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What is Artificial Intelligence? 

• It is a branch of Computer Science that pursues creating the 

computers or machines as intelligent as human beings. 

• It is the science and engineering of making intelligent machines, 

especially intelligent computer programs. 

• It is related to the similar task of using computers to understand 

human intelligence, but AI does not have to confine itself to 

methods that are biologically observable 
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What is Artificial Intelligence? 

Definition: Artificial Intelligence is the study of how to make computers do 

things, which, at the moment, people do better. 

According to the father of Artificial Intelligence, John McCarthy, it is “The 

science and engineering of making intelligent machines, especially intelligent 

computer programs”. 

Artificial Intelligence is a way of making a computer, a computer-controlled 

robot, or a software think intelligently, in the similar manner the intelligent 

humans think. 
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What is Artificial Intelligence? 

Examples:  

• Speech recognition,  

• Face detection and recognition,  

• Object detection and recognition,  

• Learning new skills,  

• Decision making,  

• Abstract thinking 
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How …? 

• AI is accomplished by studying how human brain thinks and how 

humans learn, decide, and work while trying to solve a problem, and 

then using the outcomes of this study as a basis of developing 

intelligent software and systems. 
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Why Artificial Intelligence? 

It has gained prominence recently due, in part, to big data, or the increase in 

speed, size and variety of data businesses are now collecting. AI can perform 

tasks such as identifying patterns in the data more efficiently than humans, 

enabling businesses to gain more insight out of their data. 

From a business perspective AI is a set of very powerful tools, and 

methodologies for using those tools to solve business problems. 

From a programming perspective, AI includes the study of symbolic 

programming, problem solving, and search. 
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AI Vocabulary 

• Intelligence relates to tasks involving higher mental processes, e.g. creativity, 

solving problems, pattern recognition, classification, learning, induction, 

deduction, building analogies, optimization, language processing, knowledge 

and many more. Intelligence is the computational part of the ability to achieve 

goals. 

• Intelligent behaviour is depicted by perceiving one’s environment, acting in 

complex environments, learning and understanding from experience, 

reasoning to solve problems and discover hidden knowledge, applying 

knowledge successfully in new situations, thinking abstractly, using analogies, 

communicating with others and more. 
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AI Vocabulary 

• Science based goals of AI pertain to developing concepts, mechanisms and 

understanding biological intelligent behaviour. The emphasis is on 

understanding intelligent behaviour. 

• Engineering based goals of AI relate to developing concepts, theory and 

practice of building intelligent machines. The emphasis is on system 

building. 

• Applications of AI refers to problem solving, search and control strategies, 

speech recognition, natural language understanding, computer vision, 

expert systems, etc. 
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AI Vocabulary 

• AI Techniques depict how we represent, manipulate and reason with 

knowledge in order to solve problems. Knowledge is a collection of ‘facts’. 

To manipulate these facts by a program, a  suitable representation is 

required. A good representation facilitates problem solving. 

• Learning means that programs learn from what facts or behaviour can 

represent. Learning denotes changes in the systems that are adaptive in 

other words, it enables the system to do the same task(s) more efficiently 

next time. 
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Task Domains of AI 

Mundane Tasks: 

Perception 

Vision 

Speech 

Natural Languages 

Understanding 

Generation 

Translation 

Common sense reasoning 

Robot Control 
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Formal Tasks 

Games : chess, checkers etc 

Mathematics: Geometry, logic, Proving 

properties of programs 

Expert Tasks: 

Engineering ( Design, Fault finding, 

Manufacturing planning) 

Scientific Analysis 

Medical Diagnosis 

Financial Analysis 
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AI Problems 
• A person who knows how to perform tasks from several of the categories shown in 

above list learn the necessary skills in a standard order. 

– First perceptual, linguistic, and commonsense skills are learned. 

– Later expert skills such as engineering, medicine, or finance are acquired 

• Earlier skills are easier, for this reason much of the initial work in AI work was 

concentrated in those early areas. 

• The problem areas where now AI is flourishing most as a practical discipline are 

primarily the domains that require only specialized expertise without the assistance of 

commonsense knowledge. 

• Expert systems (AI programs) now are up for day-to-day tasks that aim at solving part, 

or perhaps all, of practical, significant problem that previously required high human 

expertise. 
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 STEPS TO SOLVE A PROBLEM 

To solve the problem of building a system you should take the following steps: 

Define the problem accurately including detailed specifications and what 

constitutes a suitable solution. 

Scrutinize the problem carefully, for some features may have a central affect on 

the chosen method of solution. 

Segregate and represent the background knowledge needed in the solution of 

the problem. 

Choose the best solving techniques for the problem to solve a solution. 
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Tic Tac Toe 

Three programs are presented : 

The programs in the Series increase in 

Their complexity 

Use of generalization 

Clarity of their knowledge 

Extensibility of their approach 
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Introductory Problem: Tic-Tac-Toe 

 X  X 

 o 

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE 

CSE, HIT, Nidasoshi



Introductory Problem: Tic-Tac-Toe 
Program 1: 
Data Structures:  
Board: 9 element vector representing the board, with 1-9 for each square. An element 
contains the value 0 if it is blank, 1 if it is filled by X, or 2 if it is filled with a O 
Movetable: A large vector of 19,683 elements ( 3^9), each element  is 9-element 
vector. 
 
Algorithm: 
 
1. View the vector as a ternary number. Convert it to a  
 decimal number. 
 
2. Use the computed number as an index into  
 Move-Table and access the vector stored there. 
 
3. Set the new board to that vector. 
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Introductory Problem: Tic-Tac-Toe 
Comments: 
This program is very efficient in time. 
 

1. A lot of space to store the Move-Table. 
 

2. A lot of work to specify all the entries in the  

 Move-Table. 
 

3. Difficult to extend. 
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Introductory Problem: Tic-Tac-Toe 

 1  2  3 

 4  5  6 

 7  8  9 
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Introductory Problem: Tic-Tac-Toe 
Program 2: 
Data Structure: A nine element vector representing the board. But instead of using 0,1 
and 2 in each element, we store 2 for blank, 3 for X and 5 for O 
Functions: 
Make2: returns 5 if the center sqaure is blank. Else any other balnk sq 
Posswin(p): Returns 0 if the player p cannot win on his next move; otherwise it returns 
the number of the square that constitutes a winning move. If the product  is 18 
(3x3x2), then X can win. If the product is 50 ( 5x5x2) then O can win. 
Go(n): Makes a move in the square n 
 
Strategy: 
 
Turn = 1 Go(1) 
Turn = 2 If Board[5] is blank, Go(5), else Go(1) 
Turn = 3 If Board[9] is blank, Go(9), else Go(3) 
Turn = 4 If Posswin(X)  0, then Go(Posswin(X)) 
....... 
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Introductory Problem: Tic-Tac-Toe 
Comments: 
 

1. Not efficient in time, as it has to check several  

 conditions before making each move. 
 

2. Easier to understand the program’s strategy. 
 
3. Hard to generalize. 
 
 
 Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE 

CSE, HIT, Nidasoshi



Introductory Problem: Tic-Tac-Toe 

 8  3  4 

 1  5  9 

 6  7  2 

15 - (8 + 5) 
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Introductory Problem: Tic-Tac-Toe 
Comments: 
 

1. Checking for a possible win is quicker. 
 

2. Human finds the row-scan approach easier, while 

 computer finds the number-counting approach more 

 efficient. 
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PROBLEMS, PROBLEM SPACES AND SEARCH 

–State space search 

–Search strategies 

–Problem characteristics 

–Design of search programs 
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Introductory Problem: Tic-Tac-Toe 
Program 3: 
 
1. If it is a win, give it the highest rating. 
 
2. Otherwise, consider all the moves the opponent  
 could make next. Assume the opponent will make  
 the move that is worst for us. Assign the rating of  
 that move to the current node. 
 
3. The best node is then the one with the highest  
 rating. 
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STATE SPACE SEARCH 

A state space consists of 

A (possibly infinite) set of states 

The start state represents the initial problem 

Each state represents some configuration reachable from the start state 

Some states may be goal states (solutions) 

A set of rules 

Applying an operator to a state transforms it to another state in the state space 

Not all operators are applicable to all states 

State spaces are used extensively in Artificial Intelligence (AI) 
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STATE SPACE SEARCH - Example 1: Maze 

A maze can be represented as a state space 

Each state represents “where you are” in the maze 

The start state represents your starting position 

The goal state represents the exit from the maze 

Rules (for a rectangular maze) are: move north, move south, move 

east, and move west 

Each rule takes you to a new state (maze location) 

Rules may not always apply, because of walls in the maze 
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STATE SPACE SEARCH - Example 2: The 15-puzzle 
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The start state is some (almost) random configuration of 

the tiles 

The goal state is as shown 

Rules are 

Move empty space up 

Move empty space down 

Move empty space  right 

Move empty space  left 

Rules apply if not against edge 

  3  10  13   7 

   9  14   6   1 

   4       15   2 

   11   8   5  12 

Start state: 

   1  2   3    4 

  5   6   7   8 

   9  10  11 12 

    13 14  15 

Goal state: 
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STATE SPACE SEARCH - Example 3: Playing Chess 

• Each position can be described by an 8-by-8 array. 

• Initial position is the game opening position. 

• Goal position is any position in which the opponent does not have 

a legal move and his or her king is under attack. 

• Legal moves can be described by a set of rules: 

  - Left sides are matched against the current state. 

  - Right sides describe the new resulting state. 
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STATE SPACE SEARCH 

• Many problems in AI take the form of  state-space search. 

• The states might be legal board configurations in a game, towns and cities in some sort of  

route map, collections of  mathematical propositions, etc. 

• The state-space is the configuration of  the possible states and how they connect to each other 

e.g. the legal moves between states. 

• When we don't have an algorithm which tells us definitively how to negotiate the state-space 

we need to search the state-space to find an optimal path from a start state to a goal state. 

• We can only decide what to do (or where to go), by considering the possible moves from the 

current state, and trying to look ahead as far as possible.  

• Chess, for example, is a very difficult state-space search problem. 
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STATE SPACE SEARCH - SEARCHING FOR THE OPTIMUM 

• State-space search is all about finding, in a state-space (which may be extremely large: e.g. 

chess), some optimal state/node. 

• `Optimal' can mean very different things depending on the nature of  the domain being 

searched. 

• For a puzzle, `optimal' might mean the goal state e.g. connect4 

• For a route-finder, like our problem, which searches for shortest routes between towns, or 

components of  an integrated circuit, `optimal' might mean the shortest path between two 

towns/components. 

• For a game such as chess, in which we typically can't see the goal state, `optimal' might mean 

the best move we think we can make, looking ahead to see what effects the possible moves 

have. 
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STATE SPACE SEARCH - SEARCHING FOR THE OPTIMUM 

• The state space can be HUGE! (Combinatorial explosion) 

• Theorem Proving: Infinite! 

• Chess: 10 120 (in an average length game) 

• Checkers: 1040 

• Eight puzzle:181,440 

• Right representation helps 
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STATE-SPACE REPRESENTATION: GENERAL OUTLINE 

Select some way to represent states in the problem in an unambiguous way. 

Formulate all actions that can be preformed in states: 

 including their preconditions and effects 

 == PRODUCTION RULES 

Represent the initial state (s). 

Formulate precisely when a state satisfies the goal of our problem. 

Activate the production rules on the initial state and its descendants, until a goal state is 

reached. 
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Example: the 8-puzzle 

• Given:  a board situation for the 8-puzzle: 

 

 

 

 

• Problem: find a sequence of moves (allowed under the rules of the 8-puzzle game) that 

transform this board situation in a desired goal situation 
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2 7 

5 4 6 

1 2 3 

5 6 7 
4 8 
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1 3 8 
2 7 
5 4 6 

How to represent states?     (repr.1) 

 Ex.:                         using a 3 X 3 matrix 
 

 How to formulate production rules?    (repr. 2) 

 Ex.:    

 express how/when squares may be moved? 

 Or: express how/when the blank space is moved? 

 When is a rule applicable to a state?     (matching) 

 How to formulate when the goal criterion is satified and how to verify that it 
is? 

 How/which rules to activate?    (control) 

INITIAL ISSUES TO SOLVE: 
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 Each state-space representation defines a search tree: 

1 3 8 
2 7 
5 4 6 

1 3 8 
2 7 

5 4 6 

1 3 8 
2 7 
5 4 6 

1 
3 

8 
2 7 
5 4 6 

1 3 8 
2 7 
5 

4 
6 

9!/2 
nodes! 

goal 

The (implicit) search tree 
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ISSUES AND TRADE-OFFS 

1. How to choose the rules?  

2. Should we search through the implicit tree or through an implicit graph? 

3. Do we need an optimal solution, or just any solution? 

 ‘optimal path problems’ 

4. Can we decompose states into components on which simple rules can in an 

independent way? 

 Problem reduction or decomposability 

5. Should we search forwards from the initial state, or backwards from a goal state? 
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State Space Search: Water Jug Problem 

• “You are given two jugs, a 4-litre one and a 3-litre one. 

Neither has any measuring markers on it. There is a pump 

that can be used to fill the jugs with water. How can you 

get exactly 2 litres of water into 4-litre jug.” 
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State Space Search: Water Jug Problem 

• State: (x, y) 

  x = 0, 1, 2, 3, or 4  y = 0, 1, 2, 3 

• x represents quantity of water in 4 gallon jug and y represents 

quantity of water in 3 gallon jug 

• Start state: (0, 0). 

• Goal state: (2, n) for any n.  

• Attempting to end up in a goal state. 
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State Space Search: Water Jug Problem – Production Rules 
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State Space Search: Water Jug Problem – One Possible Solution 

1. current state = (0, 0) 

2. Loop until reaching the goal state (2, 0) 

  - Apply a rule whose left side matches the current state 

  - Set the new current state to be the resulting state 

 (0, 0) 

 (0, 3) – Rule 2  

 (3, 0) - Rule 9 

 (3, 3) - Rule 2 

 (4, 2) – Rule 9 

 (0, 2) -  Rule 5 

 (2, 0) – Rule 9 
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State Space Search: Water Jug Problem – One Possible Solution 

1. current state = (0, 0) 

2. Loop until reaching the goal state (2, 0) 

  - Apply a rule whose left side matches the current state 

  - Set the new current state to be the resulting state 

 (0, 0) 

 (4, 0) – Rule 1  

 (1, 3) - Rule 3 

 (1, 0) - Rule 6 

 (0, 1) – Rule 3 

 (4, 1) -  Rule 1 

 (2, 3) – Rule 6 
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Production Systems 

• Since search forms the core of many intelligent processes, it is useful to structure Al programs in a way 

that facilitates describing and performing the search process.  

• Production systems provide such structures.  

• A production system consists of:  

– A set of rules, each consisting of a left side (a pattern) that determines the applicability of the rule 

and a right side that describes the operation to be performed if the rule is applied.;  

– One or more knowledge/databases that contain whatever information is appropriate for the 

particular task. Some pans of the database may be permanent, while other plans of it may pertain 

only to the solution of the current problem. A control strategy that specifies the order in which the 

rules will be compared to the database and a way of resolving the conflicts that arise when several 

rules match at once.  

– A rule applier.  
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Control / Search Strategies 

• So far, we have completely ignored the question of how to decide 

which rule to apply next during the process of searching for a 

solution to a problem.  

• This question arises once often more than one rule (and sometimes 

fewer than one rule) will have its left side match the current state.  

• Even without a great deal of thought, it is clear that how such 

decisions are made will have a crucial impact on how quickly. and 

even whether, a problem is finally solved. 
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Control / Search Strategies 

•  The first requirement of a good control strategy is that it causes 

motion. Consider again the water jug problem. Suppose we 

implemented the simple control strategy of starting each time at the 

top of the list of rules and choosing the first applicable one. If we 

did that, we would never solve the problem. We would continue 

indefinitely filling the 4-gallon jug with water Control strategies that 

do not cause motion will never lead to a solution. 
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Control / Search Strategies 

• The second requirement of a good control strategy is that it be systematic. 

Consider again the water jug problem. On each cycle, choose at random 

from among the applicable rules. This strategy is better than the first. It 

causes motion. It will lead to a solution eventually. But we are likely to 

arrive at the same state several times during the process and to use many 

more steps than are necessary. Because the control strategy is not 

systematic, we may explore a particular useless sequence of operators 

several times before we finally find a solution.  
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Search Strategies - Breadth-First Search 

Algorithm: Breadth-First Search  

1. Create a variable called NODE-LIST and set it to the initial state.  

2. Until a goal state is found or NODE-LIST is empty:  

a) Remove the first element from NODE-LIST and call it E. If NODE-LIST was empty. 

quit.  

b) For each way that each rule can match the state described in E do:  

i. Apply the rule to generate a new state,  

ii. If the new state is a goal state. quit and return this state.  

iii. Otherwise, add the new state to the end of NODE-LIST  Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE 
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Breadth-First Search - Example 

• Step 1: Initially NODE-LIST contains only one node corresponding to the source 
state A.  

 

• NODE-LIST: A  
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Breadth-First Search - Example 

• Step 2: A is removed from NODE-LIST. The node is expanded, and its children B 
and C are generated. They are placed at the back of NODE-LIST. 

 

• NODE-LIST: B C  
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Breadth-First Search - Example 

• Step 3: Node B is removed from NODE-LIST and is expanded. Its children D, E are 
generated and put at the back of NODE-LIST.  

 

• NODE-LIST: C D E  
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Breadth-First Search - Example 

• Step 4: Node C is removed from NODE-LIST and is expanded. Its children D and G 
are added to the back of NODE-LIST. 

 

• NODE-LIST: D E D G  
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Breadth-First Search - Example 

• Step 5: Node D is removed from NODE-LIST. Its children C and F are generated and 
added to the back of NODE-LIST. 

 

• NODE-LIST: E D G C F  

  

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE 

CSE, HIT, Nidasoshi



Breadth-First Search - Example 

• Step 6: Node E is removed from NODE-LIST. It has no children. 

 

• NODE-LIST: D G C F  
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Breadth-First Search - Example 

• Step 7: D is expanded; B and F are put in OPEN. 

 

• NODE-LIST: G C F B F  
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Breadth-First Search - Example 

• Step 8: G is selected for expansion. It is found to be a goal node. So the algorithm 
returns the path A C G by following the parent pointers of the node corresponding 
to G. The algorithm terminates.  
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Breadth-First Search 

• Breadth first search is:  

• One of the simplest search strategies  

• Complete. If there is a solution, BFS is guaranteed to find it.  

• If there are multiple solutions, then a minimal solution will be found  

• The algorithm is optimal (i.e., admissible) if all operators have the same cost. 
Otherwise, breadth first search finds a solution with the shortest path length.  

• Advantages: Finds the path of minimal length to the goal.  

• Disadvantages:  

• Requires the generation and storage of a tree whose size is exponential the depth 
of the shallowest goal node.  

• The breadth first search algorithm cannot be effectively used unless the search 
space is quite small.  
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Search Strategies 

• Breadth-first search 
   Expand all the nodes  
   of one level first. 
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Search Strategies - Depth-First Search  

Algorithm: Depth-First Search  

1. If the initial state is a goal state, quit and return success.  

2. Otherwise, do the following until success or failure is signaled:  

a) Generate a successor, E, of the initial state. If there are no more successors, 

signal failure.  

b) Call Depth-First Search with E as the initial state.  

c) If success is returned, signal success. Otherwise continue in this loop.  

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE 

CSE, HIT, Nidasoshi



Depth-First Search - Example 

• Step 1: Initially NODE-LIST contains only one node corresponding to the source 
state A.  

 

• NODE-LIST: A  
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Depth-First Search - Example 

• Step 2: A is removed from NODE-LIST . A is expanded and its children B and C are 
put in front of NODE-LIST .  

 

• NODE-LIST: B C  
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Depth-First Search - Example 

• Step 3: Node B is removed from NODE-LIST , and its children D and E are pushed 
in front of NODE-LIST .  

 

• NODE-LIST: D E C  
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Depth-First Search - Example 

• Step 4: Node D is removed from NODE-LIST . C and F are pushed in front of NODE-
LIST .   

 

• NODE-LIST: C F E C  
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Depth-First Search - Example 

• Step 5: Node C is removed from NODE-LIST . Its child G is pushed in front of 
NODE-LIST .    

 

• NODE-LIST: G F E C  

 

 

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE 

CSE, HIT, Nidasoshi



Depth-First Search - Example 

• Step 6: Node G is expanded and found to be a goal node.     

 

• NODE-LIST: G F E C   

 

 

 

 

 

 

 

• The solution path A-B-D-C-G is returned and the algorithm terminates.  
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Depth-First Search - Example 

• Depth-first search 
 Expand one of the nodes  
   at the deepest level. 
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Search Strategies 

Advantages of Depth-First Search  

• Depth-first search requires less memory since only the nodes on the current 

path are stored. This contrasts with breadth-first search, where all of the tree 

that has so far been generated must be stored.  

• Depth-first search may find a solution without examining much of the search 

space at all. This contrasts with breadth-first search in which all parts of the 

tree must be examined to level n before any nodes on level n + i can be 

examined. This is particularly significant if many acceptable solutions exist. 

Depth-first search can stop when one of them is found.  
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Problem Characteristics 

To choose an appropriate method for a particular problem: 

• Is the problem decomposable? 

• Can solution steps be ignored or undone? 

• Is the universe predictable? 

• Is a good solution absolute or relative? 

• Is the solution a state or a path? 

• What is the role of knowledge? 

• Does the task require human-interaction? 
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Is the problem decomposable? 

• Can the problem be broken down to smaller problems to be solved 

independently? 

• Decomposable problem can be solved easily. 
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Can solution steps be ignored or undone? 

Theorem Proving 

A lemma that has been proved can be ignored for next steps. 

 

Ignorable! 
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Can solution steps be ignored or undone? 

The 8-Puzzle 

 

 

 

 

 

Moves can be undone and backtracked. 

 

Recoverable! 
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Can solution steps be ignored or undone? 

Playing Chess 

Moves cannot be retracted. 

 

Irrecoverable! 
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Can solution steps be ignored or undone? 

• Ignorable problems can be solved using a simple control structure 

that never backtracks. 

• Recoverable problems can be solved using backtracking. 

• Irrecoverable problems can be solved by recoverable style methods 

via planning. 
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Is the universe predictable? 

Playing Bridge 

• We cannot know exactly where all the cards are or what the other 

players will do on their turns. 

 

Uncertain outcome! 
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Is the universe predictable? 

• For certain-outcome problems, planning can used to generate a 

sequence of operators that is guaranteed to lead to a solution.  

• For uncertain-outcome problems, a sequence of generated 

operators can only have a good probability of leading to a solution. 

Plan revision is made as the plan is carried out and the necessary 

feedback is provided. 
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Is a good solution absolute or relative? 

1. Marcus was a man. 

2. Marcus was a Pompeian. 

3. Marcus was born in 40 A.D. 

4. All men are mortal. 

5. All Pompeians died when the volcano  erupted in 79 A.D. 

6. No mortal lives longer than 150 years. 

7. It is now 2016 A.D. 
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Is a good solution absolute or relative? 

1. Marcus was a man.     axiom 1 

4. All men are mortal.     axiom 4 

8. Marcus is mortal.     1, 4 

3. Marcus was born in 40 A.D.   axiom 3 

7. It is now 1991 A.D.     axiom 7 

9. Marcus' age is 1951 years.    3, 7 

6. No mortal lives longer than 150 years.  axiom 6 

10. Marcus is dead.  

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE 
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7. It is now 1991 A.D.    axiom 7 

5. All Pompeians died in 79 A.D.  axiom 5 

11. All Pompeians are dead now.  5, 7 

2. Marcus was a Pompeian.   axiom 2 

12. Marcus is dead.  
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Is a good solution absolute or relative? 

• The Travelling Salesman Problem 

• We have to try all paths to find the shortest one. 

 

• Any-path problems can be solved using heuristics that suggest good paths to 

explore.  

 

• For best-path problems, much more exhaustive search will be performed. 
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Is the solution a state or a path? 

Finding a consistent interpretation for 

“The bank president ate a dish of pasta salad with the fork”. 

– “bank” refers to a financial situation or to a side of a river? 

– “dish” or “pasta salad” was eaten? 

– Does “pasta salad” contain pasta, as “dog food” does not contain “dog”? 

– Which part of the sentence does “with the fork” modify? 

 What if “with vegetables” is there? 

No record of the processing is necessary. 
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Is the solution a state or a path? 

• The Water Jug Problem 

• The path that leads to the goal must be reported. 

 

• A path-solution problem can be reformulated as a state-solution 

problem by describing a state as a partial path to a solution.  

 

• The question is whether that is natural or not. 
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What is the role of knowledge 

Playing Chess 

• Consider again the problem of playing chess. Suppose you had unlimited computing power 

available.  

• How much knowledge would be required by a perfect program? The answer to this 

question is very little—just the rules for determining legal moves and some simple control 

mechanism that implements an appropriate search procedure.  

• Additional knowledge about such things as good strategy and tactics could of course help 

considerably to constrain the search and speed up the execution of the program. 

• Knowledge is important only to constrain the search for a solution.  
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What is the role of knowledge 

Reading Newspaper 
• Now consider the problem of scanning daily newspapers to decide which are supporting 

the Democrats and which are supporting the Republicans in some upcoming election.  
• Again assuming unlimited computing power, how much knowledge would be required by a 

computer trying to solve this problem? This time the answer is a great deal.  
• It would have to know such things as:  

– The names of the candidates in each party.  
– The fact that if the major thing you want to see done is have taxes lowered, you are 

probably supporting the Republicans.  
– The fact that if the major thing you want to see done is improved education for minority 

students, you are probably supporting the Democrats.  
– The fact that if you are opposed to big government, you are probably supporting the 

Republicans.  
– And so on ... 

• Knowledge is required even to be able to recognize a solution.  
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Does the task require human-interaction? 

• Sometimes it is useful to program computers to solve problems in ways 

that the majority of people would not be able to understand.  

• This is fine if the level of the interaction between the computer and its 

human users is problem-in solution-out.  

• But increasingly we are building programs that require intermediate 

interaction with people, both to provide additional input to the 

program and to provide additional reassurance to the user.  
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Does the task require human-interaction? 

• Solitary problem, in which there is no intermediate communication 

and no demand for an explanation of the reasoning process.  

 

• Conversational problem, in which intermediate communication is to 

provide either additional assistance to the computer or additional 

information to the user. 
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Problem Classification 

• There is a variety of problem-solving methods, but there is no one 

single way of solving all problems.  

 

• Not all new problems should be considered as totally new. Solutions of 

similar problems can be exploited. 
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Production system 

• We have just examined a set of characteristics that distinguish various 

classes of problems 

 

• It has also been shown that production systems are a good way to 

describe the operations that can be performed in a search for good 

solution 
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Classes / Categories of Production systems 

Monotonic Production System: the application of a rule never prevents the later 

application of another rule that could also have been applied at the time the first 

rule was selected 

Non-Monotonic Production system: is one in which this is not true 

Partially commutative Production system: property that if application of a 

particular sequence of rules transforms state x to state y, then permutation of 

those rules allowable, also transforms state x into state y. 

Commutative Production system: both monotonic and Partially commutative 
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Relationship between classes of systems 
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Monotonic Non-Monotonic 

Partially 
Commutative 

Theorem Proving Robot Navigation 

Not Partially 
commutative 

Chemical Systhesis Bridge 
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Partially Commutative and Monotonic 

• These production systems are useful for solving ignorable problems. 

• Example: Theorem Proving 

• They can be implemented without the ability to backtrack to previous states 

when it is discovered that an incorrect path has been followed. 

• This often results in a considerable increase in efficiency, particularly because 

since the database will never have to be restored, It is not necessary to keep track 

of where in the search process every change was made. 

• They are good for problems where things do not change; new things get created. 
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Partially Commutative and Non-Monotonic 

• Useful for problems in which changes occur but can be reversed and 

in which order of operations is not critical. 

• Example: Robot Navigation, 8-puzzle, blocks world 

• Suppose the robot has the following ops: go North (N), go East (E), 

go South (S), go West (W).  

• To reach its goal, it does not matter whether the robot executes the 

N-N-E or N-E-N. 
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Not Partially Commutative  

• Problems in which irreversible change occurs 

• Example: chemical synthesis 

• The ops can be :Add chemical x to the pot, Change the temperature to t 

degrees. 

• These ops may cause irreversible changes to the potion being brewed. 

• The order in which they are performed can be very important in determining 

the final output. 

• (X+y) +z is not the same as (z+y) +x 
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Issues in the design of search programs 

• The direction in which to conduct the search (forward versus backward reasoning). We 

can search forward through the state space from the start state to a goal state, or we can 

search backward from the goal.  

• How to select applicable rules (matching). Production systems typically spend most of their 

time looking for rules to apply, so it is critical to have efficient procedures for matching 

rules against states.  

• How to represent each node of the search process (the knowledge representation 

problem and the frame problem).  

– For problems like chess, a node can be fully represented by a simple array.  

– In more complex problem solving, however, it is inefficient and/or impossible to 

represent all of the facts in the world and to determine all of the side effects an action 

may have.  Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE 
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Search Algorithms / Techniques 

• Uninformed search algorithms or Brute-force algorithms, search 

through the search space all possible candidates for the solution 

checking whether each candidate satisfies the problem’s statement. 

• Informed search algorithms use heuristic functions that are specific 

to the problem, apply them to guide the search through the search 

space to try to reduce the amount of time spent in searching. 
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Search Algorithms / Techniques 

• A good heuristic will make an informed search dramatically outperform any 

uninformed search: for example, the Traveling Salesman Problem (TSP), where 

the goal is to find is a good solution instead of finding the best solution. 

• In such problems, the search proceeds using current information about the 

problem to predict which path is closer to the goal and follow it, although it does 

not always guarantee to find the best possible solution.  

• Such techniques help in finding a solution within reasonable time and space 

(memory). 
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Heuristic Searches 
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Requirement of Search Algorithms / Techniques 

• The first requirement is that it causes motion, in a game playing program, it moves on the 

board and in the water jug problem, filling water is used to fill jugs. It means the control 

strategies without the motion will never lead to the solution. 

• The second requirement is that it is systematic, that is, it corresponds to the need for 

global motion as well as for local motion. This is a clear condition that neither would it be 

rational to fill a jug and empty it repeatedly, nor it would be worthwhile to move a piece 

round and round on the board in a cyclic way in a game. We shall initially consider two 

systematic approaches for searching. Searches can be classified by the order in which 

operators are tried: depth-first, breadth-first, bounded depth-first. 
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Informed search Algorithms / Techniques 

• Many Informed search Algorithms techniques are developed, using 

heuristic functions. 

• The algorithms that use heuristic functions are called heuristic 

algorithms. 

• Heuristic algorithms are not really intelligent; they appear to be 

intelligent because they achieve better performance. 

• Heuristic algorithms are more efficient because they take advantage of 

feedback from the data to direct the search path. 
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Heuristics Search 
• To find a solution in proper time rather than a complete solution in unlimited time we use 

heuristics. ‘A heuristic function is a function that maps from problem state descriptions to 
measures of desirability, usually represented as numbers’. Heuristic search methods use 
knowledge about the problem domain and choose promising operators first. These 
heuristic 

• search methods use heuristic functions to evaluate the next state towards the goal state. 
For finding a solution, by using the heuristic technique, one should carry out the following 
steps: 

1. Add domain—specific information to select what is the best path to continue searching 
along. 

2. Define a heuristic function h(n) that estimates the ‘goodness’ of a node n. Specifically, h(n) = 
estimated cost(or distance) of minimal cost path from n to a goal state. 

3. The term, heuristic means ‘serving to aid discovery’ and is an estimate, based on domain 
specific information that is computable from the current state description of how close we 
are to a goal. 
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Heuristics Search 

• Finding a route from one city to another city is an example of a search problem in 

which different search orders and the use of heuristic knowledge are easily 

understood. 

1. State: The current city in which the traveller is located. 

2. Operators: Roads linking the current city to other cities. 

3. Cost Metric: The cost of taking a given road between cities. 

4. Heuristic information: The search could be guided by the direction of the 

goal city from the current city, or we could use airline distance as an estimate 

of the distance to the goal. 
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Heuristic search techniques 

• For complex problems, the traditional algorithms, presented above, are unable to 

find the solution within some practical time and space limits. Consequently, many 

special techniques are developed, using heuristic functions. 

– Blind search is not always possible, because it requires too much time or Space 

(memory). 

– Heuristics are rules of thumb; they do not guarantee a solution to a problem. 

– Heuristic Search is a weak technique but can be effective if applied correctly; it 

requires domain specific information. 
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Characteristics of heuristic search 

• Heuristics are knowledge about domain, which help search and reasoning in its domain. 

• Heuristic search incorporates domain knowledge to improve efficiency over blind search. 

• Heuristic is a function that, when applied to a state, returns value as estimated merit of 

state, with respect to goal. 

– Heuristics might (for reasons) underestimate or overestimate the merit of a state with 

respect to goal. 

– Heuristics that underestimate are desirable and called admissible. 

• Heuristic evaluation function estimates likelihood of given state leading to goal state. 

• Heuristic search function estimates cost from current state to goal, presuming function is 

efficient. Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE 
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Heuristic search compared with other search 

• The Heuristic search is compared with Brute force or Blind search techniques below: 

• Comparison of Algorithms 
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Brute force / Blind search Heuristic search 

Can only search what it has knowledge 
about already 

Estimates ‘distance’ to goal state 
through explored nodes 

No knowledge about how far a node 
node from goal state 

Guides search process toward goal 

Prefers states (nodes) that lead close to 
and not away from goal State 
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Heuristic Searches - GENERATE-AND-TEST 

• The generate-and-test strategy is the simplest of all the approaches. It consists of 

the following steps:  

• Algorithm: Generate-and-Test  

1. Generate a possible solution. For some problems. this means generating a 

particular point in the problem space. For others, it means generating a path 

from a start state.  

2. Test to see if this is actually a solution by comparing the chosen point or the 

endpoint of the chosen path to the set of acceptable goal states.  

3. If a solution has been found, quit. Otherwise, return to step 1 
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Heuristic Searches - GENERATE-AND-TEST 
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Heuristic Searches - GENERATE-AND-TEST 

• Generate-and-test, like depth-first search, requires that complete 

solutions be generated for testing.  

• In its most systematic form, it is only an exhaustive search of the problem 

space. 

• Solutions can also be generated randomly but solution is not guaranteed.  

• This approach is what is known as British Museum algorithm: finding an 

object in the British Museum by wandering randomly. 
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Heuristic Searches - GENERATE-AND-TEST 

Systematic Generate-And-Test 

• While generating complete solutions and generating random solutions are the two 

extremes there exists another approach that lies in between. The approach is that the 

search process proceeds systematically but some paths that unlikely to lead the solution 

are not considered. This evaluation is performed by a heuristic function. 

• Depth-first search tree with backtracking can be used to implement systematic generate-

and-test procedure. As per this procedure, if some intermediate states are likely to appear 

often in the tree, it would be better to modify that procedure to traverse a graph rather 

than a tree. 
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Heuristic Searches - GENERATE-AND-TEST 
Generate-And-Test And Planning 

• Exhaustive generate-and-test is very useful for simple problems. But for complex problems even 

heuristic generate-and-test is not very effective technique. But this may be made effective by 

combining with other techniques in such a way that the space in which to search is restricted. An AI 

program DENDRAL, for example, uses plan-Generate-and-test technique. First, the planning process 

uses constraint-satisfaction techniques and creates lists of recommended and contraindicated 

substructures. Then the generate-and-test procedure uses the lists generated and required to explore 

only a limited set of structures. Constrained in this way, generate-and-test proved highly effective. A 

major weakness of planning is that it often produces inaccurate solutions as there is no feedback from 

the world. But if it is used to produce only pieces of solutions then lack of detailed accuracy becomes 

unimportant. 
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Heuristic Searches - GENERATE-AND-TEST 

Example - Traveling Salesman Problem (TSP) 

A salesman has a list of cities, each of which he must visit exactly once. There are 

direct roads between each pair of cities on the list. Find the route the salesman 

should follow for the shortest possible round trip that both starts and finishes at any 

one of the cities.  

• Traveler needs to visit n cities. 

• Know the distance between each pair of cities. 

• Want to know the shortest route that visits all the cities once. 
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Heuristic Searches - GENERATE-AND-TEST 
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Heuristic Searches - GENERATE-AND-TEST 

Search for Path Length of Path 

1 ABCD 19 

2 ABDC 18 

3 ACBD 12 

4 ACDB 13 

5 ADBC 16 

Dst…..  
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Heuristic Searches - Simplest Hill Climbing  

• In hill climbing the basic idea is to always head towards a state which is better 

than the current one. 

 

• So, if you are at town A and you can get to town B and town C (and your target is 

town D) then you should make a move IF town B or C appear nearer to town D 

than town A does. 
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Heuristic Searches - Simplest Hill Climbing  
1. Evaluate the initial state. If it is also goal state then return it, otherwise continue with 

the initial state as the current state.  

2. Loop until the solution is found or until there are no new operators to be applied in the 

current state  

a) Select an operator that has not yet been applied to the current state and apply it to 

produce new state  

b) Evaluate the new state  

i. If it is a goal state then return it and quit  

ii. If it is not a goal state but it is better than the current state, then make it as 

current state  

iii. If it is not better than the current state, then continue in loop.  
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Heuristic Searches - Simplest Hill Climbing  
• To understand the concept easily, we will take up a very simple example 

 

 

 

 

 

• Key point while solving any hill-climbing problem is to choose an appropriate heuristic 
function. 

• Let's define such function h: 

• h(x) = +1 for all the blocks in the support structure if the block is correctly positioned 
otherwise -1 for all the blocks in the support structure. 
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Heuristic Searches - Simplest Hill Climbing  
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Heuristic Searches - Steepest-Ascent Hill Climbing 

• A variation on simple hill climbing. 

• Instead of moving to the first state that is better, move to 

the best possible state that is one move away. 

• The order of operators does not matter. 

• Not just climbing to a better state, climbing up the 

steepest slope. 
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Heuristic Searches - Steepest-Ascent Hill Climbing 

• Considers all the moves from the current state. 

• Selects the best one as the next state. 
 
 

• Basic hill climbing first applies one operator n gets new state. If it is 
better that becomes current state whereas steepest climbing tests 
all possible solutions n chooses best 
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Heuristic Searches - Steepest-Ascent Hill Climbing 
Algorithm 

1. Evaluate the initial state. If it is also a goal state then return it and quit. Otherwise 

continue with the initial state as the current state.  

2. Loop until a solution is found or until a complete iteration produces no change to current 

state:  

a) Let SUCC be a state such that any possible successor of the current state will be better 

than SUCC.  

b) For each operator that applies to the current state do:  

i. Apply the operator and generate a new state.  

ii. Evaluate the new state. If it is a goal state, then return it and quit. If not compare it 

to SUCC. If it is better, then set SUCC to this state. If it is not better, leave SUCC 

alone.  

c) IF the SUCC is better than current state, then set current state to SUCC. Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE 
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Hill-climbing   

     This simple policy has three well-known drawbacks: 
 
1. Local Maxima: a local maximum as opposed to 
global maximum. 
 
2. Plateaus: An area of the search     space where 
evaluation function is     flat, thus requiring random 
walk. 
 
3. Ridge: Where there are steep     slopes and the 
search direction is not towards the top but towards 
the side. 

(a) 

 

 
 

 

 

 

 

(b) 

 

 

(c) 
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Hill-climbing   

• In each of the previous cases (local maxima, plateaus & ridge), the 
algorithm reaches a point at which no progress is being made. 

 

• A solution is to do a random-restart hill-climbing - where random 
initial states are generated, running each until it halts or makes no 
discernible progress. The best result is then chosen. 

162 
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Hill Climbing: Disadvantages 

• Hill climbing is a local method:  
 Decides what to do next by looking only at the “immediate” 

consequences of its choices. 

• Will terminate when at local optimum. 

• The order of application of operators can make a big difference. 

• Global information might be encoded in heuristic functions. 
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Hill Climbing: Disadvantages 

B 

C 

D 

A 

B 

C 

Start Goal 

Blocks World 

A D 

Local heuristic:  

+1 for each block that is resting on the thing it is supposed to 

be resting on.  

-1 for each block that is resting on a wrong thing. 

0 4 
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Hill Climbing: Disadvantages 
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Hill Climbing: Disadvantages 
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Hill Climbing: Disadvantages 

B 

C 

D 

A 

B 

C 

Start Goal 

Blocks World 

A D 

Global heuristic:  

For each block that has the correct support structure: +1 to 

   every block in the support structure.  

For each block that has a wrong support structure: -1 to  

   every block in the support structure.  

-6 6 
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Hill Climbing: Disadvantages 
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There is no local maximum! 
Moral: sometimes changing the heuristic 
function is all we need 

CSE, HIT, Nidasoshi



169 

Hill Climbing: Conclusion 

• Can be very inefficient in a large, rough problem space.  
 

• Global heuristic may have to pay for computational complexity. 
 
• Often useful when combined with other methods, getting it 

started right in the right general neighbourhood. 
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Simulated Annealing 

• A variation of hill climbing in which, at the beginning of the 
process, some downhill moves may be made. 

 
• Idea is to do enough exploration of the whole space early on, so 

that the final solution is relatively insensitive to the starting state. 

• Lowering the chances of getting caught at a local maximum, or 
plateau, or a ridge. 
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Simulated Annealing 

• Hill climbing with a twist: 

– allow some moves downhill (to worse states) 

– start out allowing large downhill moves (to much worse states) 
and gradually allow only small downhill moves. 

 

 

Based on physical process of annealing a metal to get the 
best (minimal energy) state. 
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Simulated Annealing 

Physical Annealing 

• Physical substances are melted and then gradually cooled until 
some solid state is reached. 

• The goal is to produce a minimal-energy final state. 

• This process is one of valley descending where the objective 
function is the energy level 
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Simulated Annealing 

• The rate at which the system is cooled is called annealing schedule 

• Annealing schedule: if the temperature is lowered sufficiently slowly, 
then the goal will be attained(global minimum). 

• If cooled rapidly local minimum but not global minimum is reached 

• If too slow time is wasted 

• Nevertheless, there is some probability for a transition to a higher 
energy state: e-E/T. 
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Simulated Annealing  

• The search initially jumps around a lot, exploring many regions of 
the state space. 

 

• The jumping is gradually reduced and the search becomes a 
simple hill climb (search for local optimum). 

 

• The simulated annealing process lowers the temperature by slow 
stages until the system ``freezes" and no further changes occur. 
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Simulated Annealing 
Algorithm 
1. Evaluate the initial state. If it is goal state then return 

2. Initialize BEST-SO-FAR to the current state 

3. Set T according to an annealing schedule 

4. Loop until a solution is found or there are no new operators left to be 
applied: 

  - Selects and applies a new operator 
  - Evaluate the new state: 
   goal  quit 

   compute E = Val(current state) - Val(new state) 

   E < 0  new current state-if is is not goal state but better than the current 
state then make it current. Set this state as BEST-SO-FAR 
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Simulated Annealing 
Algorithm 
  else  If it is not better than the current state make it the       

                          current state  with probability p=e-E/T. 

                           Randomly generate number between [0 1], if   

                           p>number generated, move is accepted else do   

                           nothing 

   - Revise T as necessary according to annealing  schedule 

 

5. Return BEST-SO-FAR as answer 
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Heuristic Searches - Best-First Search 

• Combines the advantages of both DFS and BFS into a single method. 

• DFS is good because it allows a solution to be found without all 

competing branches having to be expanded. 

• BFS is good because it does not get branches on dead end paths.  

• One way of combining the two is to follow a single path at a time, 

but switch paths whenever some competing path looks more 

promising than the current one does.  
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Heuristic Searches - Best-First Search 

• At each step of the BFS search process, we select the most 

promising of the nodes we have generated so far. 

• This is done by applying an appropriate heuristic function to each of 

them. 

• We then expand the chosen node by using the rules to generate its 

successors 
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Heuristic Searches - Best-First Search 

• It proceeds in steps, expanding one node at each step, until it generates a node 

that corresponds to a goal state.  

• At each step, it picks the most promising of the nodes that have so far been 

generated but not expanded. 

• It generates the successors of the chosen node, applies the heuristic function to 

them, and adds them to the list of open nodes, after checking to see if any of 

them have been generated before.  

• By doing this check, we can guarantee that each node only appears once in the 

graph, although many nodes may point to it as a successor. 
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE 
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Heuristic Searches - Best-First Search 

• To implement such a graph-search procedure, we will need to use two lists of 

nodes:  

– OPEN — nodes that have been generated and have had the heuristic function 

applied to them but which have not yet been examined (i.e., had their 

successors generated). 

– CLOSED — nodes that have already been examined. We need to keep these 

nodes in memory if we want to search a graph rather than a tree, since 

whenever a new node is generated, we need to check whether it has been 

generated before.  
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE 
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Heuristic Searches - Best-First Search 

• We will also need a heuristic function that estimates the merits of each 

node we generate. This will enable the algorithm to search more 

promising paths first.  

• Call this function f’. 

• For many applications, it is convenient to define this function as the sum 

of two components that we call g and h'.  

• The function g is a measure of the cost of getting from the initial state to 

the current node.  
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Heuristic Searches - Best-First Search 

• Note that g is not an estimate of anything; it is known to be the exact sum of the 

costs of applying each of the rules that were applied along the best path to the 

node.  

• The combined function then represents an estimate of the cost of getting from 

the initial state to a goal state along the path that generated the current node.  

• If more than one path generated the node, then the algorithm will record the 

best one.  

• Note that because g and h' must be added, it is important that h'  
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Heuristic Searches - Best-First Search 
Algorithm: Best-First Search  

1. Start with OPEN containing just the initial state.  

2. Until a goal is found or there are no nodes left on OPEN do:  

a) Pick them best node on OPEN.  

b) Generate its successors.  

c) For each successor do:  

i. if it has not been generated before, evaluate it, add it to OPEN, and record its 

parent.  

ii. If it has been generated before, change the parent if this new path is better than 

the previous one. In that case, update the cost of getting to this node and to any 

successors that this node may already have.  
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Heuristic Searches - Best-First Search 
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Heuristic Searches – A* Search 
1. Start with OPEN containing only the initial node. Set that node's g value to 0, its h' value to 

whatever it is, and its f' value to h’ + 0, or h'. Set CLOSED to the empty list.  

2. Until a goal node is found, repeat the following procedure: If there are no nodes on OPEN. 

report failure. Otherwise, pick the node on OPEN with the lowest f' value. Call it BESTNODE. 

Remove it from OPEN. Place it on CLOSED. See if BESTNODE is a goal node. If so, exit and 

report a solution. Otherwise, generate the successors of BESTNODE but do not set BESTNODE 

to point to them yet. For each such SUCCESSOR, do the following:  

a) Set SUCCESSOR to point back to BESTNODE. These backwards links will make it possible to 

recover the path once a solution is found.  

b) Compute g(SUCCESSOR) = g(BESTNODE) + the cost of getting from BESTNODE to 

SUCCESSOR.  

c) if SUCCESSOR was not already on either OPEN or CLOSED, then put it on OPEN, and add it 

to the list of BESTNODE's successors. Compute f’(SUCCESSOR) = g(SUCCESSOR) + 

h’(SUCCESSOR) 
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A* Algorithm Solved Example 

A simple search problem: S is the start node, G is the goal node, the 
real distances are shown. 

A lower-bound estimate of the distance to G could be as follows (note 
that we do not need it for F): 

A B C 

D E F 

G 
S 
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4 

4 4 

4 
5 5 

3.5 
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D E F 

G 
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3.4 
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7.1 
3.5 
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A* Algorithm 

A*, step 1 

S 

A D 

3+10.1 4+9.2 
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A* Algorithm 

A*, step 2 

S 

A D 

B D 

13.1 13.2 

3+4+5.8 3+5+9.2 

CSE, HIT, Nidasoshi



A* Algorithm 

A*, step 3 
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A* Algorithm 

A*, step 4 
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A* Algorithm 

A*, step 5 
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A* Algorithm 

A*, step 6 
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Problem Reduction 

• Sometimes problems only seem hard to solve. 

• A hard problem may be one that can be reduced to a number of 

simple problems and, when each of the simple problems is solved, 

then the hard problem has been solved. 

• This is the basic intuition behind the method of problem reduction. 
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Problem Reduction 

 

• If we are looking for a sequence of actions to achieve some goal, 

then one way to do it is to use state-space search, where each node 

in your search space is a state of the world, and you are searching 

for a sequence of actions that get you from an initial state to a final 

state. 
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Problem Reduction 

• Another way is to consider the different ways that the goal state can 

be decomposed into simpler subgoals. 

• For example, when planning a trip to Bangalore you probably don't 

want to search through all the possible sequences of actions that 

might get you to Bangalore . 

• You're more likely to decompose the problem into simpler ones - 

such as getting to the station, then getting a train to Bangalore . 
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Problem Reduction 

• There may be more than one possible way of decomposing the 

problem - an alternative strategy might be to get to the airport, fly 

to Mysore, and get the train from Mysore into Bangalore. 

• These different possible plans would have different costs (and 

benefits) associated with them, and you might have to choose the 

best plan. 
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Problem Reduction 

• The simple state-space search techniques could be represented 

using a tree where each successor node represents an alternative 

action to be taken. 

• The graph structure being searched is referred to as an OR graph. 

• In OR graph we want to find a single path to a goal. 
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Problem Reduction 

• This is due to the fact that we will know how to get to from a node 

to a goal state if we can discover how to get from that node to a 

goal state along any one of the branches leaving it. 

• To represent problem reduction techniques we need to use an AND-

OR graph/tree. 
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Problem Reduction 
• Breaking a problem down into smaller sub-problems (or sub-goals). 

 

• Can be represented using goal trees (or and-or trees). 

 

• Nodes in the tree represent sub-problems.  

 

• The root node represents the overall problem. 

 

• Some nodes are and nodes, meaning all their children must be solved. 
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Problem Reduction 
• Algorithm AO* (Martelli & Montanari 1973, Nilsson 1980) 

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE 

Goal: Acquire TV set 

AND-OR Graphs 

Goal: Steal TV set Goal: Earn some money Goal: Buy TV set 
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Problem Reduction 
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Problem Reduction 

• In a problem reduction space, the nodes represent problems to be 

solved or goals to be achieved, and the edges represent the 

decomposition of the problem into subproblems. 

• This is best illustrated by the example of the Towers of Hanoi problem.   

Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE 
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2AB 

3AC 

1AC 2BC 

1AC 1AB 1CB 1BA 1BC 1AC 

Problem Reduction Space 
• The root node, labeled “3AC” represents the original problem of 

transferring all 3 disks from peg A to peg C.  

• The goal can be decomposed into three subgoals: 2AB, 1AC, 2BC. 
In order to achieve the goal, all 3 subgoals must be achieved. CSE, HIT, Nidasoshi



Problem Reduction Space 

3AC 
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Problem Reduction Space 
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Problem Reduction Space 
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Problem Reduction Space 
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Problem Reduction Space 
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Problem Reduction Space 
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Problem Reduction Space 
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Problem Reduction or AO* Algorithm 
1. Initialize the graph to the starting node.  

2. Loop until the starting node is labeled SOLVED or until its cost goes above FUTILITY:  

1. Traverse the graph, starting at the initial node following the current best path and accumulate the 

set of nodes that are on that path and have not yet been expanded or labeled solved.  

2. Pick up one of those unexpanded nodes and expand it. If there are no successors, assign FUTILITY 

as the value of this node. Otherwise add the successors to the graph and each of this compute f’ 

(use only h’ and ignore g).  

3. If f’ of any node is “0”, mark the node as SOLVED. Change the value of f' for the newly created 

node to reflect its successors by back propagation. Wherever possible use the most promising 

routes and if a node is marked as SOLVED then mark the parent node as SOLVED. 
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Problem Reduction 
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AO* (Elaborated) Algorithm 
1. Let GRAPH consist only of the node representing the initial state. (Call this node min:) 

Compute h'(INIT )  

2. Until INIT is labeled SOLVED or until INIT's h' value becomes greater than FUTILITY. 
repeat the following procedure:  

a) Trace the labeled arcs from INIT and select for expansion one of the as yet 
unexpanded nodes that occurs on this path. Call the selected node NODE.  

b) Generate the successors of NODE. If there arc none, then assign FUTILITY as the h' 
value of NODE. This is equivalent to saying that NODE is not solvable. If there are 
successors, then for each one (called SUCCESSOR) that is not also an ancestor of 
NODE do the following:  

i. Add SUCCESSOR to GRAPH.  

ii. If SUCCESSOR is a terminal node, label it SOLVED and assign it an It' value of 
0.  

iii. If SUCCESSOR is not a terminal node, compute its h' value. 
Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE 
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AO* (Elaborated) Algorithm 
c) Propagate the newly discovered information up the graph by doing the following: Let S be a set of 

nodes that have been labeled SOLVED or whose h' values have been changed and so need to have 
values propagated back to their parents. Initialize 5 to NODE. Until S is empty, repeat the, 
following procedure:  

i. If possible, select from S a node none of whose descendants in GRAPH occurs in S. If there is 
no such node, select any node from S. Call this node CURRENT. and remove it from S.  

ii. Compute the cost of each of the arcs emerging from CURRENT: The cost of each arc is equal 
to the sum of the h' values of each of the nodes at the end of the arc plus whatever the cost 
of the arc itself is. Assign as CURRENT'S new le value the minimum of the costs just computed 
for the arcs emerging from it.  

iii. Mark the best path out of CURRENT by marking the arc that had the minimum cost as 
computed in the previous step.  

iv. Mark CURRENT SOLVED if all of the nodes connected to it through the new labeled arc have 
been labeled SOLVED.  

v. If CURRENT has been labeled SOLVED or if the cost of CURRENT was just changed, then its 
new status must be propagated back up the graph. So add all of the ancestors of CURRENT to 
S.  Dr. Mahesh G. Huddar, Associate Professor, Dept. of CSE 
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Constraint Satisfaction 
• Many AI problems can be viewed as problems of constraint 

satisfaction. 
 
  Cryptarithmetic puzzle: 
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Constraint Satisfaction 

• As compared with a straightforward search procedure, viewing a 

problem as one of constraint satisfaction can reduce substantially the 

amount of search. 

 

• Operates in a space of constraint sets. 

• Initial state contains the original constraints given in the problem. 

• A goal state is any state that has been constrained “enough”. 
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Constraint Satisfaction 
Two-step process: 

1. Constraints are discovered and propagated as far as possible. 

2. If there is still not a solution, then search begins, adding new 
constraints. 
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Constraint Satisfaction 
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Constraint Satisfaction 

1) M = 1, because M =/= 0 and … 

•                   the carry over of the addition of two 

•                   digits (plus previous carry) is at most 1. 

2) O = 0. Because M=1 and we have to have a carry to the next column. 

S + 1 + C3 is either 10 or 11. So, O equals 0 or 1.  1 is taken. So, O = 0. 

3) S = 9.  There cannot be a carry to the 4th column (if there were, N 

would also have to be 0 or 1. Already taken.). So, S = 9. 
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Constraint Satisfaction 
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Constraint Satisfaction 
Two kinds of rules: 

1. Rules that define valid constraint propagation. 

2. Rules that suggest guesses when necessary. 
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Constraint Satisfaction Algorithm 
1. Propagate available constraints. To do this, first set OPEN to the set of all objects that must have 

values assigned to them in a complete solution. Then do until an inconsistency is detected or until 
OPEN is empty:  

a) Select an object OB from OPEN. Strengthen as much as possible the set of constraints that 
apply to OB.  

b) If this set is different from the set that was assigned the last time OB was examined or if this 
is the first time OB has been examined, then add to OPEN all objects that share any 
constraints with OB.  

c) Remove OB from OPEN.  
2. If the union of the constraints discovered above defines a solution, then quit and report the 

solution.  
3. If the union of the constraints discovered above defines a contradiction, then return failure.  
4. If neither of the above occurs, then it is necessary to make a guess at something in order to 

proceed. To do this, loop until a solution is found or all possible solutions have been eliminated:  
a) Select an object whose value is not yet determined and select a way of strengthening the 

constraints on that object.  
b) Recursively invoke constraint satisfaction with the current set of constraints augmented by 

the strengthening constraint just selected.  
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Constraint Satisfaction 

Two kinds of rules: 

1. Rules that define valid constraint propagation. 

2. Rules that suggest guesses when necessary. 
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Means-Ends Analysis 

• We have studied the strategies which can reason either in forward or backward, but a mixture of the 

two directions is appropriate for solving a complex and large problem. Such a mixed strategy, make it 

possible that first to solve the major part of a problem and then go back and solve the small problems 

arise during combining the big parts of the problem. Such a technique is called Means-Ends Analysis. 

• It is a mixture of Backward and forward search technique. 

• The MEA technique was first introduced in 1961 by Allen Newell, and Herbert A. Simon in their 

problem-solving computer program, which was named as General Problem Solver (GPS). 

• The MEA analysis process centered on the evaluation of the difference between the current state and 

goal state. 
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Means-Ends Analysis 

How means-ends analysis Works: 

• The means-ends analysis process can be applied recursively for a problem. It is a 

strategy to control search in problem-solving.  

• Following are the main Steps which describes the working of MEA technique for 

solving a problem. 

1) First, evaluate the difference between Initial State and final State. 

2) Select the various operators which can be applied for each difference. 

3) Apply the operator at each difference, which reduces the difference between 

the current state and goal state. 
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Means-Ends Analysis 

Operator Subgoaling 

• In the MEA process, we detect the differences between the current state and goal state.  

• Once these differences occur, then we can apply an operator to reduce the differences.  

• But sometimes it is possible that an operator cannot be applied to the current state.  

• So we create the subproblem of the current state, in which operator can be applied, 

such type of backward chaining in which operators are selected, and then sub goals are 

set up to establish the preconditions of the operator is called Operator Subgoaling. 
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Means-Ends Analysis Algorithm 
Let's we take Current state as CURRENT and Goal State as GOAL, then following are the steps 
for the MEA algorithm. 

• Step 1: Compare CURRENT to GOAL, if there are no differences between both then return 
Success and Exit. 

• Step 2: Else, select the most significant difference and reduce it by doing the following steps 
until the success or failure occurs. 

a) Select a new operator O which is applicable for the current difference, and if there is no such 
operator, then signal failure. 

b) Attempt to apply operator O to CURRENT. Make a description of two states. 
i) O-Start, a state in which O?s preconditions are satisfied. 
ii) O-Result, the state that would result if O were applied In O-start. 

c) If 
(First-Part <------ MEA (CURRENT, O-START) 
And 
(LAST-Part <----- MEA (O-Result, GOAL), are successful, then signal Success and return the result of 
combining FIRST-PART, O, and LAST-PART. 
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Means-Ends Analysis - Example 

• Let's take an example where we know the initial state and goal state as given 

below.  

• In this problem, we need to get the goal state by finding differences between the 

initial state and goal state and applying operators. CSE, HIT, Nidasoshi
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Means-Ends Analysis - Example 

• To solve the above problem, we will first find the differences between 

initial states and goal states, and for each difference, we will generate 

a new state and will apply the operators.  

• The operators we have for this problem are: 

– Move 

– Delete 

– Expand 
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Means-Ends Analysis - Example 

1. Evaluating the initial state:  

In the first step, we will evaluate the initial state and will compare the 

initial and Goal state to find the differences between both states. 
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Means-Ends Analysis - Example 

2. Applying Delete operator:  

As we can check the first difference is that in goal state there is no dot 

symbol which is present in the initial state, so, first we will apply the 

Delete operator to remove this dot. CSE, HIT, Nidasoshi
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3. Applying Move Operator:  

After applying the Delete operator, the new state occurs which we will 

again compare with goal state. After comparing these states, there is 

another difference that is the square is outside the circle, so, we will 

apply the Move Operator. 
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Means-Ends Analysis - Example 

4. Applying Expand Operator:  

Now a new state is generated in the third step, and we will compare 

this state with the goal state.  

After comparing the states there is still one difference which is the size 

of the square, so, we will apply Expand operator, and finally, it will 

generate the goal state.  
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