
Decision Trees

S J P N Trust's

HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi.
Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Prof. Mahesh G Huddar

Dept. of Computer Science and Engineering

CSE, HIT, Nidasoshi

https://hsit.ac.in/nba-accreditation-status.php

CSE, HIT, Nidasoshi

Decision Tree for Boolean Functions

CSE, HIT, Nidasoshi

• Every Variable in Boolean function such as A, B, C etc. has two

possibilities that is True and False

• Every Boolean function is either True or False

• If the Boolean function is true we write YES (Y)

• If the Boolean function is False we write NO (N)

Decision Tree for Boolean Functions

CSE, HIT, Nidasoshi

Decision Tree for Boolean Functions

CSE, HIT, Nidasoshi

Decision Tree for Boolean Functions

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

Decision Trees

 Decision Trees is one of the most widely used Classification Algorithm

 Features

 Method for approximating discrete-valued functions (including boolean)

 Learned functions are represented as decision trees (or if-then-else

rules)

 Expressive hypotheses space, including disjunction

 Robust to noisy data

CSE, HIT, Nidasoshi

Example

CSE, HIT, Nidasoshi

Decision Tree Representation (PlayTennis)

Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong No

CSE, HIT, Nidasoshi

Decision trees expressivity

• Decision trees represent a disjunction of conjunctions on
constraints on the value of attributes:

(Outlook = Sunny  Humidity = Normal) 

(Outlook = Overcast) 

(Outlook = Rain  Wind = Weak) CSE, HIT, Nidasoshi

• Decision trees classify instances by sorting them down the tree from the root to

some leaf node, which provides the classification of the instance.

• Each node in the tree specifies a test of some attribute of the instance, and each

branch descending from that node corresponds to one of the possible values for

this attribute.

• An instance is classified by starting at the root node of the tree, testing the

attribute specified by this node, then moving down the tree branch

corresponding to the value of the attribute in the given example.

• This process is then repeated for the subtree rooted at the new node.

Decision tree representation (PlayTennis)

CSE, HIT, Nidasoshi

• In general, decision trees represent a disjunction of conjunctions of constraints

on the attribute values of instances.

• Each path from the tree root to a leaf corresponds to a conjunction of attribute

tests, and the tree itself to a disjunction of these conjunctions.

Decision tree representation (PlayTennis)

CSE, HIT, Nidasoshi

Example

CSE, HIT, Nidasoshi

Although a variety of decision tree learning methods have been developed with

somewhat differing capabilities and requirements, decision tree learning is

generally best suited to problems with the following characteristics:

1. Instances are represented by attribute-value pairs. Instances are described by

a fixed set of attributes (e.g., Temperature) and their values (e.g., Hot). The

easiest situation for decision tree learning is when each attribute takes on a

small number of disjoint possible values (e.g., Hot, Mild, Cold). However,

extensions to the basic algorithm allow handling real-valued attributes as well

(e.g., representing Temperature numerically).

APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING

CSE, HIT, Nidasoshi

2. The target function has discrete output values. The decision tree is usually

used for Boolean classification (e.g., yes or no) kind of example. Decision tree

methods easily extend to learning functions with more than two possible

output values. A more substantial extension allows learning target functions

with real-valued outputs, though the application of decision trees in this

setting is less common.

3. Disjunctive descriptions may be required. Decision trees naturally represent

disjunctive expressions.

APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING

CSE, HIT, Nidasoshi

4. The training data may contain errors. Decision tree learning methods are

robust to errors, both errors in classifications of the training examples and

errors in the attribute values that describe these examples.

5. The training data may contain missing attribute values. Decision tree

methods can be used even when some training examples have unknown

values (e.g., if the Humidity of the day is known for only some of the training

examples).

APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING

CSE, HIT, Nidasoshi

• Many practical problems have been found to fit these characteristics.

• Decision tree learning has therefore been applied to problems such as

learning to classify medical patients by their disease, equipment

malfunctions by their cause, and loan applicants by their likelihood of

defaulting on payments.

• Such problems, in which the task is to classify examples into one of a

discrete set of possible categories, are often referred to as classification

problems.

APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING

CSE, HIT, Nidasoshi

• Most algorithms that have been developed for learning decision trees are

variations on a core algorithm that employs a top-down, greedy search through

the space of possible decision trees.

• This approach is exemplified by the ID3 algorithm (Quinlan 1986) and its

successor C4.5 (Quinlan 1993), which form the primary focus of our discussion

here.

• The basic algorithm for decision tree learning, corresponding approximately to

the ID3 algorithm.

• Next, we consider a number of extensions to this basic algorithm, including

extensions incorporated into C4.5 and other more recent algorithms for decision

tree learning.

THE BASIC DECISION TREE LEARNING ALGORITHM

CSE, HIT, Nidasoshi

Example

CSE, HIT, Nidasoshi

Which Attribute Is the Best Classifier?

• The central choice in the ID3 algorithm is selecting which attribute to test at each

node in the tree.

• We would like to select the attribute that is most useful for classifying examples.

• What is a good quantitative measure of the worth of an attribute? We will define a

statistical property, called information gain, that measures how well a given

attribute separates the training examples according to their target classification.

• ID3 uses this information gain measure to select among the candidate attributes at

each step while growing the tree.

CONSTRUCTING DECISION TREE – ID3 ALGORITHM

CSE, HIT, Nidasoshi

ENTROPY MEASURES HOMOGENEITY OF EXAMPLES

• Entropy, characterizes the (im)purity of an arbitrary collection of examples.

• Given a collection S, containing positive and negative examples of some target

concept, the entropy of S relative to this boolean classification is

• where p+, is the proportion of positive examples in S and p-, is the proportion of

negative examples in S.

• In all calculations involving entropy we define 0 log 0 to be 0.

CONSTRUCTING DECISION TREE – ID3 ALGORITHM

CSE, HIT, Nidasoshi

ENTROPY MEASURES HOMOGENEITY OF EXAMPLES

• Entropy measures the (im)purity of a collection of examples. It depends from the distribution

of the random variable p.

 S is a collection of training examples

 p+ the proportion of positive examples in S

 p– the proportion of negative examples in S

Examples

 Entropy (S)  – p+ log2 p+ – p–log2 p– [0 log20 = 0]

 Entropy ([14+, 0–]) = – 14/14 log2 (14/14) – 0 log2 (0) = 0

 Entropy ([9+, 5–]) = – 9/14 log2 (9/14) – 5/14 log2 (5/14) = 0,94

 Entropy ([7+, 7–]) = – 7/14 log2 (7/14) – 7/14 log2 (7/14) =

 = 1/2 + 1/2 = 1

CONSTRUCTING DECISION TREE – ID3 ALGORITHM

CSE, HIT, Nidasoshi

Example

CSE, HIT, Nidasoshi

Entropy

CONSTRUCTING DECISION TREE – ID3 ALGORITHM

CSE, HIT, Nidasoshi

INFORMATION GAIN MEASURES THE EXPECTED REDUCTION IN ENTROPY

• Given entropy as a measure of the impurity in a collection of training examples, we can

now define a measure of the effectiveness of an attribute in classifying the training data.

• Now, the information gain, is simply the expected reduction in entropy caused by

partitioning the examples according to this attribute.

• More precisely, the information gain, Gain(S, A) of an attribute A, relative to a collection of

examples S, is defined as,

• where Values(A) is the set of all possible values for attribute A, and S, is the subset of S for

which attribute A has value v (i.e. , 𝑆𝑣 = {𝒔 ∈ 𝑺|𝑨(𝒔) = 𝒗})

CONSTRUCTING DECISION TREE – ID3 ALGORITHM

CSE, HIT, Nidasoshi

• For example, suppose S is a collection of training-example days described by
attributes including Wind, which can have the values Weak or Strong.

CONSTRUCTING DECISION TREE – ID3 ALGORITHM

CSE, HIT, Nidasoshi

• Information gain is precisely the measure used by ID3 to select the best attribute

at

• each step in growing the tree.

• The use of information gain to evaluate the relevance of attributes.

• Here the information gain of two different attributes, Humidity and Wind, is

computed in order to determine which is the better attribute for classifying the

training examples.

CONSTRUCTING DECISION TREE – ID3 ALGORITHM

CSE, HIT, Nidasoshi

CONSTRUCTING DECISION TREE – ID3 ALGORITHM

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

DECISION TREE – ID3 ALGORITHM NUMERICAL EXAMPLE
Day Outlook Temp Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

CSE, HIT, Nidasoshi

Attribute: Outlook

𝑽𝒂𝒍𝒖𝒆𝒔 (𝑶𝒖𝒕𝒍𝒐𝒐𝒌) = 𝑺𝒖𝒏𝒏𝒚,𝑶𝒗𝒆𝒓𝒄𝒂𝒔𝒕,𝑹𝒂𝒊𝒏

𝑺 = 𝟗+, 𝟓 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟗

𝟏𝟒
𝒍𝒐𝒈𝟐

𝟗

𝟏𝟒
−
𝟓

𝟏𝟒
𝒍𝒐𝒈𝟐

𝟓

𝟏𝟒
= 𝟎. 𝟗𝟒

𝑺𝑺𝒖𝒏𝒏𝒚 ← [𝟐+,𝟑−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 = −
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
−
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
= 𝟎. 𝟗𝟕𝟏

𝑺𝑶𝒗𝒆𝒓𝒄𝒂𝒔𝒕 ← [𝟒+, 𝟎−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑶𝒗𝒆𝒓𝒄𝒂𝒔𝒕 = −
𝟒

𝟒
𝒍𝒐𝒈𝟐

𝟒

𝟒
−
𝟎

𝟒
𝒍𝒐𝒈𝟐

𝟎

𝟒
= 𝟎

𝑺𝑹𝒂𝒊𝒏 ← [𝟑+, 𝟐−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑹𝒂𝒊𝒏 = −
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
−
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
= 𝟎. 𝟗𝟕𝟏

𝑮𝒂𝒊𝒏 𝑺,𝑶𝒖𝒕𝒍𝒐𝒐𝒌 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑺𝒖𝒏𝒏𝒚,𝑶𝒗𝒆𝒓𝒄𝒂𝒔𝒕,𝑹𝒂𝒊𝒏}

𝑮𝒂𝒊𝒏 𝑺,𝑶𝒖𝒕𝒍𝒐𝒐𝒌

= 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝟓

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 −

𝟒

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑶𝒗𝒆𝒓𝒄𝒂𝒔𝒕

−
𝟓

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑹𝒂𝒊𝒏

𝑮𝒂𝒊𝒏 𝑺,𝑶𝒖𝒕𝒍𝒐𝒐𝒌 = 𝟎. 𝟗𝟒 −
𝟓

𝟏𝟒
𝟎. 𝟗𝟕𝟏 −

𝟒

𝟏𝟒
 𝟎 −
𝟓

𝟏𝟒
𝟎. 𝟗𝟕𝟏 = 𝟎. 𝟐𝟒𝟔𝟒

Day Outlook Temp Humidity Wind
Play

Tennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

CSE, HIT, Nidasoshi

Attribute: Temp

𝑽𝒂𝒍𝒖𝒆𝒔 𝑻𝒆𝒎𝒑 = 𝑯𝒐𝒕,𝑴𝒊𝒍𝒅, 𝑪𝒐𝒐𝒍

𝑺 = 𝟗+, 𝟓 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟗

𝟏𝟒
𝒍𝒐𝒈𝟐

𝟗

𝟏𝟒
−
𝟓

𝟏𝟒
𝒍𝒐𝒈𝟐

𝟓

𝟏𝟒
= 𝟎. 𝟗𝟒

𝑺𝑯𝒐𝒕 ← [𝟐+, 𝟐−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 = −
𝟐

𝟒
𝒍𝒐𝒈𝟐

𝟐

𝟒
−
𝟐

𝟒
𝒍𝒐𝒈𝟐

𝟐

𝟒
= 𝟏. 𝟎

𝑺𝑴𝒊𝒍𝒅 ← [𝟒+, 𝟐−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑴𝒊𝒍𝒅 = −
𝟒

𝟔
𝒍𝒐𝒈𝟐

𝟒

𝟔
−
𝟐

𝟔
𝒍𝒐𝒈𝟐

𝟐

𝟔
= 𝟎. 𝟗𝟏𝟖𝟑

𝑺𝑪𝒐𝒐𝒍 ← [𝟑+, 𝟏−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍 = −
𝟑

𝟒
𝒍𝒐𝒈𝟐

𝟑

𝟒
−
𝟏

𝟒
𝒍𝒐𝒈𝟐

𝟏

𝟒
= 𝟎.𝟖𝟏𝟏𝟑

𝑮𝒂𝒊𝒏 𝑺, 𝑻𝒆𝒎𝒑 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒐𝒕,𝑴𝒊𝒍𝒅,𝑪𝒐𝒐𝒍}

𝑮𝒂𝒊𝒏 𝑺, 𝑻𝒆𝒎𝒑

= 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝟒

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 −

𝟔

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑴𝒊𝒍𝒅

−
𝟒

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍

𝑮𝒂𝒊𝒏 𝑺, 𝑻𝒆𝒎𝒑 = 𝟎. 𝟗𝟒 −
𝟒

𝟏𝟒
𝟏. 𝟎 −

𝟔

𝟏𝟒
 𝟎. 𝟗𝟏𝟖𝟑 −

𝟒

𝟏𝟒
𝟎. 𝟖𝟏𝟏𝟑 = 𝟎. 𝟎𝟐𝟖𝟗

Day Outlook Temp Humidity Wind
Play

Tennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

CSE, HIT, Nidasoshi

Attribute: Humidity

𝑽𝒂𝒍𝒖𝒆𝒔 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝑯𝒊𝒈𝒉,𝑵𝒐𝒓𝒎𝒂𝒍

𝑺 = 𝟗+, 𝟓 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟗

𝟏𝟒
𝒍𝒐𝒈𝟐

𝟗

𝟏𝟒
−
𝟓

𝟏𝟒
𝒍𝒐𝒈𝟐

𝟓

𝟏𝟒
= 𝟎. 𝟗𝟒

𝑺𝑯𝒊𝒈𝒉 ← [𝟑+, 𝟒−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 = −
𝟑

𝟕
𝒍𝒐𝒈𝟐

𝟑

𝟕
−
𝟒

𝟕
𝒍𝒐𝒈𝟐

𝟒

𝟕
= 𝟎. 𝟗𝟖𝟓𝟐

𝑺𝑵𝒐𝒓𝒎𝒂𝒍 ← [𝟔+, 𝟏−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍 = −
𝟔

𝟕
𝒍𝒐𝒈𝟐

𝟔

𝟕
−
𝟏

𝟕
𝒍𝒐𝒈𝟐

𝟏

𝟕
= 𝟎. 𝟓𝟗𝟏𝟔

𝑮𝒂𝒊𝒏 𝑺,𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒊𝒈𝒉,𝑵𝒐𝒓𝒎𝒂𝒍}

𝑮𝒂𝒊𝒏 𝑺,𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚

= 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝟕

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 −

𝟕

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍

𝑮𝒂𝒊𝒏 𝑺,𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝟎. 𝟗𝟒 −
𝟕

𝟏𝟒
𝟎. 𝟗𝟖𝟓𝟐 −

𝟕

𝟏𝟒
 𝟎. 𝟓𝟗𝟏𝟔 = 𝟎. 𝟏𝟓𝟏𝟔

Day Outlook Temp Humidity Wind
Play

Tennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

CSE, HIT, Nidasoshi

Attribute: Wind

𝑽𝒂𝒍𝒖𝒆𝒔 𝑾𝒊𝒏𝒅 = 𝑺𝒕𝒓𝒐𝒏𝒈,𝑾𝒆𝒂𝒌

𝑺 = 𝟗+, 𝟓 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟗

𝟏𝟒
𝒍𝒐𝒈𝟐

𝟗

𝟏𝟒
−
𝟓

𝟏𝟒
𝒍𝒐𝒈𝟐

𝟓

𝟏𝟒
= 𝟎. 𝟗𝟒

𝑺𝑺𝒕𝒓𝒐𝒏𝒈 ← [𝟑+, 𝟑−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒕𝒓𝒐𝒏𝒈 = 𝟏. 𝟎

𝑺𝑾𝒆𝒂𝒌 ← [𝟔+, 𝟐−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑾𝒆𝒂𝒌 = −
𝟔

𝟖
𝒍𝒐𝒈𝟐

𝟔

𝟖
−
𝟐

𝟖
𝒍𝒐𝒈𝟐

𝟐

𝟖
= 𝟎. 𝟖𝟏𝟏𝟑

𝑮𝒂𝒊𝒏 𝑺,𝑾𝒊𝒏𝒅 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑺𝒕𝒓𝒐𝒏𝒈,𝑾𝒆𝒂𝒌}

𝑮𝒂𝒊𝒏 𝑺,𝑾𝒊𝒏𝒅 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝟔

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒕𝒓𝒐𝒏𝒈 −

𝟖

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑾𝒆𝒂𝒌

𝑮𝒂𝒊𝒏 𝑺,𝑾𝒊𝒏𝒅 = 𝟎. 𝟗𝟒 −
𝟔

𝟏𝟒
 𝟏. 𝟎 −

𝟖

𝟏𝟒
 𝟎. 𝟖𝟏𝟏𝟑 = 𝟎. 𝟎𝟒𝟕𝟖

Day Outlook Temp Humidity Wind
Play

Tennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

CSE, HIT, Nidasoshi

𝑮𝒂𝒊𝒏 𝑺,𝑶𝒖𝒕𝒍𝒐𝒐𝒌 = 𝟎. 𝟐𝟒𝟔𝟒

𝑮𝒂𝒊𝒏 𝑺, 𝑻𝒆𝒎𝒑 = 𝟎. 𝟎𝟐𝟖𝟗

𝑮𝒂𝒊𝒏 𝑺,𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝟎. 𝟏𝟓𝟏𝟔

𝑮𝒂𝒊𝒏 𝑺,𝑾𝒊𝒏𝒅 = 𝟎. 𝟎𝟒𝟕𝟖

Day Outlook Temp Humidity Wind
Play

Tennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

Day Outlook Temp Humidity Wind
Play

Tennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

CSE, HIT, Nidasoshi

Day
Tem

p
Humidity Wind

Play

Tennis

D1 Hot High Weak No

D2 Hot High Strong No

D8 Mild High Weak No

D9 Cool Normal Weak Yes

D11 Mild Normal Strong Yes

Attribute: Temp

𝑽𝒂𝒍𝒖𝒆𝒔 𝑻𝒆𝒎𝒑 = 𝑯𝒐𝒕,𝑴𝒊𝒍𝒅, 𝑪𝒐𝒐𝒍

𝑺𝑺𝒖𝒏𝒏𝒚 = 𝟐+, 𝟑 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 = −
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
−
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
=

𝟎. 𝟗𝟕

𝑺𝑯𝒐𝒕 ← [𝟎+, 𝟐−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 = 𝟎. 𝟎

𝑺𝑴𝒊𝒍𝒅 ← [𝟏+, 𝟏−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑴𝒊𝒍𝒅 = 𝟏.𝟎

𝑺𝑪𝒐𝒐𝒍 ← [𝟏+, 𝟎−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍 = 𝟎. 𝟎

𝑮𝒂𝒊𝒏 𝑺𝑺𝒖𝒏𝒏𝒚, 𝑻𝒆𝒎𝒑 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒐𝒕,𝑴𝒊𝒍𝒅,𝑪𝒐𝒐𝒍}

𝑮𝒂𝒊𝒏 𝑺𝑺𝒖𝒏𝒏𝒚, 𝑻𝒆𝒎𝒑

= 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 −
𝟐

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 −

𝟐

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑴𝒊𝒍𝒅

−
𝟏

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍

𝑮𝒂𝒊𝒏 𝑺𝒔𝒖𝒏𝒏𝒚, 𝑻𝒆𝒎𝒑 = 𝟎. 𝟗𝟕 −
𝟐

𝟓
𝟎. 𝟎 −

𝟐

𝟓
 𝟏 −
𝟏

𝟓
𝟎. 𝟎 = 𝟎. 𝟓𝟕𝟎

CSE, HIT, Nidasoshi

Day
Tem

p
Humidity Wind

Play

Tennis

Dl Hot High Weak No

D2 Hot High Strong No

D8 Mild High Weak No

D9 Cool Normal Weak Yes

Dl1 Mild Normal Strong Yes

Attribute: Humidity

𝑽𝒂𝒍𝒖𝒆𝒔 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝑯𝒊𝒈𝒉,𝑵𝒐𝒓𝒎𝒂𝒍

𝑺𝑺𝒖𝒏𝒏𝒚 = 𝟐+, 𝟑 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
−
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
= 𝟎. 𝟗𝟕

𝑺𝒉𝒊𝒈𝒉 ← [𝟎+, 𝟑−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 = 𝟎. 𝟎

𝑺𝑵𝒐𝒓𝒎𝒂𝒍 ← [𝟐+, 𝟎−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍 = 𝟎. 𝟎

𝑮𝒂𝒊𝒏 𝑺𝑺𝒖𝒏𝒏𝒚, 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒊𝒈𝒉,𝑵𝒐𝒓𝒎𝒂𝒍}

𝑮𝒂𝒊𝒏 𝑺𝑺𝒖𝒏𝒏𝒚, 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚

= 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 −
𝟑

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 −

𝟐

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍

𝑮𝒂𝒊𝒏 𝑺𝒔𝒖𝒏𝒏𝒚, 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝟎. 𝟗𝟕 −
𝟑

𝟓
 𝟎. 𝟎 −

𝟐

𝟓
𝟎. 𝟎 = 𝟎. 𝟗𝟕

CSE, HIT, Nidasoshi

Day
Tem

p
Humidity Wind

Play

Tennis

Dl Hot High Weak No

D2 Hot High Strong No

D8 Mild High Weak No

D9 Cool Normal Weak Yes

Dl1 Mild Normal Strong Yes

Attribute: Wind

𝑽𝒂𝒍𝒖𝒆𝒔 𝑾𝒊𝒏𝒅 = 𝑺𝒕𝒓𝒐𝒏𝒈,𝑾𝒆𝒂𝒌

𝑺𝑺𝒖𝒏𝒏𝒚 = 𝟐+, 𝟑 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
−
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
= 𝟎. 𝟗𝟕

𝑺𝑺𝒕𝒓𝒐𝒏𝒈 ← [𝟏+, 𝟏−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒕𝒓𝒐𝒏𝒈 = 𝟏. 𝟎

𝑺𝑾𝒆𝒂𝒌 ← [𝟏+, 𝟐−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑾𝒆𝒂𝒌 = −
𝟏

𝟑
𝒍𝒐𝒈𝟐

𝟏

𝟑
−
𝟐

𝟑
𝒍𝒐𝒈𝟐

𝟐

𝟑
=

𝟎. 𝟗𝟏𝟖𝟑

𝑮𝒂𝒊𝒏 𝑺𝑺𝒖𝒏𝒏𝒚,𝑾𝒊𝒏𝒅 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑺𝒕𝒓𝒐𝒏𝒈,𝑾𝒆𝒂𝒌}

𝑮𝒂𝒊𝒏 𝑺𝑺𝒖𝒏𝒏𝒚,𝑾𝒊𝒏𝒅

= 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 −
𝟐

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒕𝒓𝒐𝒏𝒈 −

𝟑

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑾𝒆𝒂𝒌

𝑮𝒂𝒊𝒏 𝑺𝒔𝒖𝒏𝒏𝒚,𝑾𝒊𝒏𝒅 = 𝟎. 𝟗𝟕 −
𝟐

𝟓
𝟏. 𝟎 −

𝟑

𝟓
 𝟎. 𝟗𝟏𝟖 = 𝟎. 𝟎𝟏𝟗𝟐

CSE, HIT, Nidasoshi

Day
Tem

p
Humidity Wind

Play

Tennis

D1 Hot High Weak No

D2 Hot High Strong No

D8 Mild High Weak No

D9 Cool Normal Weak Yes

D11 Mild Normal Strong Yes

𝑮𝒂𝒊𝒏 𝑺𝒔𝒖𝒏𝒏𝒚, 𝑻𝒆𝒎𝒑 = 𝟎. 𝟓𝟕𝟎

𝑮𝒂𝒊𝒏 𝑺𝒔𝒖𝒏𝒏𝒚, 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝟎. 𝟗𝟕

𝑮𝒂𝒊𝒏 𝑺𝒔𝒖𝒏𝒏𝒚,𝑾𝒊𝒏𝒅 = 𝟎. 𝟎𝟏𝟗𝟐

CSE, HIT, Nidasoshi

{D1, D2, D8}

 No

{D9, D11}

 Yes

CSE, HIT, Nidasoshi

Day Outlook Temp Humidity Wind
Play

Tennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

CSE, HIT, Nidasoshi

Day
Tem

p
Humidity Wind

Play

Tennis

D4 Mild High Weak Yes

D5 Cool Normal Weak Yes

D6 Cool Normal Strong No

D10 Mild Normal Weak Yes

D14 Mild High Strong No

Attribute: Temp

𝑽𝒂𝒍𝒖𝒆𝒔 𝑻𝒆𝒎𝒑 = 𝑯𝒐𝒕,𝑴𝒊𝒍𝒅, 𝑪𝒐𝒐𝒍

𝑺𝑹𝒂𝒊𝒏 = 𝟑+, 𝟐 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 = −
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
−
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
= 𝟎. 𝟗𝟕

𝑺𝑯𝒐𝒕 ← [𝟎+, 𝟎−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 = 𝟎. 𝟎

𝑺𝑴𝒊𝒍𝒅 ← [𝟐+,𝟏−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑴𝒊𝒍𝒅 = −
𝟐

𝟑
𝒍𝒐𝒈𝟐

𝟐

𝟑
−
𝟏

𝟑
𝒍𝒐𝒈𝟐

𝟏

𝟑
=

𝟎. 𝟗𝟏𝟖𝟑

𝑺𝑪𝒐𝒐𝒍 ← [𝟏+, 𝟏−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍 = 𝟏. 𝟎

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏, 𝑻𝒆𝒎𝒑 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑹𝒂𝒊𝒏 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒐𝒕,𝑴𝒊𝒍𝒅,𝑪𝒐𝒐𝒍}

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏, 𝑻𝒆𝒎𝒑

= 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑹𝒂𝒊𝒏 −
𝟎

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 −

𝟑

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑴𝒊𝒍𝒅

−
𝟐

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏, 𝑻𝒆𝒎𝒑 = 𝟎. 𝟗𝟕 −
𝟎

𝟓
𝟎. 𝟎 −

𝟑

𝟓
 𝟎. 𝟗𝟏𝟖 −

𝟐

𝟓
 𝟏. 𝟎 = 𝟎. 𝟎𝟏𝟗𝟐

CSE, HIT, Nidasoshi

Day
Tem

p
Humidity Wind

Play

Tennis

D4 Mild High Weak Yes

D5 Cool Normal Weak Yes

D6 Cool Normal Strong No

Dl0 Mild Normal Weak Yes

Dl4 Mild High Strong No

Attribute: Humidity

𝑽𝒂𝒍𝒖𝒆𝒔 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝑯𝒊𝒈𝒉,𝑵𝒐𝒓𝒎𝒂𝒍

𝑺𝑹𝒂𝒊𝒏 = 𝟑+, 𝟐 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 = −
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
−
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
=

𝟎. 𝟗𝟕

𝑺𝑯𝒊𝒈𝒉 ← [𝟏+, 𝟏−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 = 𝟏. 𝟎

𝑺𝑵𝒐𝒓𝒎𝒂𝒍 ← [𝟐+, 𝟏−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍 = −
𝟐

𝟑
𝒍𝒐𝒈𝟐

𝟐

𝟑
−
𝟏

𝟑
𝒍𝒐𝒈𝟐

𝟏

𝟑
=

𝟎. 𝟗𝟏𝟖𝟑

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏, 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑹𝒂𝒊𝒏 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒊𝒈𝒉,𝑵𝒐𝒓𝒎𝒂𝒍}

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏, 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚

= 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑹𝒂𝒊𝒏 −
𝟐

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 −

𝟑

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏, 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝟎. 𝟗𝟕 −
𝟐

𝟓
 𝟏. 𝟎 −

𝟑

𝟓
𝟎. 𝟗𝟏𝟖 = 𝟎. 𝟎𝟏𝟗𝟐

CSE, HIT, Nidasoshi

Day
Tem

p
Humidity Wind

Play

Tennis

D4 Mild High Weak Yes

D5 Cool Normal Weak Yes

D6 Cool Normal Strong No

Dl0 Mild Normal Weak Yes

Dl4 Mild High Strong No

Attribute: Wind

𝑽𝒂𝒍𝒖𝒆𝒔 𝒘𝒊𝒏𝒅 = 𝑺𝒕𝒓𝒐𝒏𝒈,𝑾𝒆𝒂𝒌

𝑺𝑹𝒂𝒊𝒏 = 𝟑+, 𝟐 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 = −
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
−
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
=

𝟎. 𝟗𝟕

𝑺𝑺𝒕𝒓𝒐𝒏𝒈 ← [𝟎+, 𝟐−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒕𝒓𝒐𝒏𝒈 = 𝟎. 𝟎

𝑺𝑾𝒆𝒂𝒌 ← [𝟑+, 𝟎−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝒘𝒆𝒂𝒌 = 𝟎. 𝟎

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏,𝑾𝒊𝒏𝒅 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑹𝒂𝒊𝒏 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑺𝒕𝒓𝒐𝒏𝒈,𝑾𝒆𝒂𝒌}

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏,𝑾𝒊𝒏𝒅 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑹𝒂𝒊𝒏 −
𝟐

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒕𝒓𝒐𝒏𝒈 −

𝟑

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑾𝒆𝒂𝒌

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏,𝑾𝒊𝒏𝒅 = 𝟎. 𝟗𝟕 −
𝟐

𝟓
 𝟎. 𝟎 −

𝟑

𝟓
𝟎. 𝟎 = 𝟎. 𝟗𝟕

CSE, HIT, Nidasoshi

Day
Tem

p
Humidity Wind

Play

Tennis

D4 Mild High Weak Yes

D5 Cool Normal Weak Yes

D6 Cool Normal Strong No

Dl0 Mild Normal Weak Yes

Dl4 Mild High Strong No

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏, 𝑻𝒆𝒎𝒑 = 𝟎. 𝟎𝟏𝟗𝟐

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏, 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝟎. 𝟎𝟏𝟗𝟐

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏,𝑾𝒊𝒏𝒅 = 𝟎. 𝟗𝟕

CSE, HIT, Nidasoshi

{D1, D2, D8}

 No

{D9, D11}

 Yes {D4, D5, D10}

 Yes
{D6, D14}

 No

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

Instance Classification a1 a2

1 + T T

2 + T T

3 - T F

4 + F F

5 - F T

6 - F T

1. What is the entropy of this collection of training examples with respect to

the target function classification?

2. What is the information gain of a2 relative to these training examples?

3. Draw decision tree for the given dataset.

DECISION TREE EXAMPLE

CSE, HIT, Nidasoshi

Decision Tree Algorithm – ID3 Solved Example

Subscribe to Mahesh Huddar Visit: vtupulse.com

1. What is the entropy of this collection of training examples with respect to the target

function classification?

2. What is the information gain of a1 and a2 relative to these training examples?

3. Draw decision tree for the given dataset.

Instance Classification a1 a2

1 + T T

2 + T T

3 - T F

4 + F F

5 - F T

6 - F T

CSE, HIT, Nidasoshi

Attribute: a1

𝑽𝒂𝒍𝒖𝒆𝒔 𝒂𝟏 = 𝑻, 𝑭

𝑺 = 𝟑+, 𝟑 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = 𝟏. 𝟎

𝑺𝑻 = 𝟐+, 𝟏 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑻 = −
𝟐

𝟑
𝒍𝒐𝒈𝟐

𝟐

𝟑
−
𝟏

𝟑
𝒍𝒐𝒈𝟐

𝟏

𝟑
= 𝟎. 𝟗𝟏𝟖𝟑

𝑺𝑭 ← [𝟏+, 𝟐−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑭 = −
𝟏

𝟑
𝒍𝒐𝒈𝟐

𝟏

𝟑
−
𝟐

𝟑
𝒍𝒐𝒈𝟐

𝟐

𝟑
= 𝟎. 𝟗𝟏𝟖𝟑

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟏 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑻,𝑭}

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟏 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝟑

𝟔
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑻 −

𝟑

𝟔
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑭

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟏 = 𝟏. 𝟎 −
𝟑

𝟔
∗ 𝟎. 𝟗𝟏𝟖𝟑 −

𝟑

𝟔
 ∗ 𝟎. 𝟗𝟏𝟖𝟑 = 𝟎. 𝟎𝟖𝟏𝟕

Example - 2
Decision Tree Algorithm – ID3

Solved Example

Subscribe to Mahesh Huddar Visit: vtupulse.com

Instance Classification a1 a2

1 + T T

2 + T T

3 - T F

4 + F F

5 - F T

6 - F T

CSE, HIT, Nidasoshi

Attribute: a2

𝑽𝒂𝒍𝒖𝒆𝒔 𝒂𝟐 = 𝑻, 𝑭

𝑺 = 𝟑+, 𝟑 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = 𝟏. 𝟎

𝑺𝑻 = 𝟐+, 𝟐 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑻 = 𝟏. 𝟎

𝑺𝑭 ← [𝟏+, 𝟏−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑭 = 𝟏. 𝟎

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑻,𝑭}

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝟒

𝟔
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑻 −

𝟐

𝟔
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑭

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝟏. 𝟎 −
𝟒

𝟔
∗ 𝟏. 𝟎 −

𝟐

𝟔
 ∗ 𝟏. 𝟎 = 𝟎. 𝟎

Subscribe to Mahesh Huddar Visit: vtupulse.com

Instance Classification a1 a2

1 + T T

2 + T T

3 - T F

4 + F F

5 - F T

6 - F T

Example - 2
Decision Tree Algorithm – ID3

Solved Example

CSE, HIT, Nidasoshi

Subscribe to Mahesh Huddar Visit: vtupulse.com

Instance Classification a1 a2

1 + T T

2 + T T

3 - T F

4 + F F

5 - F T

6 - F T

𝑮𝒂𝒊𝒏(𝑺, 𝒂𝟏) = 𝟎. 𝟎𝟖𝟏𝟕 − 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝑮𝒂𝒊𝒏

𝑮𝒂𝒊𝒏(𝑺, 𝒂𝟐) = 𝟎. 𝟎

 a1

T F

1, 2, 3 4, 5, 6

a2

T F

1, 2 3

a2

T F

5, 6 4

+ - - +

Example - 2
Decision Tree Algorithm – ID3

Solved Example

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

Instance a1 a2 a3 Classification

1 True Hot High No

2 True Hot High No

3 False Hot High Yes

4 False Cool Normal Yes

5 False Cool Normal Yes

6 True Cool High No

7 True Hot High No

8 True Hot Normal Yes

9 False Cool Normal Yes

10 False Cool High Yes

1. Construct the decision tree for the following tree using ID3 Algorithm

DECISION TREE EXAMPLE

CSE, HIT, Nidasoshi

Decision Tree Algorithm – ID3 Solved Example

Subscribe to Mahesh Huddar Visit: vtupulse.com

Instance a1 a2 a3 Classification

1 True Hot High No

2 True Hot High No

3 False Hot High Yes

4 False Cool Normal Yes

5 False Cool Normal Yes

6 True Cool High No

7 True Hot High No

8 True Hot Normal Yes

9 False Cool Normal Yes

10 False Cool High Yes

CSE, HIT, Nidasoshi

Instance a1 a2 a3 Classification

1 True Hot High No

2 True Hot High No

3 False Hot High Yes

4 False Cool Normal Yes

5 False Cool Normal Yes

6 True Cool High No

7 True Hot High No

8 True Hot Normal Yes

9 False Cool Normal Yes

10 False Cool High Yes

Attribute: a1

𝑽𝒂𝒍𝒖𝒆𝒔 𝒂𝟏 = 𝑻𝒓𝒖𝒆, 𝑭𝒂𝒍𝒔𝒆

𝑺 = 𝟔+, 𝟒 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟔

𝟏𝟎
𝒍𝒐𝒈𝟐

𝟔

𝟏𝟎
−
𝟒

𝟏𝟎
𝒍𝒐𝒈𝟐

𝟒

𝟏𝟎
= 𝟎. 𝟗𝟕𝟎𝟗

𝑺𝑻𝒓𝒖𝒆 = 𝟏+, 𝟒 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑻𝒓𝒖𝒆 = −
𝟏

𝟓
𝒍𝒐𝒈𝟐

𝟏

𝟓
−
𝟒

𝟓
𝒍𝒐𝒈𝟐

𝟒

𝟓
= 𝟎. 𝟕𝟐𝟏𝟗

𝑺𝑭𝒍𝒂𝒔𝒆 ← [𝟓+, 𝟎−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑭𝒂𝒍𝒔𝒆 = 𝟎. 𝟎

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟏 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑻𝒓𝒖𝒆,𝑭𝒂𝒍𝒔𝒆}

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟏 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝟓

𝟏𝟎
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑻𝒓𝒖𝒆 −

𝟓

𝟏𝟎
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑭𝒂𝒍𝒔𝒆

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟏 = 𝟎. 𝟗𝟕𝟎𝟗 −
𝟓

𝟏𝟎
∗ 𝟎. 𝟕𝟐𝟏𝟗 −

𝟓

𝟏𝟎
 ∗ 𝟏 = 𝟎. 𝟔𝟎𝟗𝟗

Subscribe to Mahesh Huddar Visit: vtupulse.com

Example - 3
Decision Tree Algorithm – ID3

Solved Example

CSE, HIT, Nidasoshi

Instance a1 a2 a3 Classification

1 True Hot High No

2 True Hot High No

3 False Hot High Yes

4 False Cool Normal Yes

5 False Cool Normal Yes

6 True Cool High No

7 True Hot High No

8 True Hot Normal Yes

9 False Cool Normal Yes

10 False Cool High Yes

Attribute: a2

𝑽𝒂𝒍𝒖𝒆𝒔 𝒂𝟐 = 𝑯𝒐𝒕, 𝑪𝒐𝒐𝒍

𝑺 = 𝟔+, 𝟒 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟔

𝟏𝟎
𝒍𝒐𝒈𝟐

𝟔

𝟏𝟎
−
𝟒

𝟏𝟎
𝒍𝒐𝒈𝟐

𝟒

𝟏𝟎
= 𝟎. 𝟗𝟕𝟎𝟗

𝑺𝑯𝒐𝒕 = 𝟐+, 𝟑 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 = −
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
−
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
= 𝟎. 𝟗𝟕𝟎𝟗

𝑺𝑪𝒐𝒐𝒍 ← [𝟒+, 𝟏−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍 = −
𝟒

𝟓
𝒍𝒐𝒈𝟐

𝟒

𝟓
−
𝟏

𝟓
𝒍𝒐𝒈𝟐

𝟏

𝟓
= 𝟎. 𝟕𝟐𝟏𝟗

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒐𝒕,𝑪𝒐𝒐𝒍}

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝟓

𝟏𝟎
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 −

𝟓

𝟏𝟎
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝟎. 𝟗𝟕𝟎𝟗 −
𝟓

𝟏𝟎
∗ 𝟎. 𝟗𝟕𝟎𝟗 −

𝟓

𝟏𝟎
 ∗ 𝟎. 𝟕𝟐𝟏𝟗 = 𝟎. 𝟏𝟐𝟒𝟓

Subscribe to Mahesh Huddar Visit: vtupulse.com

Example - 3
Decision Tree Algorithm – ID3

Solved Example

CSE, HIT, Nidasoshi

Instance a1 a2 a3 Classification

1 True Hot High No

2 True Hot High No

3 False Hot High Yes

4 False Cool Normal Yes

5 False Cool Normal Yes

6 True Cool High No

7 True Hot High No

8 True Hot Normal Yes

9 False Cool Normal Yes

10 False Cool High Yes

Attribute: a3

𝑽𝒂𝒍𝒖𝒆𝒔 𝒂𝟑 = 𝑯𝒊𝒈𝒉, 𝑵𝒐𝒓𝒎𝒂𝒍

𝑺 = 𝟔+, 𝟒 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟔

𝟏𝟎
𝒍𝒐𝒈𝟐

𝟔

𝟏𝟎
−
𝟒

𝟏𝟎
𝒍𝒐𝒈𝟐

𝟒

𝟏𝟎
= 𝟎. 𝟗𝟕𝟎𝟗

𝑺𝑯𝒊𝒈𝒉 = 𝟐+, 𝟒 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 = −
𝟐

𝟔
𝒍𝒐𝒈𝟐

𝟐

𝟔
−
𝟒

𝟔
𝒍𝒐𝒈𝟐

𝟒

𝟔
= 𝟎. 𝟗𝟏𝟖𝟑

𝑺𝑵𝒐𝒓𝒎𝒂𝒍 ← [𝟒+, 𝟎−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍 = 𝟎. 𝟎

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟑 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒊𝒈𝒉,𝑵𝒐𝒓𝒎𝒂𝒍}

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟑 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝟔

𝟏𝟎
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 −

𝟒

𝟏𝟎
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟑 = 𝟎. 𝟗𝟕𝟎𝟗 −
𝟔

𝟏𝟎
∗ 𝟎. 𝟗𝟏𝟖𝟑 −

𝟒

𝟏𝟎
 ∗ 𝟎. 𝟎 = 𝟎. 𝟒𝟏𝟗𝟗

Subscribe to Mahesh Huddar Visit: vtupulse.com

Example - 3
Decision Tree Algorithm – ID3

Solved Example

CSE, HIT, Nidasoshi

Instance a1 a2 a3 Classification

1 True Hot High No

2 True Hot High No

3 False Hot High Yes

4 False Cool Normal Yes

5 False Cool Normal Yes

6 True Cool High No

7 True Hot High No

8 True Hot Normal Yes

9 False Cool Normal Yes

10 False Cool High Yes

Subscribe to Mahesh Huddar Visit: vtupulse.com

𝑮𝒂𝒊𝒏(𝑺, 𝒂𝟏) = 𝟎. 𝟔𝟎𝟗𝟗 − 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝑮𝒂𝒊𝒏

𝑮𝒂𝒊𝒏(𝑺, 𝒂𝟐) = 𝟎. 𝟏𝟐𝟒𝟓

𝑮𝒂𝒊𝒏(𝑺, 𝒂𝟑) = 𝟎. 𝟒𝟏𝟗𝟗

a1

True False

1, 2, 6, 7, 8 3, 4, 5, 9, 10

Yes

Example - 3
Decision Tree Algorithm – ID3

Solved Example

CSE, HIT, Nidasoshi

Subscribe to Mahesh Huddar Visit: vtupulse.com

Instance a2 a3 Classification

1 Hot High No

2 Hot High No

6 Cool High No

7 Hot High No

8 Hot Normal Yes

Attribute: a2

𝑽𝒂𝒍𝒖𝒆𝒔 𝒂𝟐 = 𝑯𝒐𝒕, 𝑪𝒐𝒐𝒍

𝑺𝒂𝟏 = 𝟏+, 𝟒 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝒂𝟏 = −
𝟏

𝟓
𝒍𝒐𝒈𝟐

𝟏

𝟓
−
𝟒

𝟓
𝒍𝒐𝒈𝟐

𝟒

𝟓
= 𝟎. 𝟕𝟐𝟏𝟗

𝑺𝑯𝒐𝒕 = 𝟏+, 𝟑 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 = −
𝟏

𝟒
𝒍𝒐𝒈𝟐

𝟏

𝟒
−
𝟑

𝟒
𝒍𝒐𝒈𝟐

𝟑

𝟒
= 𝟎. 𝟖𝟏𝟏𝟐

𝑺𝑪𝒐𝒐𝒍 ← [𝟎+, 𝟏−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍 = 𝟎. 𝟎

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒐𝒕,𝑪𝒐𝒐𝒍}

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝟒

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 −

𝟏

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝟎. 𝟗𝟕𝟎𝟗 −
𝟒

𝟓
∗ 𝟎. 𝟖𝟏𝟏𝟐 −

𝟏

𝟓
 ∗ 𝟎. 𝟎 = 𝟎. 𝟑𝟐𝟏𝟗

Example - 3
Decision Tree Algorithm – ID3

Solved Example

CSE, HIT, Nidasoshi

Subscribe to Mahesh Huddar Visit: vtupulse.com

Instance a2 a3 Classification

1 Hot High No

2 Hot High No

6 Cool High No

7 Hot High No

8 Hot Normal Yes

Attribute: a3

𝑽𝒂𝒍𝒖𝒆𝒔 𝒂𝟑 = 𝑯𝒊𝒈𝒉, 𝑵𝒐𝒓𝒎𝒂𝒍

𝑺𝒂𝟏 = 𝟏+, 𝟒 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝒂𝟏 = −
𝟏

𝟓
𝒍𝒐𝒈𝟐

𝟏

𝟓
−
𝟒

𝟓
𝒍𝒐𝒈𝟐

𝟒

𝟓
= 𝟎. 𝟕𝟐𝟏𝟗

𝑺𝑯𝒊𝒈𝒉 = 𝟎+, 𝟒 − 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 = 𝟎. 𝟎

𝑺𝑵𝒐𝒓𝒎𝒂𝒍 ← [𝟏+, 𝟎−] 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍 = 𝟎. 𝟎

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟑 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒊𝒈𝒉,𝑵𝒐𝒓𝒎𝒂𝒍}

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟑 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −
𝟒

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 −

𝟏

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟑 = 𝟎. 𝟗𝟕𝟎𝟗 −
𝟒

𝟓
∗ 𝟎. 𝟎 −

𝟏

𝟓
 ∗ 𝟎. 𝟎 = 𝟎. 𝟕𝟐𝟏𝟗

Example - 3
Decision Tree Algorithm – ID3

Solved Example

CSE, HIT, Nidasoshi

Subscribe to Mahesh Huddar Visit: vtupulse.com

𝑮𝒂𝒊𝒏 𝑺𝒂𝟏, 𝒂𝟐 = 𝟎. 𝟑𝟐𝟏𝟗

𝑮𝒂𝒊𝒏 𝑺𝒂𝟏, 𝒂𝟑 = 𝟎. 𝟕𝟐𝟏𝟗 − 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝑮𝒂𝒊𝒏

a1

True False

1, 2, 6, 7, 8 3, 4, 5, 9, 10

Yes
a3

High Normal

Instance a2 a3 Classification

1 Hot High No

2 Hot High No

6 Cool High No

7 Hot High No

8 Hot Normal Yes

Yes No

1, 2, 6, 7 8

Example - 3
Decision Tree Algorithm – ID3

Solved Example

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

When to use Decision Trees

 Problem characteristics:

 Instances can be described by attribute value pairs

 Target function is discrete valued

 Disjunctive hypothesis may be required

 Possibly noisy training data samples

 Robust to errors in training data

 Missing attribute values

 Different classification problems:

 Equipment classification

 Medical diagnosis

 Credit risk analysis

 Several tasks in natural language processing

CSE, HIT, Nidasoshi

Issues in decision trees learning

 Overfitting

 Reduced error pruning

 Rule post-pruning

 Extensions

 Continuous valued attributes

 Alternative measures for selecting attributes

 Handling training examples with missing attribute values

 Handling attributes with different costs

 Improving computational efficiency

 Most of these improvements in C4.5 (Quinlan, 1993)

CSE, HIT, Nidasoshi

Overfitting: definition

• Building trees that “adapt too much” to the training examples may lead to

“overfitting”.

• Consider error of hypothesis h over

– training data: errorD(h) empirical error

– entire distribution X of data: errorX(h) expected error

• Hypothesis h overfits training data if there is an alternative hypothesis h' 

H such that

 errorD(h) < errorD(h’) and

 errorX(h’) < errorX(h)

 i.e. h’ behaves better over unseen data

CSE, HIT, Nidasoshi

Overfitting in decision tree learning

CSE, HIT, Nidasoshi

Avoid overfitting in Decision Trees

 Two strategies:

1. Stop growing the tree earlier, before perfect classification

2. Allow the tree to overfit the data, and then post-prune the

tree

–Training and validation set: split the training in two parts

(training and validation) and use validation to assess the

utility of post-pruning

• Reduced error pruning

• Rule Post pruning

CSE, HIT, Nidasoshi

Reduced-error pruning (Quinlan 1987)
 Each node is a candidate for pruning

 Pruning consists in removing a subtree rooted in a node: the node

becomes a leaf and is assigned the most common classification

 Nodes are removed only if the resulting tree performs no worse on the

validation set.

 Nodes are pruned iteratively: at each iteration the node whose removal

most increases accuracy on the validation set is pruned.

 Pruning stops when no pruning increases accuracy

CSE, HIT, Nidasoshi

Effect of reduced error pruning

CSE, HIT, Nidasoshi

Rule post-pruning

1. Create the decision tree from the training set

2. Convert the tree into an equivalent set of rules

– Each path corresponds to a rule

– Each node along a path corresponds to a pre-condition

– Each leaf classification to the post-condition

3. Prune (generalize) each rule by removing those preconditions whose

removal improves accuracy over validation set

4. Sort the rules in estimated order of accuracy, and consider them in

sequence when classifying new instances

CSE, HIT, Nidasoshi

Converting to rules

CSE, HIT, Nidasoshi

Rule Post-Pruning

• Convert tree to rules (one for each path from root to a leaf)

• For each antecedent in a rule, remove it if error rate on validation

set does not decrease

• Sort final rule set by accuracy

Outlook=sunny ^ humidity=high -> No

Outlook=sunny ^ humidity=normal -> Yes

Outlook=overcast -> Yes

Outlook=rain ^ wind=strong -> No

Outlook=rain ^ wind=weak -> Yes

Compare first rule to:
 Outlook=sunny-

>No

 Humidity=high-

>No

Calculate accuracy of 3

rules

based on validation set

and

pick best version.

CSE, HIT, Nidasoshi

Why converting to rules?

 Each distinct path produces a different rule: a condition removal

may be based on a local (contextual) criterion. Node pruning is

global and affects all the rules

 In rule form, tests are not ordered and there is no book-keeping

involved when conditions (nodes) are removed

 Converting to rules improves readability for humans

CSE, HIT, Nidasoshi

Dealing with continuous-valued
attributes

 So far discrete values for attributes and for outcome.

 Given a continuous-valued attribute A, dynamically create a new attribute Ac

 Ac = True if A < c, False otherwise

 How to determine threshold value c ?

 Example. Temperature in the PlayTennis example

 Sort the examples according to Temperature

 Temperature 40 48 60 72 80 90

 PlayTennis No No Yes Yes Yes No

 Determine candidate thresholds by averaging consecutive values where there is a

change in classification: (48+60)/2=54 and (80+90)/2=85

 Evaluate candidate thresholds (attributes) according to information gain. The best is

Temperature>54.The new attribute competes with the other ones

CSE, HIT, Nidasoshi

Tid Refund Marital Status Taxable Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes

CSE, HIT, Nidasoshi

Handling incomplete training data

 How to cope with the problem that the value of some attribute may be missing?

 Example: Blood-Test-Result in a medical diagnosis problem

 The strategy: use other examples to guess attribute

1. Assign the value that is most common among the training examples at the

node

2. Assign a probability to each value, based on frequencies, and assign values to

missing attribute, according to this probability distribution

 Missing values in new instances to be classified are treated accordingly, and the

most probable classification is chosen (C4.5)

CSE, HIT, Nidasoshi

Handling attributes with different costs

• Instance attributes may have an associated cost: we would prefer

decision trees that use low-cost attributes

• ID3 can be modified to take into account costs:

1. Tan and Schlimmer (1990)

 Gain2(S, A)

 Cost(S, A)

2. Nunez (1988)

 2Gain(S, A)  1

 (Cost(A) + 1)w
w ∈ [0,1]

CSE, HIT, Nidasoshi

Search space in Decision Tree learning

• The search space is made by partial decision

trees

• The algorithm is hill-climbing

• The evaluation function is information gain

• The hypotheses space is complete (represents

all discrete-valued functions)

• No backtracking; no guarantee of optimality

• It uses all the available examples (not

incremental)

CSE, HIT, Nidasoshi

Inductive bias in decision tree learning

What is the inductive bias of DT learning?

1. Shorter trees are preferred over longer trees

 Not enough. This is the bias exhibited by a simple breadth first

algorithm generating all DT's e selecting the shorter one

2. Prefer trees that place high information gain attributes close to

the root

CSE, HIT, Nidasoshi

Artificial Neural Networks

96

S J P N Trust's

HIRASUGAR INSTITUTE OF TECHNOLOGY,
NIDASOSHI.

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi.

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Prof. Mahesh G Huddar

Dept. of Computer Science and Engineering

CSE, HIT, Nidasoshi

https://hsit.ac.in/nba-accreditation-status.php

Artificial Neural Networks

• Introduction

• Neural Network Representation

• Appropriate Problems for Neural Network Learning

• Perceptrons

• Multilayer Networks and BACKPROPAGATION

Algorithms

• Remarks on the BACKPROPAGATION Algorithms

CSE, HIT, Nidasoshi

Artificial Neural Networks
• ANN learning well-suited to problems which the training data corresponds to noisy, complex data (inputs from cameras or

microphones)

• Can also be used for problems with symbolic representations

• Most appropriate for problems where

– Instances have many attribute-value pairs

– Target function output may be discrete-valued, real-valued, or a vector of several real- or discrete-valued attributes

– Training examples may contain errors

– Long training times are acceptable

– Fast evaluation of the learned target function may be required

– The ability for humans to understand the learned target function is not important

98

CSE, HIT, Nidasoshi

Appropriate Problems – for ANN
• Instances are represented by many attribute-value pairs. The target function to be learned is defined over instances that can

be described by a vector of predefined features, such as the pixel values in the ALVINN example. These input attributes may

be highly correlated or independent of one another. Input values can be any real values.

• The target function output may be discrete-valued, real-valued, or a vector of several real- or discrete-valued attributes.

For example, in the ALVINN system the output is a vector of 30 attributes, each corresponding to a recommendation

regarding the steering direction. The value of each output is some real number between 0 and 1, which in this case

corresponds to the confidence in predicting the corresponding steering direction. We can also train a single network to output

both the steering command and suggested acceleration, simply by concatenating the vectors that encode these two output

predictions.

99

CSE, HIT, Nidasoshi

Appropriate Problems – for ANN
The training examples may contain errors. ANN learning methods are quite robust

to noise in the training data.

Long training times are acceptable. Network training algorithms typically require

longer training times than, say, decision tree learning algorithms. Training times

can range from a few seconds to many hours, depending on factors such as the

number of weights in the network, the number of training examples considered,

and the settings of various learning algorithm parameters.

100

CSE, HIT, Nidasoshi

Appropriate Problems – for ANN
Fast evaluation of the learned target function may be required. Although ANN

learning times are relatively long, evaluating the learned network, in order to

apply it to a subsequent instance, is typically very fast. For example, ALVINN

applies its neural network several times per second to continually update its

steering command as the vehicle drives forward.

The ability of humans to understand the learned target function is not important.

The weights learned by neural networks are often difficult for humans to

interpret. Learned neural networks are less easily communicated to humans than

learned rules
101

CSE, HIT, Nidasoshi

Neural Network History
• History traces back to the 50’s but became popular in the 80’s with work by Rumelhart, Hinton, and Mclelland

– A General Framework for Parallel Distributed Processing in Parallel Distributed Processing: Explorations

in the Microstructure of Cognition

• Peaked in the 90’s.:

– Hundreds of variants

– Less a model of the actual brain than a useful tool, but still some debate

• Numerous applications

– Handwriting, face, speech recognition

– Vehicles that drive themselves

– Models of reading, sentence production, dreaming

• Debate for philosophers and cognitive scientists

– Can human consciousness or cognitive abilities be explained by a connectionist model or does it require

the manipulation of symbols?

CSE, HIT, Nidasoshi

Biological Motivation
• The study of artificial neural networks (ANNs) has been inspired by the

observation that biological learning systems are built of very complex webs of

interconnected Neurons

• Human information processing system consists of brain neuron: basic building

block cell that communicates information to and from various parts of body

• Simplest model of a neuron: considered as a threshold unit –a processing

element (PE)

• Collects inputs & produces output if the sum of the input exceeds an internal

threshold value

CSE, HIT, Nidasoshi

Biological Motivation
• The human brain is made up of billions of simple processing

units – neurons.

• Inputs are received on dendrites, and if the input levels are over a

threshold, the neuron fires, passing a signal through the axon to

the synapse which then connects to another neuron.

104 104

CSE, HIT, Nidasoshi

Biological Motivation

CSE, HIT, Nidasoshi

Simplest Neural Network

CSE, HIT, Nidasoshi

Simplest Neural Network

CSE, HIT, Nidasoshi

FIND-S: Step-2

CSE, HIT, Nidasoshi

, , , , .  S0:

?, ?, ?, ?, ?, ? G0:

Sunny,Warm, Normal, Strong, Warm, Same S1:

Sunny,Warm, ?, Strong, Warm, Same S2:

?,?,?,?,?,Same G3:

G4:

Sunny, Warm, ?, Strong, ?, ? S4

Sunny, ?, ?, ?, ?, ?

G1: G2:

S3:

Sunny,?,?,?,?,? ?,Warm,?,?,?,? ?,?,Normal,?,?,? ?, ?,?,?,Cool,?

?, Warm, ?, ?, ?, ?

CSE, HIT, Nidasoshi

Decision Trees

• Decision trees represent a disjunction of conjunctions on constraints on the
value of attributes:

(Outlook = Sunny  Humidity = Normal) => Yes

(Outlook = Overcast) => Yes

(Outlook = Rain  Wind = Weak) => Yes CSE, HIT, Nidasoshi

Artificial Neurons

• Artificial neurons are based on biological neurons.

• Each neuron in the network receives one or more inputs.

• An activation function is applied to the inputs, which
determines the output of the neuron – the activation level.

CSE, HIT, Nidasoshi

Artificial Neurons

CSE, HIT, Nidasoshi

Artificial Neurons

CSE, HIT, Nidasoshi

Artificial Neurons

CSE, HIT, Nidasoshi

Artificial Neurons

• A typical activation function works as follows:

• Each node i has a weight, wi associated with it.

• The input to node i is xi.

• t is the threshold.

• So if the weighted sum of the inputs to the neuron is above

the threshold, then the neuron fires.





n

i

ii xwX
1 









tXfor

tXfor
Y

 0

 1

CSE, HIT, Nidasoshi

Artificial Neurons

• The charts on the right show three typical activation
functions.

CSE, HIT, Nidasoshi

PERCEPTRON
• One type of ANN system is based on a unit called a perceptron.

• A perceptron takes a vector of real-valued inputs, calculates a linear

combination of these inputs, then outputs a 1 if the result is greater than some

threshold and -1 otherwise.

• More precisely, given inputs x1 through xn, the output o(x1, . . . , xn)

computed by the perceptron is

• where each wi is a real-valued constant, or weight, that determines the

contribution of input xi to the perceptron output

CSE, HIT, Nidasoshi

PERCEPTRON

CSE, HIT, Nidasoshi

PERCEPTRON
• For brevity, we will sometimes write the perceptron function as,

• Learning a perceptron involves choosing values for the weights wo, . . . , wn.

• Therefore, the space H of candidate hypotheses considered in perceptron

learning is the set of all possible real-valued weight vectors.

CSE, HIT, Nidasoshi

The Perceptron Training Rule
• One way to learn an acceptable weight vector is to begin with random weights, then iteratively apply the perceptron to

each training example, modifying the perceptron weights whenever it misclassifies an example.

• This process is repeated, iterating through the training examples as many times as needed until the perceptron classifies

all training examples correctly.

• Weights are modified at each step according to the perceptron training rule, which revises the weight wi associated with

input xi according to the rule

CSE, HIT, Nidasoshi

The Perceptron Training Rule

• Here t is the target output for the current training example, o is the output generated by the perceptron, and n is a positive

constant called the learning rate.

• The role of the learning rate is to moderate the degree to which weights are changed at each step.

• It is usually set to some small value (e.g., 0.1) and is sometimes made to decay as the number of weight-tuning iterations

increases.

CSE, HIT, Nidasoshi

The Perceptron Training Rule

CSE, HIT, Nidasoshi

The Perceptron Training Rule

CSE, HIT, Nidasoshi

The Perceptron Training Rule
A single perceptron can be used to represent many Boolean functions weights 0.6 and 0.6

AND function

If A=0 & B=0 → 0*0.6 + 0*0.6 = 0

This is not greater than the threshold of 1, so the output = 0

If A=0 & B=1 → 0*0.6 + 1*0.6 = 0.6

This is not greater than the threshold, so the output = 0

If A=1 & B=0 → 1*0.6 + 0*0.6 = 0.6

This is not greater than the threshold, so the output = 0

If A=1 & B=1 → 1*0.6 + 1*0.6 = 1.2

This exceeds the threshold, so the output = 1

CSE, HIT, Nidasoshi

The Perceptron Training Rule
A single perceptron can be used to represent many Boolean functions weights 1.2 and 0.6

AND function

If A=0 & B=0 → 0*1.2 + 0*0.6 = 0

This is not greater than the threshold of 1, so the output = 0

If A=0 & B=1 → 0*1.2 + 1*0.6 = 0.6

This is not greater than the threshold, so the output = 0

If A=1 & B=0 → 1*1.2 + 0*0.6 = 1.2

This is greater than the threshold, so the output = 1

But the expected output is 0

CSE, HIT, Nidasoshi

The Perceptron Training Rule
A single perceptron can be used to represent many Boolean functions weights 1.2 and 0.6

AND function

CSE, HIT, Nidasoshi

The Perceptron Training Rule
A single perceptron can be used to represent many Boolean functions weights 1.2 and 0.6

AND function

If A=0 & B=0 → 0*0.7 + 0*0.6 = 0

This is not greater than the threshold of 1, so the output = 0

If A=0 & B=1 → 0*0.7 + 1*0.6 = 0.6

This is not greater than the threshold, so the output = 0

If A=1 & B=0 → 1*0.7 + 0*0.6 = 0.7

This is greater than the threshold, so the output = 0

If A=1 & B=0 → 1*0.7 + 1*0.6 = 1.3

This is greater than the threshold, so the output = 0

0.7

0.6

CSE, HIT, Nidasoshi

The Perceptron Training Rule

CSE, HIT, Nidasoshi

The Perceptron Training Rule

CSE, HIT, Nidasoshi

The Perceptron Training Rule
A single perceptron can be used to represent many Boolean functions

OR function

If A=0 & B=0 → 0*1.1 + 0*1.1 = 0

This is not greater than the threshold of 1, so the output = 0

If A=0 & B=1 → 0*1.1 + 1*1.1 = 1.1

This is greater than the threshold, so the output = 1.

If A=1 & B= → 1*1.1 + 0*1.1 = 1.1

This is greater than the threshold, so the output = 1.

If A=1 & B= → 1*1.1 + 1*1.1 = 2.2

This is greater than the threshold, so the output = 1.

0.7

0.6

1.1

1.1

CSE, HIT, Nidasoshi

The Perceptron Training Rule
A single perceptron can be used to represent many Boolean functions

NOT function

CSE, HIT, Nidasoshi

The Perceptron Training Rule
Perceptron_training_rule (X, η)

initialize w (wi  an initial (small) random value)

repeat

 for each training instance (x, tx) ∈ X

 compute the real output ox=Summation(w.x)

 if (tx ≠ ox)

 for each wi

 wi  wi + ∆𝑤𝑖
 ∆𝑤𝑖  η(tx-ox)xi

 end for

 end if

 end for

until all the training instances in X are correctly classified

return w

X: training data
η: learning rate (small
positive constant, e.g., 0.1)

Examples
• x is correctly classified, ox–ox=0
 no update
• ox=-1 but tx=1, tx-ox>0
 wi is increased if xi>0,
decreased otherwise
w.x is increased
• ox=1, but outx=-1, outx-ox<0
wi is decreased if xi>0,
increased otherwise
w. x is decreased

CSE, HIT, Nidasoshi

Representational Power of Perceptron's

CSE, HIT, Nidasoshi

Representational Power of Perceptron's

CSE, HIT, Nidasoshi

Representational Power of Perceptron's
• A single perceptron can be used to represent many boolean functions.

• For example, if we assume boolean values of 1 (true) and -1 (false), then one

way to use a two-input perceptron to implement the AND function is to set the

weights wo = -0.8, and w1 = w2 = 0.5.

• This perceptron can be made to represent the OR function instead by altering

the threshold to wo = -0.3.

• In fact, AND and OR can be viewed as special cases of m-of-n functions: that

is, functions where at least m of the n inputs to the perceptron must be true.

• The OR function corresponds to m =1 and the AND function to m = n.

• Any m-of-n function is easily represented using a perceptron by setting all

input weights to the same value (e.g., 0.5) and then setting the threshold wo

accordingly.

CSE, HIT, Nidasoshi

Representational Power of Perceptron's
• Perceptrons can represent all of the primitive boolean functions AND, OR,

NAND, and NOR.

• Unfortunately, however, some boolean functions cannot be represented by a

single perceptron, such as the XOR function whose value is 1 if and only if xl

!= x2.

• Note the set of linearly nonseparable training examples shown in Figure (b)

corresponds to this XOR function.

CSE, HIT, Nidasoshi

Representational Power of Perceptron's
• The ability of perceptrons to represent AND, OR, NAND, and NOR is important because every boolean function can be

represented by some network of interconnected units based on these primitives.

• In fact, every boolean function can be represented by some network of perceptrons only two levels deep, in which the

inputs are fed to multiple units, and the outputs of these units are then input to a second, final stage.

• One way is to represent the boolean function in disjunctive normal form (i.e., as the disjunction (OR) of a set of

conjunctions (ANDs) of the inputs and their negations).

• Note that the input to an AND perceptron can be negated simply by changing the sign of the corresponding input weight.

• Because networks of threshold units can represent a rich variety of functions and because single units alone cannot, we

will generally be interested in learning multilayer networks of threshold units. CSE, HIT, Nidasoshi

Representational Power of Perceptron's

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

Gradient Descent and the Delta Rule
• Although the perceptron rule finds a successful weight vector when the training examples are linearly separable, it can

fail to converge if the examples are not linearly separable.

• A second training rule, called the delta rule, is designed to overcome this difficulty.

• If the training examples are not linearly separable, the delta rule converges toward a best-fit approximation to the target

concept.

• The key idea behind the delta rule is to use gradient descent to search the hypothesis space of possible weight vectors to

find the weights that best fit the training examples.

• This rule is important because gradient descent provides the basis for the BACKPROPAGATON algorithm, which can

learn networks with many interconnected units.

• It is also important because gradient descent can serve as the basis for learning algorithms that must search through

hypothesis spaces containing many different types of continuously parameterized hypotheses.

CSE, HIT, Nidasoshi

Gradient Descent and the Delta Rule

CSE, HIT, Nidasoshi

Gradient Descent and the Delta Rule

CSE, HIT, Nidasoshi

Gradient Descent and the Delta Rule

CSE, HIT, Nidasoshi

Gradient Descent and the Delta Rule

CSE, HIT, Nidasoshi

Gradient Descent and the Delta Rule
• The delta training rule is best understood by considering the task of training an unthresholded perceptron; that is, a linear

unit for which the output o is given by

• Thus, a linear unit corresponds to the first stage of a perceptron, without the threshold.

• In order to derive a weight learning rule for linear units, let us begin by specifying a measure for the training error of a

hypothesis (weight vector), relative to the training examples.

• Although there are many ways to define this error, one common measure is

• where D is the set of training examples, td is the target output for training example d, and od is the output of the linear unit

for training example d.

CSE, HIT, Nidasoshi

Derivation of Gradient Descent Rule

CSE, HIT, Nidasoshi

Derivation of Gradient Descent Rule

• Here n is a positive constant called the learning rate, which determines the step size in the gradient descent search. The

negative sign is present because we want to move the weight vector in the direction that decreases E.

• This training rule can also be written in its component form

CSE, HIT, Nidasoshi

Derivation of Gradient Descent Rule

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

STOCHASTIC APPROXIMATION TO GRADIENT DESCENT
• Gradient descent is an important general paradigm for learning.

• It is a strategy for searching through a large or infinite hypothesis space that can be applied whenever

1. the hypothesis space contains continuously parameterized hypotheses (e.g., the weights in a linear unit), and

2. the error can be differentiated with respect to these hypothesis parameters.

• The key practical difficulties in applying gradient descent are

1. converging to a local minimum can sometimes be quite slow (i.e., it can require many thousands of gradient descent

steps), and

2. if there are multiple local minima in the error surface, then there is no guarantee that the procedure will find the global

minimum.

CSE, HIT, Nidasoshi

Stochastic

STOCHASTIC APPROXIMATION TO GRADIENT DESCENT

CSE, HIT, Nidasoshi

STOCHASTIC APPROXIMATION TO GRADIENT DESCENT

CSE, HIT, Nidasoshi

MULTILAYER NETWORKS

• Multilayer neural networks can classify a range of

functions, including non linearly separable ones.

• Each input layer neuron connects to all neurons in the

hidden layer.

• The neurons in the hidden layer connect to all neurons in

the output layer.

CSE, HIT, Nidasoshi

MULTILAYER NETWORKS

CSE, HIT, Nidasoshi

MULTILAYER NETWORKS
A Differentiable Threshold Unit

• What type of unit shall we use as the basis for constructing multilayer networks?

• At first we might be tempted to choose the linear units discussed in the previous

section, for which we have already derived a gradient descent learning rule.

• However, multiple layers of cascaded linear units still produce only linear functions,

and we prefer networks capable of representing highly nonlinear functions.

• The perceptron unit is another possible choice, but its discontinuous threshold makes

it undifferentiable and hence unsuitable for gradient descent.

• What we need is a unit whose output is a nonlinear function of its inputs, but whose

output is also a differentiable function of its inputs.

• One solution is the sigmoid unit-a unit very much like a perceptron, but based on a

smoothed, differentiable threshold function.

CSE, HIT, Nidasoshi

MULTILAYER NETWORKS

• The sigmoid unit is illustrated in below Figure. Like the perceptron, the sigmoid

unit first computes a linear combination of its inputs, then applies a threshold to

the result.

• In the case of the sigmoid unit, however, the threshold output is a continuous

function of its input. CSE, HIT, Nidasoshi

MULTILAYER NETWORKS
More precisely, the sigmoid unit computes its output o as

CSE, HIT, Nidasoshi

The BACKPROPAGATIAON Algorithm

• Multilayer neural networks learn in the same way as perceptrons.

• However, there are many more weights, and it is important to

assign credit (or blame) correctly when changing weights.

• E sums the errors over all of the network output units

 
 


Dd outputsk

kdkd otwE 2)(
2

1
)(



CSE, HIT, Nidasoshi

The BACKPROPAGATIAON Algorithm

CSE, HIT, Nidasoshi

1

2

3

4

5

6

7

CSE, HIT, Nidasoshi

1

2

3

4

5

6

7

X1

X2

X3

CSE, HIT, Nidasoshi

1

2

3

4

5

6

7

X1

X2

X3

X41 , w41

X53 , w53

X42 , w42

X43 , w43

X51 , w51

X52 , w52
CSE, HIT, Nidasoshi

1

2

3

4

5

6

7

X1

X2

X3

X41 , w41

X64 , w64

X75, w75

X74, w74

X65 , w65

X53 , w53

X42 , w42

X43 , w43

X51 , w51

X52 , w52
CSE, HIT, Nidasoshi

1

2

3

4

5

6

7

X1

X2

X3

X41 , w41

X64 , w64

X75, w75

X74, w74

X65 , w65

X53 , w53

X42 , w42

X43 , w43

X51 , w51

X52 , w52

O6

O7

CSE, HIT, Nidasoshi

1

2

3

4

5

6

7

X1

X2

X3

X41 , w41

X64 , w64

X75, w75

X74, w74

X65 , w65

X53 , w53

X42 , w42

X43 , w43

X51 , w51

X52 , w52

O6

O7

O4 = δ(X41w41X42w42 +X43w43)

O5 = δ(X51w51+X52w52+X53w53)

CSE, HIT, Nidasoshi

1

2

3

4

5

6

7

X1

X2

X3

X41 , w41

X64 , w64

X75, w75

X74, w74

X65 , w65

X53 , w53

X42 , w42

X43 , w43

X51 , w51

X52 , w52

O6

O7

O4 = δ(X41w41X42w42 +X43w43)
X64 = X74 = O4

O5 = δ(X51w51+X52w52+X53w53)
 X75 = X65 = O5

CSE, HIT, Nidasoshi

1

2

3

4

5

6

7

X1

X2

X3

X41 , w41

X64 , w64

X75, w75

X74, w74

X65 , w65

X53 , w53

X42 , w42

X43 , w43

X51 , w51

X52 , w52

O6

O7

O4 = δ(X41w41X42w42 +X43w43)
X64 = X74 = O4

O5 = δ(X51w51+X52w52+X53w53)
 X75 = X65 = O5

O6 = δ(X64w64 +X65w65)

O7 = δ(X74,w74+X75,w75)

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

Back Propagation Algorithm

171

• Create a feed-forward network with ni inputs, nhidden hidden units, and nout output units.

• Initialize all network weights to small random numbers

• Until the termination condition is met, Do

• For each (𝑥, t), in training examples, Do

• Propagate the input forward through the network:

1. Input the instance 𝑥, to the network and compute the output ou of every unit u in the network.

• Propagate the errors backward through the network

2. For each network unit k, calculate its error term δk

3. For each network unit h, calculate its error term δh

4. Update each network weight wji

CSE, HIT, Nidasoshi

Derivation of Back Propagation Algorithm

172

• To derive the equation for updating weights in back propagation algorithm, we use

Stochastic gradient descent rule.

• Stochastic gradient descent involves iterating through the training examples one at a time,

for each training example d descending the gradient of the error Ed with respect to this

single example.

• In other words, for each training example d every weight wji is updated by adding to it

∆𝑤𝑖𝑗 .

• That is,

CSE, HIT, Nidasoshi

Derivation of Back Propagation Algorithm

173

• where Ed is the error on training example d, that is half the squared difference between the

target output and the actual output over all output units in the network,

• Here outputs is the set of output units in the network, tk is the target value of unit k for

training example d, and ok is the output of unit k given training example d.

CSE, HIT, Nidasoshi

Derivation of Back Propagation Algorithm

174

Notation Used:

𝒙𝒋𝒊 = the ith input to unit j

𝒘𝒋𝒊 = the weight associated with the ith input to unit j

𝒏𝒆𝒕𝒋 = 𝒘𝒋𝒊𝑿𝒋𝒊 𝒊 (the weighted sum of inputs for unit j)

𝒐𝒋 = the output computed by unit j

𝒕𝒋 = the target output for unit j

𝝈 = the sigmoid function

outputs = the set of units in the final layer of the network

Downstream(j) = the set of units whose immediate inputs include the output of unit j

CSE, HIT, Nidasoshi

1

2

3

4

5

6

7

X1

X2

X3

X41 , w41

X64 , w64

X75, w75

X74, w74

X65 , w65

X53 , w53

X42 , w42

X43 , w43

X51 , w51

X52 , w52

Derivation of Back Propagation Algorithm

O6

O7

CSE, HIT, Nidasoshi

Derivation of Back Propagation Algorithm

176

• To begin, notice that weight wji can influence the rest of the network only through netj.

Therefore, we can use the chain rule to write,

• Our remaining task is to derive a convenient expression for

𝒏𝒆𝒕𝒋 = 𝒘𝒋𝒊𝑿𝒋𝒊
𝒊

𝝏𝒏𝒆𝒕𝒋

𝝏𝒘𝒋𝒊
= 𝒙𝒋𝒊

CSE, HIT, Nidasoshi

Derivation of Back Propagation Algorithm

177

To derive a convenient expression for

We consider two cases in turn:

• Case 1, where unit j is an output unit for the network, and

• Case 2, where unit j is an internal unit of the network.

CSE, HIT, Nidasoshi

Derivation of Back Propagation Algorithm

178

Case 1: Training Rule for Output Unit Weights

• Just as wji can influence the rest of the network only through netj, netj can influence the

network only through oj. Therefore, we can invoke the chain rule again to write,

𝝏𝝈 𝒙
𝝏 𝒙
= 𝝈 𝒙 (1 - 𝝈 𝒙)

𝝏𝒐𝒋

𝝏 𝒏𝒆𝒕𝒋
=
𝝏𝝈 𝒏𝒆𝒕𝒋

𝝏 𝒏𝒆𝒕𝒋

 = 𝝈 𝒏𝒆𝒕𝒋 (1 -

𝝈 𝒏𝒆𝒕𝒋)

 = 𝒐𝒋 (𝟏 − 𝒐𝒋)

CSE, HIT, Nidasoshi

Derivation of Back Propagation Algorithm
Case 1: Training Rule for Output Unit Weights

CSE, HIT, Nidasoshi

1

2

3

4

5

6

7

X1

X2

X3

X41 , w41

X64 , w64

X75, w75

X74, w74

X65 , w65

X53 , w53

X42 , w42

X43 , w43

X51 , w51

X52 , w52

Derivation of Back Propagation Algorithm

O6

O7

CSE, HIT, Nidasoshi

Case 2: Training Rule for Hidden Unit Weights

Derivation of Back Propagation Algorithm

𝝏 𝒏𝒆𝒕𝒌
𝝏𝒐𝒋
=
𝝏𝒙𝒌𝒋𝒘𝒌𝒋

𝝏𝒐𝒋
=
𝝏𝒐𝒋𝒘𝒌𝒋

𝝏𝒐𝒋

𝝏𝒐𝒋

𝝏 𝒏𝒆𝒕𝒋
=
𝝏𝝈 𝒏𝒆𝒕𝒋

𝝏 𝒏𝒆𝒕𝒋

 = 𝝈 𝒏𝒆𝒕𝒋 (1 -

𝝈 𝒏𝒆𝒕𝒋)

 = 𝒐𝒋 (𝟏 − 𝒐𝒋)

CSE, HIT, Nidasoshi

Case 2: Training Rule for Hidden Unit Weights

Derivation of Back Propagation Algorithm

CSE, HIT, Nidasoshi

