal node is found, repeat the following procedure: If there are no nodes on OPEN.

report failure. Otherwise, pick the node on OPEN with the lowest f' value. Call it BESTNODE.

Remove it from OPEN. Place it on CLOSED. See if BESTNODE is a goal node. If so, exit and

report a solution. Otherwise, generate the successors of BESTNODE but do not set BESTNODE

to point to them yet. For each such SUCCESSOR, do the following:

a) Set SUCCESSOR to point back to BESTNODE. These backwards links will make it possible to

recover the path once a solution is found.

b) Compute g(SUCCESSOR) = g(BESTNODE) + the cost of getting from BESTNODE to

SUCCESSOR.

c) if SUCCESSOR was not already on either OPEN or CLOSED, then put it on OPEN, and add it

to the list of BESTNODE's successors. Compute f’(SUCCESSOR) = g(SUCCESSOR) +

h’(SUCCESSOR)
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

A* Algorithm Solved Example

A simple search problem: S is the start node, G is the goal node, the
real distances are shown.

A lower-bound estimate of the distance to G could be as follows (note
that we do not need it for F):

A B C

D E F

G
S

2

3

4

4 4

4
5 5

3.5

A B C

D E F

G
S

5.8
3.4

9.2
11.5

10.1

7.1
3.5

CSE, HIT, Nidasoshi

A* Algorithm

A*, step 1

S

A D

3+10.1 4+9.2

CSE, HIT, Nidasoshi

A* Algorithm

A*, step 2

S

A D

B D

13.1 13.2

3+4+5.8 3+5+9.2

CSE, HIT, Nidasoshi

A* Algorithm

A*, step 3

S

A D

B

C

D

E

13.1 13.2

12.8 17.2

3+4+4+3.4 3+4+5+7.1 CSE, HIT, Nidasoshi

A* Algorithm

A*, step 4

S

A D

B

C E

D A

E

13.1 13.2

12.8 17.2 4+5+10.1

14.4 19.1 4+2+7.1 CSE, HIT, Nidasoshi

A* Algorithm

A*, step 5

S

A D

B

C E

F

D A

E

B

13.1 13.2

12.8 17.2 19.1

14.4 19.1 13.1

4+2+5+5.8 4+2+4+3.5

CSE, HIT, Nidasoshi

A* Algorithm

A*, step 6

S

A D

B

C E

F

G

D A

E

B

13.1 13.2

12.8 17.2 19.1

14.4 19.1 13.1

16.8 13.5

CSE, HIT, Nidasoshi

Example

CSE, HIT, Nidasoshi

Example

CSE, HIT, Nidasoshi

Example

CSE, HIT, Nidasoshi

Example

CSE, HIT, Nidasoshi

Example

CSE, HIT, Nidasoshi

Example

CSE, HIT, Nidasoshi

Example

CSE, HIT, Nidasoshi

Example

CSE, HIT, Nidasoshi

Problem Reduction

• Sometimes problems only seem hard to solve.

• A hard problem may be one that can be reduced to a number of

simple problems and, when each of the simple problems is solved,

then the hard problem has been solved.

• This is the basic intuition behind the method of problem reduction.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Problem Reduction

• If we are looking for a sequence of actions to achieve some goal,

then one way to do it is to use state-space search, where each node

in your search space is a state of the world, and you are searching

for a sequence of actions that get you from an initial state to a final

state.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Problem Reduction

• Another way is to consider the different ways that the goal state can

be decomposed into simpler subgoals.

• For example, when planning a trip to Bangalore you probably don't

want to search through all the possible sequences of actions that

might get you to Bangalore .

• You're more likely to decompose the problem into simpler ones -

such as getting to the station, then getting a train to Bangalore .

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Problem Reduction

• There may be more than one possible way of decomposing the

problem - an alternative strategy might be to get to the airport, fly

to Mysore, and get the train from Mysore into Bangalore.

• These different possible plans would have different costs (and

benefits) associated with them, and you might have to choose the

best plan.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Problem Reduction

• The simple state-space search techniques could be represented

using a tree where each successor node represents an alternative

action to be taken.

• The graph structure being searched is referred to as an OR graph.

• In OR graph we want to find a single path to a goal.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Problem Reduction

• This is due to the fact that we will know how to get to from a node

to a goal state if we can discover how to get from that node to a

goal state along any one of the branches leaving it.

• To represent problem reduction techniques we need to use an AND-

OR graph/tree.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Problem Reduction
• Breaking a problem down into smaller sub-problems (or sub-goals).

• Can be represented using goal trees (or and-or trees).

• Nodes in the tree represent sub-problems.

• The root node represents the overall problem.

• Some nodes are and nodes, meaning all their children must be solved.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Problem Reduction
• Algorithm AO* (Martelli & Montanari 1973, Nilsson 1980)

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

Goal: Acquire TV set

AND-OR Graphs

Goal: Steal TV set Goal: Earn some money Goal: Buy TV set

CSE, HIT, Nidasoshi

Problem Reduction

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

A

D C B

4 3 5

A

5

6

F E

4 4

A

D C B

4 3

10

9

9

9

F E

4 4

A

D C B

4

6 10

11

12

H G

7 5

CSE, HIT, Nidasoshi

Problem Reduction

• In a problem reduction space, the nodes represent problems to be

solved or goals to be achieved, and the edges represent the

decomposition of the problem into subproblems.

• This is best illustrated by the example of the Towers of Hanoi problem.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

C A B A C B

CSE, HIT, Nidasoshi

2AB

3AC

1AC 2BC

1AC 1AB 1CB 1BA 1BC 1AC

Problem Reduction Space
• The root node, labeled “3AC” represents the original problem of

transferring all 3 disks from peg A to peg C.

• The goal can be decomposed into three subgoals: 2AB, 1AC, 2BC.
In order to achieve the goal, all 3 subgoals must be achieved. CSE, HIT, Nidasoshi

Problem Reduction Space

3AC

C A B CSE, HIT, Nidasoshi

Problem Reduction Space

3AC

2AB

1AC

C A B CSE, HIT, Nidasoshi

Problem Reduction Space

3AC

2AB

1AC 1AB

C A B CSE, HIT, Nidasoshi

Problem Reduction Space

C A B

3AC

2AB

1AC 1AB 1CB

CSE, HIT, Nidasoshi

Problem Reduction Space

C A B

3AC

2AB

1AC 1AB 1CB

1AC

CSE, HIT, Nidasoshi

Problem Reduction Space

3AC

2AB

1AC 1AB 1CB

1AC 2BC

1BA

C A B CSE, HIT, Nidasoshi

Problem Reduction Space

3AC

2AB

1AC 1AB 1CB

1AC 2BC

1BA 1BC

C A B CSE, HIT, Nidasoshi

Problem Reduction Space

C A B

3AC

2AB

1AC 1AB 1CB

1AC 2BC

1BA 1BC 1AC

CSE, HIT, Nidasoshi

Problem Reduction or AO* Algorithm
1. Initialize the graph to the starting node.

2. Loop until the starting node is labeled SOLVED or until its cost goes above FUTILITY:

1. Traverse the graph, starting at the initial node following the current best path and accumulate the

set of nodes that are on that path and have not yet been expanded or labeled solved.

2. Pick up one of those unexpanded nodes and expand it. If there are no successors, assign FUTILITY

as the value of this node. Otherwise add the successors to the graph and each of this compute f’

(use only h’ and ignore g).

3. If f’ of any node is “0”, mark the node as SOLVED. Change the value of f' for the newly created

node to reflect its successors by back propagation. Wherever possible use the most promising

routes and if a node is marked as SOLVED then mark the parent node as SOLVED.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Problem Reduction

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

A

D C B

4 3 5

A

5

6

F E

4 4

A

D C B

4 3

10

9

9

9

F E

4 4

A

D C B

4

6 10

11

12

H G

7 5

CSE, HIT, Nidasoshi

AO* (Elaborated) Algorithm
1. Let GRAPH consist only of the node representing the initial state. (Call this node min:)

Compute h'(INIT)

2. Until INIT is labeled SOLVED or until INIT's h' value becomes greater than FUTILITY.
repeat the following procedure:

a) Trace the labeled arcs from INIT and select for expansion one of the as yet
unexpanded nodes that occurs on this path. Call the selected node NODE.

b) Generate the successors of NODE. If there arc none, then assign FUTILITY as the h'
value of NODE. This is equivalent to saying that NODE is not solvable. If there are
successors, then for each one (called SUCCESSOR) that is not also an ancestor of
NODE do the following:

i. Add SUCCESSOR to GRAPH.

ii. If SUCCESSOR is a terminal node, label it SOLVED and assign it an It' value of
0.

iii. If SUCCESSOR is not a terminal node, compute its h' value.
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

AO* (Elaborated) Algorithm
c) Propagate the newly discovered information up the graph by doing the following: Let S be a set of

nodes that have been labeled SOLVED or whose h' values have been changed and so need to have
values propagated back to their parents. Initialize 5 to NODE. Until S is empty, repeat the,
following procedure:

i. If possible, select from S a node none of whose descendants in GRAPH occurs in S. If there is
no such node, select any node from S. Call this node CURRENT. and remove it from S.

ii. Compute the cost of each of the arcs emerging from CURRENT: The cost of each arc is equal
to the sum of the h' values of each of the nodes at the end of the arc plus whatever the cost
of the arc itself is. Assign as CURRENT'S new le value the minimum of the costs just computed
for the arcs emerging from it.

iii. Mark the best path out of CURRENT by marking the arc that had the minimum cost as
computed in the previous step.

iv. Mark CURRENT SOLVED if all of the nodes connected to it through the new labeled arc have
been labeled SOLVED.

v. If CURRENT has been labeled SOLVED or if the cost of CURRENT was just changed, then its
new status must be propagated back up the graph. So add all of the ancestors of CURRENT to
S. Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Constraint Satisfaction
• Many AI problems can be viewed as problems of constraint

satisfaction.

 Cryptarithmetic puzzle:

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

 SEND

 MORE

 MONEY


CSE, HIT, Nidasoshi

Constraint Satisfaction

• As compared with a straightforward search procedure, viewing a

problem as one of constraint satisfaction can reduce substantially the

amount of search.

• Operates in a space of constraint sets.

• Initial state contains the original constraints given in the problem.

• A goal state is any state that has been constrained “enough”.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Constraint Satisfaction
Two-step process:

1. Constraints are discovered and propagated as far as possible.

2. If there is still not a solution, then search begins, adding new
constraints.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Constraint Satisfaction

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Constraint Satisfaction

1) M = 1, because M =/= 0 and …

• the carry over of the addition of two

• digits (plus previous carry) is at most 1.

2) O = 0. Because M=1 and we have to have a carry to the next column.

S + 1 + C3 is either 10 or 11. So, O equals 0 or 1. 1 is taken. So, O = 0.

3) S = 9. There cannot be a carry to the 4th column (if there were, N

would also have to be 0 or 1. Already taken.). So, S = 9.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Constraint Satisfaction

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Constraint Satisfaction
Two kinds of rules:

1. Rules that define valid constraint propagation.

2. Rules that suggest guesses when necessary.

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE

CSE, HIT, Nidasoshi

Constraint Satisfaction Algorithm
1. Propagate available constraints. To do this, first set OPEN to the set of all objects that must have

values assigned to them in a complete solution. Then do until an inconsistency is detected or until
OPEN is empty:

a) Select an object OB from OPEN. Strengthen as much as possible the set of constraints that
apply to OB.

b) If this set is different from the set that was assigned the last time OB was examined or if this
is the first time OB has been examined, then add to OPEN all objects that share any
constraints with OB.

c) Remove OB from OPEN.
2. If the union of the constraints discovered above defines a solution, then quit and report the

solution.
3. If the union of the constraints discovered above defines a contradiction, then return failure.
4. If neither of the above occurs, then it is necessary to make a guess at something in order to

proceed. To do this, loop until a solution is found or all possible solutions have been eliminated:
a) Select an object whose value is not yet determined and select a way of strengthening the

constraints on that object.
b) Recursively invoke constraint satisfaction with the current set of constraints augmented by

the strengthening constraint just selected.

CSE, HIT, Nidasoshi

302

Constraint Satisfaction

Two kinds of rules:

1. Rules that define valid constraint propagation.

2. Rules that suggest guesses when necessary.

CSE, HIT, Nidasoshi

303

Means-Ends Analysis

• We have studied the strategies which can reason either in forward or backward, but a mixture of the

two directions is appropriate for solving a complex and large problem. Such a mixed strategy, make it

possible that first to solve the major part of a problem and then go back and solve the small problems

arise during combining the big parts of the problem. Such a technique is called Means-Ends Analysis.

• It is a mixture of Backward and forward search technique.

• The MEA technique was first introduced in 1961 by Allen Newell, and Herbert A. Simon in their

problem-solving computer program, which was named as General Problem Solver (GPS).

• The MEA analysis process centered on the evaluation of the difference between the current state and

goal state.

CSE, HIT, Nidasoshi

304

Means-Ends Analysis

How means-ends analysis Works:

• The means-ends analysis process can be applied recursively for a problem. It is a

strategy to control search in problem-solving.

• Following are the main Steps which describes the working of MEA technique for

solving a problem.

1) First, evaluate the difference between Initial State and final State.

2) Select the various operators which can be applied for each difference.

3) Apply the operator at each difference, which reduces the difference between

the current state and goal state.

CSE, HIT, Nidasoshi

305

Means-Ends Analysis

Operator Subgoaling

• In the MEA process, we detect the differences between the current state and goal state.

• Once these differences occur, then we can apply an operator to reduce the differences.

• But sometimes it is possible that an operator cannot be applied to the current state.

• So we create the subproblem of the current state, in which operator can be applied,

such type of backward chaining in which operators are selected, and then sub goals are

set up to establish the preconditions of the operator is called Operator Subgoaling.

CSE, HIT, Nidasoshi

306

Means-Ends Analysis Algorithm
Let's we take Current state as CURRENT and Goal State as GOAL, then following are the steps
for the MEA algorithm.

• Step 1: Compare CURRENT to GOAL, if there are no differences between both then return
Success and Exit.

• Step 2: Else, select the most significant difference and reduce it by doing the following steps
until the success or failure occurs.

a) Select a new operator O which is applicable for the current difference, and if there is no such
operator, then signal failure.

b) Attempt to apply operator O to CURRENT. Make a description of two states.
i) O-Start, a state in which O?s preconditions are satisfied.
ii) O-Result, the state that would result if O were applied In O-start.

c) If
(First-Part <------ MEA (CURRENT, O-START)
And
(LAST-Part <----- MEA (O-Result, GOAL), are successful, then signal Success and return the result of
combining FIRST-PART, O, and LAST-PART.

CSE, HIT, Nidasoshi

307

Means-Ends Analysis - Example

• Let's take an example where we know the initial state and goal state as given

below.

• In this problem, we need to get the goal state by finding differences between the

initial state and goal state and applying operators. CSE, HIT, Nidasoshi

308

Means-Ends Analysis - Example

• To solve the above problem, we will first find the differences between

initial states and goal states, and for each difference, we will generate

a new state and will apply the operators.

• The operators we have for this problem are:

– Move

– Delete

– Expand

CSE, HIT, Nidasoshi

309

Means-Ends Analysis - Example

1. Evaluating the initial state:

In the first step, we will evaluate the initial state and will compare the

initial and Goal state to find the differences between both states.

CSE, HIT, Nidasoshi

310

Means-Ends Analysis - Example

2. Applying Delete operator:

As we can check the first difference is that in goal state there is no dot

symbol which is present in the initial state, so, first we will apply the

Delete operator to remove this dot. CSE, HIT, Nidasoshi

311

Means-Ends Analysis - Example

3. Applying Move Operator:

After applying the Delete operator, the new state occurs which we will

again compare with goal state. After comparing these states, there is

another difference that is the square is outside the circle, so, we will

apply the Move Operator.

CSE, HIT, Nidasoshi

312

Means-Ends Analysis - Example

4. Applying Expand Operator:

Now a new state is generated in the third step, and we will compare

this state with the goal state.

After comparing the states there is still one difference which is the size

of the square, so, we will apply Expand operator, and finally, it will

generate the goal state.

CSE, HIT, Nidasoshi

