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Decision Tree for Boolean Functions 
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• Every Variable in Boolean function such as A, B, C etc. has two 

possibilities that is True and False 

• Every Boolean function is either True or False 

• If the Boolean function is true we write YES (Y) 

• If the Boolean function is False we write NO (N) 

Decision Tree for Boolean Functions 
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Decision Trees 

 Decision Trees is one of the most widely used Classification Algorithm 

 Features 

 Method for approximating discrete-valued functions (including boolean)  

 Learned functions are represented as decision trees (or if-then-else 

rules) 

 Expressive hypotheses space, including disjunction 

 Robust to noisy data 
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Example 
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Decision Tree Representation (PlayTennis) 

Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong     No 
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Decision trees expressivity 

• Decision trees represent a disjunction of conjunctions on 
constraints on the value of attributes: 

(Outlook = Sunny  Humidity = Normal)  

(Outlook = Overcast)  

(Outlook = Rain  Wind = Weak) CSE, HIT, Nidasoshi



• Decision trees classify instances by sorting them down the tree from the root to 

some leaf node, which provides the classification of the instance.  

• Each node in the tree specifies a test of some attribute of the instance, and each 

branch descending from that node corresponds to one of the possible values for 

this attribute.  

• An instance is classified by starting at the root node of the tree, testing the 

attribute specified by this node, then moving down the tree branch 

corresponding to the value of the attribute in the given example.  

• This process is then repeated for the subtree rooted at the new node. 

Decision tree representation (PlayTennis) 
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• In general, decision trees represent a disjunction of conjunctions of constraints 

on the attribute values of instances.  

• Each path from the tree root to a leaf corresponds to a conjunction of attribute 

tests, and the tree itself to a disjunction of these conjunctions. 

Decision tree representation (PlayTennis) 
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Example 
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Although a variety of decision tree learning methods have been developed with 

somewhat differing capabilities and requirements, decision tree learning is 

generally best suited to problems with the following characteristics: 

1. Instances are represented by attribute-value pairs. Instances are described by 

a fixed set of attributes (e.g., Temperature) and their values (e.g., Hot). The 

easiest situation for decision tree learning is when each attribute takes on a 

small number of disjoint possible values (e.g., Hot, Mild, Cold). However, 

extensions to the basic algorithm allow handling real-valued attributes as well 

(e.g., representing Temperature numerically). 

APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING 
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2. The target function has discrete output values. The decision tree is usually 

used for Boolean classification (e.g., yes or no) kind of example. Decision tree 

methods easily extend to learning functions with more than two possible 

output values. A more substantial extension allows learning target functions 

with real-valued outputs, though the application of decision trees in this 

setting is less common. 

3. Disjunctive descriptions may be required. Decision trees naturally represent 

disjunctive expressions. 

APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING 
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4. The training data may contain errors. Decision tree learning methods are 

robust to errors, both errors in classifications of the training examples and 

errors in the attribute values that describe these examples. 

5. The training data may contain missing attribute values. Decision tree 

methods can be used even when some training examples have unknown 

values (e.g., if the Humidity of the day is known for only some of the training 

examples). 

APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING 
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• Many practical problems have been found to fit these characteristics.  

• Decision tree learning has therefore been applied to problems such as 

learning to classify medical patients by their disease, equipment 

malfunctions by their cause, and loan applicants by their likelihood of 

defaulting on payments.  

• Such problems, in which the task is to classify examples into one of a 

discrete set of possible categories, are often referred to as classification 

problems. 

APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING 
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• Most algorithms that have been developed for learning decision trees are 

variations on a core algorithm that employs a top-down, greedy search through 

the space of possible decision trees.  

• This approach is exemplified by the ID3 algorithm (Quinlan 1986) and its 

successor C4.5 (Quinlan 1993), which form the primary focus of our discussion 

here.  

• The basic algorithm for decision tree learning, corresponding approximately to 

the ID3 algorithm.  

• Next, we consider a number of extensions to this basic algorithm, including 

extensions incorporated into C4.5 and other more recent algorithms for decision 

tree learning. 

THE BASIC DECISION TREE LEARNING ALGORITHM 
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Example 
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Which Attribute Is the Best Classifier? 

• The central choice in the ID3 algorithm is selecting which attribute to test at each 

node in the tree.  

• We would like to select the attribute that is most useful for classifying examples.  

• What is a good quantitative measure of the worth of an attribute? We will define a 

statistical property, called information gain, that measures how well a given 

attribute separates the training examples according to their target classification.  

• ID3 uses this information gain measure to select among the candidate attributes at 

each step while growing the tree. 

CONSTRUCTING DECISION TREE – ID3 ALGORITHM 
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ENTROPY MEASURES HOMOGENEITY OF EXAMPLES 

• Entropy, characterizes the (im)purity of an arbitrary collection of examples.  

• Given a collection S, containing positive and negative examples of some target 

concept, the entropy of S relative to this boolean classification is  

 

• where p+, is the proportion of positive examples in S and p-, is the proportion of 

negative examples in S.  

• In all calculations involving entropy we define 0 log 0 to be 0. 

CONSTRUCTING DECISION TREE – ID3 ALGORITHM 
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ENTROPY MEASURES HOMOGENEITY OF EXAMPLES 

• Entropy measures the (im)purity of a collection of examples. It depends from the distribution 

of the random variable p. 

 S is a collection of training examples 

 p+ the proportion of positive examples in S 

 p– the proportion of negative examples in S 

Examples 

  Entropy (S)   – p+ log2 p+ – p–log2 p–      [0 log20 = 0] 

  Entropy ([14+, 0–]) = – 14/14 log2 (14/14) –  0 log2 (0) = 0 

  Entropy ([9+, 5–])  = – 9/14 log2 (9/14) –  5/14 log2 (5/14) = 0,94 

  Entropy ([7+, 7– ])  = –  7/14 log2 (7/14) –  7/14 log2 (7/14) =  

            = 1/2 + 1/2 = 1                         

CONSTRUCTING DECISION TREE – ID3 ALGORITHM 
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Example 
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Entropy 

CONSTRUCTING DECISION TREE – ID3 ALGORITHM 
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INFORMATION GAIN MEASURES THE EXPECTED REDUCTION IN ENTROPY 

• Given entropy as a measure of the impurity in a collection of training examples, we can 

now define a measure of the effectiveness of an attribute in classifying the training data.  

• Now, the information gain, is simply the expected reduction in entropy caused by 

partitioning the examples according to this attribute.  

• More precisely, the information gain, Gain(S, A) of an attribute A, relative to a collection of 

examples S, is defined as, 
 

 

 

• where Values(A) is the set of all possible values for attribute A, and S, is the subset of S for 

which attribute A has value v (i.e. , 𝑆𝑣 = {𝒔 ∈  𝑺|𝑨(𝒔)  =  𝒗}) 

CONSTRUCTING DECISION TREE – ID3 ALGORITHM 
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• For example, suppose S is a collection of training-example days described by 
attributes including Wind, which can have the values Weak or Strong.  

CONSTRUCTING DECISION TREE – ID3 ALGORITHM 
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• Information gain is precisely the measure used by ID3 to select the best attribute 

at 

• each step in growing the tree.  

• The use of information gain to evaluate the relevance of attributes.  

• Here the information gain of two different attributes, Humidity and Wind, is 

computed in order to determine which is the better attribute for classifying the 

training examples. 

CONSTRUCTING DECISION TREE – ID3 ALGORITHM 
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DECISION TREE – ID3 ALGORITHM NUMERICAL EXAMPLE 
Day  Outlook  Temp Humidity  Wind  PlayTennis  

D1  Sunny  Hot  High  Weak  No  

D2  Sunny  Hot  High  Strong  No  

D3  Overcast  Hot  High  Weak  Yes  

D4  Rain  Mild  High  Weak  Yes  

D5  Rain  Cool  Normal  Weak  Yes  

D6  Rain  Cool  Normal  Strong  No  

D7  Overcast  Cool  Normal  Strong  Yes  

D8  Sunny  Mild  High  Weak  No  

D9  Sunny  Cool  Normal  Weak  Yes  

D10  Rain  Mild  Normal  Weak  Yes  

D11  Sunny  Mild  Normal  Strong  Yes  

D12  Overcast  Mild  High  Strong  Yes  

D13  Overcast  Hot  Normal  Weak  Yes  

D14  Rain  Mild  High  Strong  No  
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Attribute: Outlook 

𝑽𝒂𝒍𝒖𝒆𝒔 (𝑶𝒖𝒕𝒍𝒐𝒐𝒌)  =  𝑺𝒖𝒏𝒏𝒚,𝑶𝒗𝒆𝒓𝒄𝒂𝒔𝒕,𝑹𝒂𝒊𝒏  

𝑺 =  𝟗+, 𝟓 −    𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟗

𝟏𝟒
𝒍𝒐𝒈𝟐

𝟗

𝟏𝟒
−
𝟓

𝟏𝟒
𝒍𝒐𝒈𝟐

𝟓

𝟏𝟒
= 𝟎. 𝟗𝟒 

𝑺𝑺𝒖𝒏𝒏𝒚 ← [𝟐+,𝟑−]   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 = −
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
−
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
= 𝟎. 𝟗𝟕𝟏 

𝑺𝑶𝒗𝒆𝒓𝒄𝒂𝒔𝒕 ← [𝟒+, 𝟎−]   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑶𝒗𝒆𝒓𝒄𝒂𝒔𝒕 = −
𝟒

𝟒
𝒍𝒐𝒈𝟐

𝟒

𝟒
−
𝟎

𝟒
𝒍𝒐𝒈𝟐

𝟎

𝟒
= 𝟎 

𝑺𝑹𝒂𝒊𝒏  ← [𝟑+, 𝟐−]    𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑹𝒂𝒊𝒏 = −
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
−
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
= 𝟎. 𝟗𝟕𝟏 

𝑮𝒂𝒊𝒏 𝑺,𝑶𝒖𝒕𝒍𝒐𝒐𝒌 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑺𝒖𝒏𝒏𝒚,𝑶𝒗𝒆𝒓𝒄𝒂𝒔𝒕,𝑹𝒂𝒊𝒏}

 

𝑮𝒂𝒊𝒏 𝑺,𝑶𝒖𝒕𝒍𝒐𝒐𝒌

= 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 − 
𝟓

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 −

𝟒

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑶𝒗𝒆𝒓𝒄𝒂𝒔𝒕

−
𝟓

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑹𝒂𝒊𝒏  

 

𝑮𝒂𝒊𝒏 𝑺,𝑶𝒖𝒕𝒍𝒐𝒐𝒌 = 𝟎. 𝟗𝟒 − 
𝟓

𝟏𝟒
𝟎. 𝟗𝟕𝟏 −

𝟒

𝟏𝟒
 𝟎 −
𝟓

𝟏𝟒
𝟎. 𝟗𝟕𝟏 = 𝟎. 𝟐𝟒𝟔𝟒 

Day  Outlook  Temp Humidity  Wind  
Play 

Tennis  

D1  Sunny  Hot  High  Weak  No  

D2  Sunny  Hot  High  Strong  No  

D3  Overcast  Hot  High  Weak  Yes  

D4  Rain  Mild  High  Weak  Yes  

D5  Rain  Cool  Normal  Weak  Yes  

D6  Rain  Cool  Normal  Strong  No  

D7  Overcast  Cool  Normal  Strong  Yes  

D8  Sunny  Mild  High  Weak  No  

D9  Sunny  Cool  Normal  Weak  Yes  

D10  Rain  Mild  Normal  Weak  Yes  

D11  Sunny  Mild  Normal  Strong  Yes  

D12  Overcast  Mild  High  Strong  Yes  

D13  Overcast  Hot  Normal  Weak  Yes  

D14  Rain  Mild  High  Strong  No  
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Attribute: Temp 

𝑽𝒂𝒍𝒖𝒆𝒔 𝑻𝒆𝒎𝒑 = 𝑯𝒐𝒕,𝑴𝒊𝒍𝒅, 𝑪𝒐𝒐𝒍  

𝑺 =  𝟗+, 𝟓 −    𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟗

𝟏𝟒
𝒍𝒐𝒈𝟐

𝟗

𝟏𝟒
−
𝟓

𝟏𝟒
𝒍𝒐𝒈𝟐

𝟓

𝟏𝟒
= 𝟎. 𝟗𝟒 

𝑺𝑯𝒐𝒕 ← [𝟐+, 𝟐−]   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 = −
𝟐

𝟒
𝒍𝒐𝒈𝟐

𝟐

𝟒
−
𝟐

𝟒
𝒍𝒐𝒈𝟐

𝟐

𝟒
= 𝟏. 𝟎 

𝑺𝑴𝒊𝒍𝒅 ← [𝟒+, 𝟐−]   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑴𝒊𝒍𝒅 = −
𝟒

𝟔
𝒍𝒐𝒈𝟐

𝟒

𝟔
−
𝟐

𝟔
𝒍𝒐𝒈𝟐

𝟐

𝟔
= 𝟎. 𝟗𝟏𝟖𝟑 

𝑺𝑪𝒐𝒐𝒍  ← [𝟑+, 𝟏−]    𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍 = −
𝟑

𝟒
𝒍𝒐𝒈𝟐

𝟑

𝟒
−
𝟏

𝟒
𝒍𝒐𝒈𝟐

𝟏

𝟒
= 𝟎.𝟖𝟏𝟏𝟑 

𝑮𝒂𝒊𝒏 𝑺, 𝑻𝒆𝒎𝒑 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒐𝒕,𝑴𝒊𝒍𝒅,𝑪𝒐𝒐𝒍}

 

𝑮𝒂𝒊𝒏 𝑺, 𝑻𝒆𝒎𝒑

= 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 − 
𝟒

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 −

𝟔

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑴𝒊𝒍𝒅

−
𝟒

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍  

𝑮𝒂𝒊𝒏 𝑺, 𝑻𝒆𝒎𝒑 = 𝟎. 𝟗𝟒 − 
𝟒

𝟏𝟒
𝟏. 𝟎 −

𝟔

𝟏𝟒
 𝟎. 𝟗𝟏𝟖𝟑 −

𝟒

𝟏𝟒
𝟎. 𝟖𝟏𝟏𝟑 = 𝟎. 𝟎𝟐𝟖𝟗 

 

Day  Outlook  Temp Humidity  Wind  
Play 

Tennis  

D1  Sunny  Hot  High  Weak  No  

D2  Sunny  Hot  High  Strong  No  

D3  Overcast  Hot  High  Weak  Yes  

D4  Rain  Mild  High  Weak  Yes  

D5  Rain  Cool  Normal  Weak  Yes  

D6  Rain  Cool  Normal  Strong  No  

D7  Overcast  Cool  Normal  Strong  Yes  

D8  Sunny  Mild  High  Weak  No  

D9  Sunny  Cool  Normal  Weak  Yes  

D10  Rain  Mild  Normal  Weak  Yes  

D11  Sunny  Mild  Normal  Strong  Yes  

D12  Overcast  Mild  High  Strong  Yes  

D13  Overcast  Hot  Normal  Weak  Yes  

D14  Rain  Mild  High  Strong  No  
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Attribute: Humidity 

𝑽𝒂𝒍𝒖𝒆𝒔 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝑯𝒊𝒈𝒉,𝑵𝒐𝒓𝒎𝒂𝒍  

𝑺 =  𝟗+, 𝟓 −    𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟗

𝟏𝟒
𝒍𝒐𝒈𝟐

𝟗

𝟏𝟒
−
𝟓

𝟏𝟒
𝒍𝒐𝒈𝟐

𝟓

𝟏𝟒
= 𝟎. 𝟗𝟒 

𝑺𝑯𝒊𝒈𝒉 ← [𝟑+, 𝟒−]            𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 = −
𝟑

𝟕
𝒍𝒐𝒈𝟐

𝟑

𝟕
−
𝟒

𝟕
𝒍𝒐𝒈𝟐

𝟒

𝟕
= 𝟎. 𝟗𝟖𝟓𝟐 

𝑺𝑵𝒐𝒓𝒎𝒂𝒍 ← [𝟔+, 𝟏−]           𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍 = −
𝟔

𝟕
𝒍𝒐𝒈𝟐

𝟔

𝟕
−
𝟏

𝟕
𝒍𝒐𝒈𝟐

𝟏

𝟕
= 𝟎. 𝟓𝟗𝟏𝟔 

𝑮𝒂𝒊𝒏 𝑺,𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒊𝒈𝒉,𝑵𝒐𝒓𝒎𝒂𝒍}

 

𝑮𝒂𝒊𝒏 𝑺,𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚

= 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 − 
𝟕

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 −

𝟕

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍  

 

𝑮𝒂𝒊𝒏 𝑺,𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝟎. 𝟗𝟒 − 
𝟕

𝟏𝟒
𝟎. 𝟗𝟖𝟓𝟐 −

𝟕

𝟏𝟒
 𝟎. 𝟓𝟗𝟏𝟔 = 𝟎. 𝟏𝟓𝟏𝟔 

 

Day  Outlook  Temp Humidity  Wind  
Play 

Tennis  

D1  Sunny  Hot  High  Weak  No  

D2  Sunny  Hot  High  Strong  No  

D3  Overcast  Hot  High  Weak  Yes  

D4  Rain  Mild  High  Weak  Yes  

D5  Rain  Cool  Normal  Weak  Yes  

D6  Rain  Cool  Normal  Strong  No  

D7  Overcast  Cool  Normal  Strong  Yes  

D8  Sunny  Mild  High  Weak  No  

D9  Sunny  Cool  Normal  Weak  Yes  

D10  Rain  Mild  Normal  Weak  Yes  

D11  Sunny  Mild  Normal  Strong  Yes  

D12  Overcast  Mild  High  Strong  Yes  

D13  Overcast  Hot  Normal  Weak  Yes  

D14  Rain  Mild  High  Strong  No  
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Attribute: Wind 

𝑽𝒂𝒍𝒖𝒆𝒔 𝑾𝒊𝒏𝒅 = 𝑺𝒕𝒓𝒐𝒏𝒈,𝑾𝒆𝒂𝒌  

𝑺 =  𝟗+, 𝟓 −    𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟗

𝟏𝟒
𝒍𝒐𝒈𝟐

𝟗

𝟏𝟒
−
𝟓

𝟏𝟒
𝒍𝒐𝒈𝟐

𝟓

𝟏𝟒
= 𝟎. 𝟗𝟒 

𝑺𝑺𝒕𝒓𝒐𝒏𝒈 ← [𝟑+, 𝟑−]            𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒕𝒓𝒐𝒏𝒈 = 𝟏. 𝟎 

𝑺𝑾𝒆𝒂𝒌 ← [𝟔+, 𝟐−]           𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑾𝒆𝒂𝒌 = −
𝟔

𝟖
𝒍𝒐𝒈𝟐

𝟔

𝟖
−
𝟐

𝟖
𝒍𝒐𝒈𝟐

𝟐

𝟖
= 𝟎. 𝟖𝟏𝟏𝟑 

𝑮𝒂𝒊𝒏 𝑺,𝑾𝒊𝒏𝒅 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑺𝒕𝒓𝒐𝒏𝒈,𝑾𝒆𝒂𝒌}

 

𝑮𝒂𝒊𝒏 𝑺,𝑾𝒊𝒏𝒅 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 − 
𝟔

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒕𝒓𝒐𝒏𝒈 −

𝟖

𝟏𝟒
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑾𝒆𝒂𝒌  

 

𝑮𝒂𝒊𝒏 𝑺,𝑾𝒊𝒏𝒅 = 𝟎. 𝟗𝟒 − 
𝟔

𝟏𝟒
 𝟏. 𝟎 −

𝟖

𝟏𝟒
 𝟎. 𝟖𝟏𝟏𝟑 = 𝟎. 𝟎𝟒𝟕𝟖 

 

Day  Outlook  Temp Humidity  Wind  
Play 

Tennis  

D1  Sunny  Hot  High  Weak  No  

D2  Sunny  Hot  High  Strong  No  

D3  Overcast  Hot  High  Weak  Yes  

D4  Rain  Mild  High  Weak  Yes  

D5  Rain  Cool  Normal  Weak  Yes  

D6  Rain  Cool  Normal  Strong  No  

D7  Overcast  Cool  Normal  Strong  Yes  

D8  Sunny  Mild  High  Weak  No  

D9  Sunny  Cool  Normal  Weak  Yes  

D10  Rain  Mild  Normal  Weak  Yes  

D11  Sunny  Mild  Normal  Strong  Yes  

D12  Overcast  Mild  High  Strong  Yes  

D13  Overcast  Hot  Normal  Weak  Yes  

D14  Rain  Mild  High  Strong  No  

CSE, HIT, Nidasoshi



 

𝑮𝒂𝒊𝒏 𝑺,𝑶𝒖𝒕𝒍𝒐𝒐𝒌 = 𝟎. 𝟐𝟒𝟔𝟒  

 

𝑮𝒂𝒊𝒏 𝑺, 𝑻𝒆𝒎𝒑 = 𝟎. 𝟎𝟐𝟖𝟗  

 

𝑮𝒂𝒊𝒏 𝑺,𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝟎. 𝟏𝟓𝟏𝟔  

 

𝑮𝒂𝒊𝒏 𝑺,𝑾𝒊𝒏𝒅 = 𝟎. 𝟎𝟒𝟕𝟖  

 

Day  Outlook  Temp Humidity  Wind  
Play 

Tennis  

D1  Sunny  Hot  High  Weak  No  

D2  Sunny  Hot  High  Strong  No  

D3  Overcast  Hot  High  Weak  Yes  

D4  Rain  Mild  High  Weak  Yes  

D5  Rain  Cool  Normal  Weak  Yes  

D6  Rain  Cool  Normal  Strong  No  

D7  Overcast  Cool  Normal  Strong  Yes  

D8  Sunny  Mild  High  Weak  No  

D9  Sunny  Cool  Normal  Weak  Yes  

D10  Rain  Mild  Normal  Weak  Yes  

D11  Sunny  Mild  Normal  Strong  Yes  

D12  Overcast  Mild  High  Strong  Yes  

D13  Overcast  Hot  Normal  Weak  Yes  

D14  Rain  Mild  High  Strong  No  
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Day  Outlook  Temp Humidity  Wind  
Play 

Tennis  

D1  Sunny  Hot  High  Weak  No  

D2  Sunny  Hot  High  Strong  No  

D3  Overcast  Hot  High  Weak  Yes  

D4  Rain  Mild  High  Weak  Yes  

D5  Rain  Cool  Normal  Weak  Yes  

D6  Rain  Cool  Normal  Strong  No  

D7  Overcast  Cool  Normal  Strong  Yes  

D8  Sunny  Mild  High  Weak  No  

D9  Sunny  Cool  Normal  Weak  Yes  

D10  Rain  Mild  Normal  Weak  Yes  

D11  Sunny  Mild  Normal  Strong  Yes  

D12  Overcast  Mild  High  Strong  Yes  

D13  Overcast  Hot  Normal  Weak  Yes  

D14  Rain  Mild  High  Strong  No  
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Day  
Tem

p 
Humidity  Wind  

Play 

Tennis  

D1 Hot  High  Weak  No  

D2  Hot  High  Strong  No  

D8  Mild  High  Weak  No  

D9  Cool  Normal  Weak  Yes  

D11  Mild  Normal  Strong  Yes  

Attribute: Temp 

𝑽𝒂𝒍𝒖𝒆𝒔 𝑻𝒆𝒎𝒑 = 𝑯𝒐𝒕,𝑴𝒊𝒍𝒅, 𝑪𝒐𝒐𝒍  

𝑺𝑺𝒖𝒏𝒏𝒚  =  𝟐+, 𝟑 −    𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 = −
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
−
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
=

𝟎. 𝟗𝟕 

𝑺𝑯𝒐𝒕 ← [𝟎+, 𝟐−]   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 = 𝟎. 𝟎 

𝑺𝑴𝒊𝒍𝒅 ← [𝟏+, 𝟏−]   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑴𝒊𝒍𝒅 = 𝟏.𝟎 

𝑺𝑪𝒐𝒐𝒍  ← [𝟏+, 𝟎−]    𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍 = 𝟎. 𝟎 

𝑮𝒂𝒊𝒏 𝑺𝑺𝒖𝒏𝒏𝒚, 𝑻𝒆𝒎𝒑 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒐𝒕,𝑴𝒊𝒍𝒅,𝑪𝒐𝒐𝒍}

 

𝑮𝒂𝒊𝒏 𝑺𝑺𝒖𝒏𝒏𝒚, 𝑻𝒆𝒎𝒑

= 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 − 
𝟐

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 −

𝟐

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑴𝒊𝒍𝒅

−
𝟏

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍  

𝑮𝒂𝒊𝒏 𝑺𝒔𝒖𝒏𝒏𝒚, 𝑻𝒆𝒎𝒑 = 𝟎. 𝟗𝟕 − 
𝟐

𝟓
𝟎. 𝟎 −

𝟐

𝟓
 𝟏 −
𝟏

𝟓
𝟎. 𝟎 = 𝟎. 𝟓𝟕𝟎 
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Day  
Tem

p 
Humidity  Wind  

Play 

Tennis  

Dl  Hot  High  Weak  No  

D2  Hot  High  Strong  No  

D8  Mild  High  Weak  No  

D9  Cool  Normal  Weak  Yes  

Dl1  Mild  Normal  Strong  Yes  

Attribute: Humidity 

𝑽𝒂𝒍𝒖𝒆𝒔 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝑯𝒊𝒈𝒉,𝑵𝒐𝒓𝒎𝒂𝒍  

𝑺𝑺𝒖𝒏𝒏𝒚  =  𝟐+, 𝟑 −    𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
−
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
= 𝟎. 𝟗𝟕 

𝑺𝒉𝒊𝒈𝒉 ← [𝟎+, 𝟑−]   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 = 𝟎. 𝟎 

𝑺𝑵𝒐𝒓𝒎𝒂𝒍 ← [𝟐+, 𝟎−]   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍 = 𝟎. 𝟎 

 

𝑮𝒂𝒊𝒏 𝑺𝑺𝒖𝒏𝒏𝒚, 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒊𝒈𝒉,𝑵𝒐𝒓𝒎𝒂𝒍}

 

𝑮𝒂𝒊𝒏 𝑺𝑺𝒖𝒏𝒏𝒚, 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚

= 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 − 
𝟑

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 −

𝟐

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍  

𝑮𝒂𝒊𝒏 𝑺𝒔𝒖𝒏𝒏𝒚, 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝟎. 𝟗𝟕 −
𝟑

𝟓
 𝟎. 𝟎 −

𝟐

𝟓
𝟎. 𝟎 = 𝟎. 𝟗𝟕 
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Day  
Tem

p 
Humidity  Wind  

Play 

Tennis  

Dl  Hot  High  Weak  No  

D2  Hot  High  Strong  No  

D8  Mild  High  Weak  No  

D9  Cool  Normal  Weak  Yes  

Dl1  Mild  Normal  Strong  Yes  

Attribute: Wind 

𝑽𝒂𝒍𝒖𝒆𝒔 𝑾𝒊𝒏𝒅 = 𝑺𝒕𝒓𝒐𝒏𝒈,𝑾𝒆𝒂𝒌  

𝑺𝑺𝒖𝒏𝒏𝒚  =  𝟐+, 𝟑 −    𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
−
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
= 𝟎. 𝟗𝟕 

𝑺𝑺𝒕𝒓𝒐𝒏𝒈 ← [𝟏+, 𝟏−]   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒕𝒓𝒐𝒏𝒈 = 𝟏. 𝟎 

𝑺𝑾𝒆𝒂𝒌 ← [𝟏+, 𝟐−]   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑾𝒆𝒂𝒌 = −
𝟏

𝟑
𝒍𝒐𝒈𝟐

𝟏

𝟑
−
𝟐

𝟑
𝒍𝒐𝒈𝟐

𝟐

𝟑
=

𝟎. 𝟗𝟏𝟖𝟑 

 

𝑮𝒂𝒊𝒏 𝑺𝑺𝒖𝒏𝒏𝒚,𝑾𝒊𝒏𝒅 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑺𝒕𝒓𝒐𝒏𝒈,𝑾𝒆𝒂𝒌}

 

𝑮𝒂𝒊𝒏 𝑺𝑺𝒖𝒏𝒏𝒚,𝑾𝒊𝒏𝒅

= 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 − 
𝟐

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒕𝒓𝒐𝒏𝒈 −

𝟑

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑾𝒆𝒂𝒌  

𝑮𝒂𝒊𝒏 𝑺𝒔𝒖𝒏𝒏𝒚,𝑾𝒊𝒏𝒅 = 𝟎. 𝟗𝟕 −
𝟐

𝟓
𝟏. 𝟎 −

𝟑

𝟓
 𝟎. 𝟗𝟏𝟖 = 𝟎. 𝟎𝟏𝟗𝟐 
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Day  
Tem

p 
Humidity  Wind  

Play 

Tennis  

D1 Hot  High  Weak  No  

D2  Hot  High  Strong  No  

D8  Mild  High  Weak  No  

D9  Cool  Normal  Weak  Yes  

D11  Mild  Normal  Strong  Yes  

 

𝑮𝒂𝒊𝒏 𝑺𝒔𝒖𝒏𝒏𝒚, 𝑻𝒆𝒎𝒑 = 𝟎. 𝟓𝟕𝟎  

 

𝑮𝒂𝒊𝒏 𝑺𝒔𝒖𝒏𝒏𝒚, 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝟎. 𝟗𝟕  

 

𝑮𝒂𝒊𝒏 𝑺𝒔𝒖𝒏𝒏𝒚,𝑾𝒊𝒏𝒅 = 𝟎. 𝟎𝟏𝟗𝟐  
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{D1, D2, D8} 

        No 

{D9, D11} 

        Yes 
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Day  Outlook  Temp Humidity  Wind  
Play 

Tennis  

D1  Sunny  Hot  High  Weak  No  

D2  Sunny  Hot  High  Strong  No  

D3  Overcast  Hot  High  Weak  Yes  

D4  Rain  Mild  High  Weak  Yes  

D5  Rain  Cool  Normal  Weak  Yes  

D6  Rain  Cool  Normal  Strong  No  

D7  Overcast  Cool  Normal  Strong  Yes  

D8  Sunny  Mild  High  Weak  No  

D9  Sunny  Cool  Normal  Weak  Yes  

D10  Rain  Mild  Normal  Weak  Yes  

D11  Sunny  Mild  Normal  Strong  Yes  

D12  Overcast  Mild  High  Strong  Yes  

D13  Overcast  Hot  Normal  Weak  Yes  

D14  Rain  Mild  High  Strong  No  
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Day  
Tem

p 
Humidity  Wind  

Play 

Tennis  

D4  Mild  High  Weak  Yes  

D5  Cool  Normal  Weak  Yes  

D6  Cool  Normal  Strong  No  

D10  Mild  Normal  Weak  Yes  

D14  Mild  High  Strong  No  

Attribute: Temp 

𝑽𝒂𝒍𝒖𝒆𝒔 𝑻𝒆𝒎𝒑 = 𝑯𝒐𝒕,𝑴𝒊𝒍𝒅, 𝑪𝒐𝒐𝒍  

𝑺𝑹𝒂𝒊𝒏  =  𝟑+, 𝟐 −    𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 = −
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
−
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
= 𝟎. 𝟗𝟕 

𝑺𝑯𝒐𝒕 ← [𝟎+, 𝟎−]   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 = 𝟎. 𝟎 

𝑺𝑴𝒊𝒍𝒅 ← [𝟐+,𝟏−]   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑴𝒊𝒍𝒅 = −
𝟐

𝟑
𝒍𝒐𝒈𝟐

𝟐

𝟑
−
𝟏

𝟑
𝒍𝒐𝒈𝟐

𝟏

𝟑
=

𝟎. 𝟗𝟏𝟖𝟑 

𝑺𝑪𝒐𝒐𝒍  ← [𝟏+, 𝟏−]    𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍 = 𝟏. 𝟎 

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏, 𝑻𝒆𝒎𝒑 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑹𝒂𝒊𝒏 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒐𝒕,𝑴𝒊𝒍𝒅,𝑪𝒐𝒐𝒍}

 

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏, 𝑻𝒆𝒎𝒑

= 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑹𝒂𝒊𝒏 − 
𝟎

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 −

𝟑

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑴𝒊𝒍𝒅

−
𝟐

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍  

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏, 𝑻𝒆𝒎𝒑 = 𝟎. 𝟗𝟕 − 
𝟎

𝟓
𝟎. 𝟎 −

𝟑

𝟓
 𝟎. 𝟗𝟏𝟖 −

𝟐

𝟓
 𝟏. 𝟎 = 𝟎. 𝟎𝟏𝟗𝟐 
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Day  
Tem

p 
Humidity  Wind  

Play 

Tennis  

D4  Mild  High  Weak  Yes  

D5  Cool  Normal  Weak  Yes  

D6  Cool  Normal  Strong  No  

Dl0  Mild  Normal  Weak  Yes  

Dl4  Mild  High  Strong  No  

Attribute: Humidity 

𝑽𝒂𝒍𝒖𝒆𝒔 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝑯𝒊𝒈𝒉,𝑵𝒐𝒓𝒎𝒂𝒍  

𝑺𝑹𝒂𝒊𝒏  =  𝟑+, 𝟐 −    𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 = −
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
−
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
=

𝟎. 𝟗𝟕 

𝑺𝑯𝒊𝒈𝒉 ← [𝟏+, 𝟏−]   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 = 𝟏. 𝟎 

𝑺𝑵𝒐𝒓𝒎𝒂𝒍 ← [𝟐+, 𝟏−]   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍 = −
𝟐

𝟑
𝒍𝒐𝒈𝟐

𝟐

𝟑
−
𝟏

𝟑
𝒍𝒐𝒈𝟐

𝟏

𝟑
=

𝟎. 𝟗𝟏𝟖𝟑 

 

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏, 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑹𝒂𝒊𝒏 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒊𝒈𝒉,𝑵𝒐𝒓𝒎𝒂𝒍}

 

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏, 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚

= 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑹𝒂𝒊𝒏 − 
𝟐

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 −

𝟑

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍  

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏, 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝟎. 𝟗𝟕 −
𝟐

𝟓
 𝟏. 𝟎 −

𝟑

𝟓
𝟎. 𝟗𝟏𝟖 = 𝟎. 𝟎𝟏𝟗𝟐 
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Day  
Tem

p 
Humidity  Wind  

Play 

Tennis  

D4  Mild  High  Weak  Yes  

D5  Cool  Normal  Weak  Yes  

D6  Cool  Normal  Strong  No  

Dl0  Mild  Normal  Weak  Yes  

Dl4  Mild  High  Strong  No  

Attribute: Wind 

𝑽𝒂𝒍𝒖𝒆𝒔 𝒘𝒊𝒏𝒅 = 𝑺𝒕𝒓𝒐𝒏𝒈,𝑾𝒆𝒂𝒌  

𝑺𝑹𝒂𝒊𝒏  =  𝟑+, 𝟐 −    𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒖𝒏𝒏𝒚 = −
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
−
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
=

𝟎. 𝟗𝟕 

𝑺𝑺𝒕𝒓𝒐𝒏𝒈 ← [𝟎+, 𝟐−]   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒕𝒓𝒐𝒏𝒈 = 𝟎. 𝟎 

𝑺𝑾𝒆𝒂𝒌 ← [𝟑+, 𝟎−]   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝒘𝒆𝒂𝒌 = 𝟎. 𝟎 

 

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏,𝑾𝒊𝒏𝒅 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑹𝒂𝒊𝒏 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑺𝒕𝒓𝒐𝒏𝒈,𝑾𝒆𝒂𝒌}

 

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏,𝑾𝒊𝒏𝒅 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑹𝒂𝒊𝒏 − 
𝟐

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑺𝒕𝒓𝒐𝒏𝒈 −

𝟑

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑾𝒆𝒂𝒌  

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏,𝑾𝒊𝒏𝒅 = 𝟎. 𝟗𝟕 −
𝟐

𝟓
 𝟎. 𝟎 −

𝟑

𝟓
𝟎. 𝟎 = 𝟎. 𝟗𝟕 
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Day  
Tem

p 
Humidity  Wind  

Play 

Tennis  

D4  Mild  High  Weak  Yes  

D5  Cool  Normal  Weak  Yes  

D6  Cool  Normal  Strong  No  

Dl0  Mild  Normal  Weak  Yes  

Dl4  Mild  High  Strong  No  

 

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏, 𝑻𝒆𝒎𝒑 = 𝟎. 𝟎𝟏𝟗𝟐  

 

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏, 𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝟎. 𝟎𝟏𝟗𝟐  

 

𝑮𝒂𝒊𝒏 𝑺𝑹𝒂𝒊𝒏,𝑾𝒊𝒏𝒅 = 𝟎. 𝟗𝟕  
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{D1, D2, D8} 

        No 

{D9, D11} 

        Yes {D4, D5, D10} 

        Yes 
{D6, D14} 

        No 
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Instance Classification a1 a2 

1 + T T 

2 + T T 

3 - T F 

4 + F F 

5 - F T 

6 - F T 

1. What is the entropy of this collection of training examples with respect to 

the target function classification? 

2. What is the information gain of a2 relative to these training examples? 

3. Draw decision tree for the given dataset. 

DECISION TREE EXAMPLE 
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Decision Tree Algorithm – ID3 Solved Example 

Subscribe to Mahesh Huddar Visit: vtupulse.com 

1. What is the entropy of this collection of training examples with respect to the target 

function classification? 

2. What is the information gain of a1 and a2 relative to these training examples? 

3. Draw decision tree for the given dataset. 

Instance Classification a1 a2 

1 + T T 

2 + T T 

3 - T F 

4 + F F 

5 - F T 

6 - F T 
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Attribute: a1 

𝑽𝒂𝒍𝒖𝒆𝒔 𝒂𝟏 = 𝑻, 𝑭 

𝑺 =  𝟑+, 𝟑 −  𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = 𝟏. 𝟎 

𝑺𝑻  =  𝟐+,  𝟏 −   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑻 = −
𝟐

𝟑
𝒍𝒐𝒈𝟐

𝟐

𝟑
−
𝟏

𝟑
𝒍𝒐𝒈𝟐

𝟏

𝟑
= 𝟎. 𝟗𝟏𝟖𝟑 

𝑺𝑭 ← [𝟏+, 𝟐−]  𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑭 = −
𝟏

𝟑
𝒍𝒐𝒈𝟐

𝟏

𝟑
−
𝟐

𝟑
𝒍𝒐𝒈𝟐

𝟐

𝟑
= 𝟎. 𝟗𝟏𝟖𝟑 

 

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟏 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑻,𝑭}

 

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟏 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 − 
𝟑

𝟔
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑻 −

𝟑

𝟔
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑭  

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟏 = 𝟏. 𝟎 −
𝟑

𝟔
∗ 𝟎. 𝟗𝟏𝟖𝟑 −

𝟑

𝟔
 ∗ 𝟎. 𝟗𝟏𝟖𝟑 = 𝟎. 𝟎𝟖𝟏𝟕 

Example - 2 
Decision Tree Algorithm – ID3  

Solved Example 

Subscribe to Mahesh Huddar Visit: vtupulse.com 

Instance Classification a1 a2 

1 + T T 

2 + T T 

3 - T F 

4 + F F 

5 - F T 

6 - F T 
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Attribute: a2 

𝑽𝒂𝒍𝒖𝒆𝒔 𝒂𝟐 = 𝑻, 𝑭 

𝑺 =  𝟑+, 𝟑 −  𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = 𝟏. 𝟎 

𝑺𝑻  =  𝟐+,  𝟐 −   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑻 = 𝟏. 𝟎 

𝑺𝑭 ← [𝟏+, 𝟏−]  𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑭 = 𝟏. 𝟎 

 

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑻,𝑭}

 

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 − 
𝟒

𝟔
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑻 −

𝟐

𝟔
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑭  

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝟏. 𝟎 −
𝟒

𝟔
∗ 𝟏. 𝟎 −

𝟐

𝟔
 ∗ 𝟏. 𝟎 = 𝟎. 𝟎 

Subscribe to Mahesh Huddar Visit: vtupulse.com 

Instance Classification a1 a2 

1 + T T 

2 + T T 

3 - T F 

4 + F F 

5 - F T 

6 - F T 

Example - 2 
Decision Tree Algorithm – ID3  

Solved Example 
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Subscribe to Mahesh Huddar Visit: vtupulse.com 

Instance Classification a1 a2 

1 + T T 

2 + T T 

3 - T F 

4 + F F 

5 - F T 

6 - F T 

𝑮𝒂𝒊𝒏(𝑺, 𝒂𝟏) = 𝟎. 𝟎𝟖𝟏𝟕  −  𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝑮𝒂𝒊𝒏  

𝑮𝒂𝒊𝒏(𝑺, 𝒂𝟐) = 𝟎. 𝟎 

 a1 

T F 

1, 2, 3 4, 5, 6 

a2 

T F 

1, 2 3 

a2 

T F 

5, 6 4 

+ - - + 

Example - 2 
Decision Tree Algorithm – ID3  

Solved Example 

CSE, HIT, Nidasoshi
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Instance a1 a2 a3 Classification 

1 True Hot High No 

2 True Hot High No 

3 False Hot High Yes 

4 False Cool Normal Yes 

5 False Cool Normal Yes 

6 True Cool High No 

7 True Hot High No 

8 True Hot Normal Yes 

9 False Cool Normal Yes 

10 False Cool High Yes 

1. Construct the decision tree for the following tree using ID3 Algorithm 

DECISION TREE EXAMPLE 
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Decision Tree Algorithm – ID3 Solved Example 

Subscribe to Mahesh Huddar Visit: vtupulse.com 

Instance a1 a2 a3 Classification 

1 True Hot High No 

2 True Hot High No 

3 False Hot High Yes 

4 False Cool Normal Yes 

5 False Cool Normal Yes 

6 True Cool High No 

7 True Hot High No 

8 True Hot Normal Yes 

9 False Cool Normal Yes 

10 False Cool High Yes 
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Instance a1 a2 a3 Classification 

1 True Hot High No 

2 True Hot High No 

3 False Hot High Yes 

4 False Cool Normal Yes 

5 False Cool Normal Yes 

6 True Cool High No 

7 True Hot High No 

8 True Hot Normal Yes 

9 False Cool Normal Yes 

10 False Cool High Yes 

Attribute: a1 

𝑽𝒂𝒍𝒖𝒆𝒔 𝒂𝟏 = 𝑻𝒓𝒖𝒆, 𝑭𝒂𝒍𝒔𝒆  

𝑺 =  𝟔+, 𝟒 −  𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟔

𝟏𝟎
𝒍𝒐𝒈𝟐

𝟔

𝟏𝟎
−
𝟒

𝟏𝟎
𝒍𝒐𝒈𝟐

𝟒

𝟏𝟎
= 𝟎. 𝟗𝟕𝟎𝟗 

𝑺𝑻𝒓𝒖𝒆  =  𝟏+, 𝟒 −   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑻𝒓𝒖𝒆 = −
𝟏

𝟓
𝒍𝒐𝒈𝟐

𝟏

𝟓
−
𝟒

𝟓
𝒍𝒐𝒈𝟐

𝟒

𝟓
= 𝟎. 𝟕𝟐𝟏𝟗 

𝑺𝑭𝒍𝒂𝒔𝒆 ← [𝟓+, 𝟎−]  𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑭𝒂𝒍𝒔𝒆 = 𝟎. 𝟎 

 

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟏 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑻𝒓𝒖𝒆,𝑭𝒂𝒍𝒔𝒆}

 

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟏 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 − 
𝟓

𝟏𝟎
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑻𝒓𝒖𝒆 −

𝟓

𝟏𝟎
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑭𝒂𝒍𝒔𝒆  

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟏 = 𝟎. 𝟗𝟕𝟎𝟗 −
𝟓

𝟏𝟎
∗ 𝟎. 𝟕𝟐𝟏𝟗 −

𝟓

𝟏𝟎
 ∗ 𝟏 = 𝟎. 𝟔𝟎𝟗𝟗 

Subscribe to Mahesh Huddar Visit: vtupulse.com 

Example - 3 
Decision Tree Algorithm – ID3  

Solved Example 
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Instance a1 a2 a3 Classification 

1 True Hot High No 

2 True Hot High No 

3 False Hot High Yes 

4 False Cool Normal Yes 

5 False Cool Normal Yes 

6 True Cool High No 

7 True Hot High No 

8 True Hot Normal Yes 

9 False Cool Normal Yes 

10 False Cool High Yes 

Attribute: a2 

𝑽𝒂𝒍𝒖𝒆𝒔 𝒂𝟐 = 𝑯𝒐𝒕, 𝑪𝒐𝒐𝒍  

𝑺 =  𝟔+, 𝟒 −  𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟔

𝟏𝟎
𝒍𝒐𝒈𝟐

𝟔

𝟏𝟎
−
𝟒

𝟏𝟎
𝒍𝒐𝒈𝟐

𝟒

𝟏𝟎
= 𝟎. 𝟗𝟕𝟎𝟗 

𝑺𝑯𝒐𝒕  =  𝟐+, 𝟑 −   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 = −
𝟐

𝟓
𝒍𝒐𝒈𝟐

𝟐

𝟓
−
𝟑

𝟓
𝒍𝒐𝒈𝟐

𝟑

𝟓
= 𝟎. 𝟗𝟕𝟎𝟗 

𝑺𝑪𝒐𝒐𝒍 ← [𝟒+, 𝟏−]  𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍 = −
𝟒

𝟓
𝒍𝒐𝒈𝟐

𝟒

𝟓
−
𝟏

𝟓
𝒍𝒐𝒈𝟐

𝟏

𝟓
= 𝟎. 𝟕𝟐𝟏𝟗 

 

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒐𝒕,𝑪𝒐𝒐𝒍}

 

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 − 
𝟓

𝟏𝟎
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 −

𝟓

𝟏𝟎
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍  

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝟎. 𝟗𝟕𝟎𝟗 −
𝟓

𝟏𝟎
∗ 𝟎. 𝟗𝟕𝟎𝟗 −

𝟓

𝟏𝟎
 ∗ 𝟎. 𝟕𝟐𝟏𝟗 = 𝟎. 𝟏𝟐𝟒𝟓 
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Decision Tree Algorithm – ID3  

Solved Example 
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Instance a1 a2 a3 Classification 

1 True Hot High No 

2 True Hot High No 

3 False Hot High Yes 

4 False Cool Normal Yes 

5 False Cool Normal Yes 

6 True Cool High No 

7 True Hot High No 

8 True Hot Normal Yes 

9 False Cool Normal Yes 

10 False Cool High Yes 

Attribute: a3 

𝑽𝒂𝒍𝒖𝒆𝒔 𝒂𝟑 = 𝑯𝒊𝒈𝒉, 𝑵𝒐𝒓𝒎𝒂𝒍  

𝑺 =  𝟔+, 𝟒 −  𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 = −
𝟔

𝟏𝟎
𝒍𝒐𝒈𝟐

𝟔

𝟏𝟎
−
𝟒

𝟏𝟎
𝒍𝒐𝒈𝟐

𝟒

𝟏𝟎
= 𝟎. 𝟗𝟕𝟎𝟗 

𝑺𝑯𝒊𝒈𝒉  =  𝟐+, 𝟒 −   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 = −
𝟐

𝟔
𝒍𝒐𝒈𝟐

𝟐

𝟔
−
𝟒

𝟔
𝒍𝒐𝒈𝟐

𝟒

𝟔
= 𝟎. 𝟗𝟏𝟖𝟑 

𝑺𝑵𝒐𝒓𝒎𝒂𝒍 ← [𝟒+, 𝟎−]  𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍 = 𝟎. 𝟎 

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟑 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒊𝒈𝒉,𝑵𝒐𝒓𝒎𝒂𝒍}

 

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟑 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 − 
𝟔

𝟏𝟎
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 −

𝟒

𝟏𝟎
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍  

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟑 = 𝟎. 𝟗𝟕𝟎𝟗 −
𝟔

𝟏𝟎
∗ 𝟎. 𝟗𝟏𝟖𝟑 −

𝟒

𝟏𝟎
 ∗ 𝟎. 𝟎 = 𝟎. 𝟒𝟏𝟗𝟗 
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Instance a1 a2 a3 Classification 

1 True Hot High No 

2 True Hot High No 

3 False Hot High Yes 

4 False Cool Normal Yes 

5 False Cool Normal Yes 

6 True Cool High No 

7 True Hot High No 

8 True Hot Normal Yes 

9 False Cool Normal Yes 

10 False Cool High Yes 

Subscribe to Mahesh Huddar Visit: vtupulse.com 

𝑮𝒂𝒊𝒏(𝑺, 𝒂𝟏) = 𝟎. 𝟔𝟎𝟗𝟗  −  𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝑮𝒂𝒊𝒏  

𝑮𝒂𝒊𝒏(𝑺, 𝒂𝟐) = 𝟎. 𝟏𝟐𝟒𝟓  

𝑮𝒂𝒊𝒏(𝑺, 𝒂𝟑) = 𝟎. 𝟒𝟏𝟗𝟗  

 
a1 

True False 

1, 2, 6, 7, 8 3, 4, 5, 9, 10 

Yes 
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Solved Example 

CSE, HIT, Nidasoshi



Subscribe to Mahesh Huddar Visit: vtupulse.com 

Instance a2 a3 Classification 

1 Hot High No 

2 Hot High No 

6 Cool High No 

7 Hot High No 

8 Hot Normal Yes 

Attribute: a2 

𝑽𝒂𝒍𝒖𝒆𝒔 𝒂𝟐 = 𝑯𝒐𝒕, 𝑪𝒐𝒐𝒍  

𝑺𝒂𝟏  =  𝟏+, 𝟒 −  𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝒂𝟏 = −
𝟏

𝟓
𝒍𝒐𝒈𝟐

𝟏

𝟓
−
𝟒

𝟓
𝒍𝒐𝒈𝟐

𝟒

𝟓
= 𝟎. 𝟕𝟐𝟏𝟗 

𝑺𝑯𝒐𝒕  =  𝟏+, 𝟑 −   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 = −
𝟏

𝟒
𝒍𝒐𝒈𝟐

𝟏

𝟒
−
𝟑

𝟒
𝒍𝒐𝒈𝟐

𝟑

𝟒
= 𝟎. 𝟖𝟏𝟏𝟐 

𝑺𝑪𝒐𝒐𝒍 ← [𝟎+, 𝟏−]  𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍 = 𝟎. 𝟎 

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒐𝒕,𝑪𝒐𝒐𝒍}

 

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 − 
𝟒

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒐𝒕 −

𝟏

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑪𝒐𝒐𝒍  

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟐 = 𝟎. 𝟗𝟕𝟎𝟗 −
𝟒

𝟓
∗ 𝟎. 𝟖𝟏𝟏𝟐 −

𝟏

𝟓
 ∗ 𝟎. 𝟎 = 𝟎. 𝟑𝟐𝟏𝟗 
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Instance a2 a3 Classification 

1 Hot High No 

2 Hot High No 

6 Cool High No 

7 Hot High No 

8 Hot Normal Yes 

Attribute: a3 

𝑽𝒂𝒍𝒖𝒆𝒔 𝒂𝟑 = 𝑯𝒊𝒈𝒉, 𝑵𝒐𝒓𝒎𝒂𝒍  

𝑺𝒂𝟏  =  𝟏+, 𝟒 −  𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝒂𝟏 = −
𝟏

𝟓
𝒍𝒐𝒈𝟐

𝟏

𝟓
−
𝟒

𝟓
𝒍𝒐𝒈𝟐

𝟒

𝟓
= 𝟎. 𝟕𝟐𝟏𝟗 

𝑺𝑯𝒊𝒈𝒉  =  𝟎+, 𝟒 −   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 = 𝟎. 𝟎 

𝑺𝑵𝒐𝒓𝒎𝒂𝒍 ← [𝟏+, 𝟎−]  𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍 = 𝟎. 𝟎 

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟑 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 −  
𝑺𝒗
|𝑺|
𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺𝒗)

𝒗 ∈{𝑯𝒊𝒈𝒉,𝑵𝒐𝒓𝒎𝒂𝒍}

 

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟑 = 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺 − 
𝟒

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑯𝒊𝒈𝒉 −

𝟏

𝟓
𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑺𝑵𝒐𝒓𝒎𝒂𝒍  

𝑮𝒂𝒊𝒏 𝑺, 𝒂𝟑 = 𝟎. 𝟗𝟕𝟎𝟗 −
𝟒

𝟓
∗ 𝟎. 𝟎 −

𝟏

𝟓
 ∗ 𝟎. 𝟎 = 𝟎. 𝟕𝟐𝟏𝟗 
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𝑮𝒂𝒊𝒏 𝑺𝒂𝟏, 𝒂𝟐 = 𝟎. 𝟑𝟐𝟏𝟗 

𝑮𝒂𝒊𝒏 𝑺𝒂𝟏, 𝒂𝟑 = 𝟎. 𝟕𝟐𝟏𝟗 −  𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝑮𝒂𝒊𝒏  

 

a1 

True False 

1, 2, 6, 7, 8 3, 4, 5, 9, 10 

Yes 
a3 

High Normal 

Instance a2 a3 Classification 

1 Hot High No 

2 Hot High No 

6 Cool High No 

7 Hot High No 

8 Hot Normal Yes 

Yes No 

1, 2, 6, 7 8 
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When to use Decision Trees 

 Problem characteristics: 

 Instances can be described by attribute value pairs  

 Target function is discrete valued   

 Disjunctive hypothesis may be required   

 Possibly noisy training data samples 

 Robust to errors in training data 

 Missing attribute values 

 Different classification problems: 

 Equipment classification 

 Medical diagnosis 

 Credit risk analysis  

 Several tasks in natural language processing 
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Issues in decision trees learning 

 Overfitting 

 Reduced error pruning 

 Rule post-pruning 

 Extensions 

 Continuous valued attributes 

 Alternative measures for selecting attributes 

 Handling training examples with missing attribute values 

 Handling attributes with different costs 

 Improving computational efficiency 

 Most of these improvements in C4.5 (Quinlan, 1993) 
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Overfitting: definition 

• Building trees that “adapt too much” to the training examples may lead to 

“overfitting”. 

• Consider error of hypothesis h over 

– training data: errorD(h)   empirical error 

– entire distribution X of data: errorX(h) expected error 

• Hypothesis h overfits training data if there is an alternative hypothesis h'  

H such that 

   errorD(h) < errorD(h’)   and 

   errorX(h’) < errorX(h) 

 i.e. h’ behaves better over unseen data 
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Overfitting in decision tree learning 
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Avoid overfitting in Decision Trees 

 Two strategies: 

1. Stop growing the tree earlier, before perfect classification 

2. Allow the tree to overfit the data, and then post-prune the 

tree 

–Training and validation set: split the training in two parts 

(training and validation) and use validation to assess the 

utility of post-pruning 

• Reduced error pruning 

• Rule Post pruning 
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Reduced-error pruning (Quinlan 1987) 
 Each node is a candidate for pruning 

 Pruning consists in removing a subtree rooted in a node: the node 

becomes a leaf and is assigned the most common classification 

 Nodes are removed only if the resulting tree performs no worse on the 

validation set. 

 Nodes are pruned iteratively: at each iteration the node  whose removal 

most increases accuracy on the validation set is pruned. 

 Pruning stops when no pruning increases accuracy 
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Effect of reduced error pruning 
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Rule post-pruning 

1. Create the decision tree from the training set 

2. Convert the tree into an equivalent set of rules 

– Each path corresponds to a rule 

– Each node along a path corresponds to a pre-condition 

– Each leaf classification to the post-condition 

3. Prune (generalize) each rule by removing those preconditions whose 

removal improves accuracy over validation set 

4. Sort the rules in estimated order of accuracy, and consider them in 

sequence when classifying new instances 

CSE, HIT, Nidasoshi



Converting to rules 
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Rule Post-Pruning 

• Convert tree to rules (one for each path from root to a leaf) 

• For each antecedent in a rule, remove it if error rate on validation 

set does not decrease 

• Sort final rule set by accuracy 

Outlook=sunny ^ humidity=high -> No 

Outlook=sunny ^ humidity=normal -> Yes 

Outlook=overcast -> Yes 

Outlook=rain ^ wind=strong -> No 

Outlook=rain ^ wind=weak -> Yes 

Compare first rule to: 
    Outlook=sunny-

>No 

   Humidity=high-

>No 

Calculate accuracy of 3 

rules 

based on validation set 

and  

pick best version. 
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Why converting to rules? 

 Each distinct path produces a different rule: a condition removal 

may be based on a local (contextual) criterion. Node pruning is 

global and affects all the rules 

 In rule form, tests are not ordered and there is no book-keeping 

involved when conditions (nodes) are removed 

 Converting to rules improves readability for humans 
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Dealing with continuous-valued 
attributes 

 So far discrete values for attributes and for outcome. 

 Given a continuous-valued attribute A, dynamically create a new attribute Ac 

  Ac = True if A < c, False otherwise 

 How to determine threshold value c ?  

 Example. Temperature in the PlayTennis example 

 Sort the examples according to Temperature 

 Temperature 40 48     60 72 80     90 

 PlayTennis No No    Yes Yes Yes   No 

 Determine candidate thresholds by averaging consecutive values where there is a 

change in classification: (48+60)/2=54 and (80+90)/2=85 

 Evaluate candidate thresholds (attributes) according to information gain. The best is 

Temperature>54.The new attribute competes with the other ones 
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Tid Refund Marital Status Taxable Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
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Handling incomplete training data 

 How to cope with the problem that the value of some attribute may be missing? 

 Example: Blood-Test-Result in a medical diagnosis problem 

 The strategy: use other examples to guess attribute 

1. Assign the value that is most common among the training examples at the 

node 

2. Assign a probability to each value, based on frequencies, and assign values to 

missing attribute, according to this probability distribution 

 Missing values in new instances to be classified are treated accordingly, and the 

most probable classification is chosen (C4.5) 
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Handling attributes with different costs 

• Instance attributes may have an associated cost: we would prefer 

decision trees that use low-cost attributes 

• ID3 can be modified to take into account costs: 

1. Tan and Schlimmer   (1990) 

                              Gain2(S, A)   

        Cost(S, A) 

2. Nunez (1988)  

    2Gain(S, A)   1   

    (Cost(A) + 1)w     
w ∈ [0,1] 
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Search space in Decision Tree learning 

• The search space is made by partial decision 

trees 

• The algorithm is hill-climbing 

• The evaluation function is information gain 

• The hypotheses space is complete (represents 

all discrete-valued functions) 

• No backtracking; no guarantee of optimality 

• It uses all the available examples (not 

incremental) 
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Inductive bias in decision tree learning  

What is the inductive bias of DT learning? 

1. Shorter trees are preferred over longer trees 

 Not enough. This is the bias exhibited by a simple breadth first 

algorithm generating all DT's e selecting the shorter one 

2. Prefer trees that place high information gain attributes close to 

the root 
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Artificial Neural Networks 
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Artificial Neural Networks 

• Introduction 

• Neural Network Representation 

• Appropriate Problems for Neural Network Learning 

• Perceptrons 

• Multilayer Networks and BACKPROPAGATION 

Algorithms 

• Remarks on the BACKPROPAGATION Algorithms 
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Artificial Neural Networks 
• ANN learning well-suited to problems which the training data corresponds to noisy, complex data (inputs from cameras or 

microphones) 

• Can also be used for problems with symbolic representations 

• Most appropriate for problems where 

– Instances have many attribute-value pairs  

– Target function output may be discrete-valued, real-valued, or a vector of several real- or discrete-valued attributes 

– Training examples may contain errors 

– Long training times are acceptable 

– Fast evaluation of the learned target function may be required 

– The ability for humans to understand the learned target function is not important 

98 

CSE, HIT, Nidasoshi



Appropriate Problems – for ANN 
• Instances are represented by many attribute-value pairs. The target function to be learned is defined over instances that can 

be described by a vector of predefined features, such as the pixel values in the ALVINN example. These input attributes may 

be highly correlated or independent of one another. Input values can be any real values. 

• The target function output may be discrete-valued, real-valued, or a vector of several real- or discrete-valued attributes. 

For example, in the ALVINN system the output is a vector of 30 attributes, each corresponding to a recommendation 

regarding the steering direction. The value of each output is some real number between 0 and 1, which in this case 

corresponds to the confidence in predicting the corresponding steering direction. We can also train a single network to output 

both the steering command and suggested acceleration, simply by concatenating the vectors that encode these two output 

predictions. 

99 
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Appropriate Problems – for ANN 
The training examples may contain errors. ANN learning methods are quite robust 

to noise in the training data. 

 

Long training times are acceptable. Network training algorithms typically require 

longer training times than, say, decision tree learning algorithms. Training times 

can range from a few seconds to many hours, depending on factors such as the 

number of weights in the network, the number of training examples considered, 

and the settings of various learning algorithm parameters. 

100 
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Appropriate Problems – for ANN 
Fast evaluation of the learned target function may be required. Although ANN 

learning times are relatively long, evaluating the learned network, in order to 

apply it to a subsequent instance, is typically very fast. For example, ALVINN 

applies its neural network several times per second to continually update its 

steering command as the vehicle drives forward. 

The ability of humans to understand the learned target function is not important. 

The weights learned by neural networks are often difficult for humans to 

interpret. Learned neural networks are less easily communicated to humans than 

learned rules 
101 
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Neural Network History 
• History traces back to the 50’s but became popular in the 80’s with work by Rumelhart, Hinton, and Mclelland 

–  A General Framework for Parallel Distributed Processing in Parallel Distributed Processing: Explorations 

in the Microstructure of Cognition 

• Peaked in the 90’s.: 

– Hundreds of variants 

– Less a model of the actual brain than a useful tool, but still some debate 

• Numerous applications 

– Handwriting, face, speech recognition 

– Vehicles that drive themselves 

– Models of reading, sentence production, dreaming 

• Debate for philosophers and cognitive scientists 

– Can human consciousness or cognitive abilities be explained by a  connectionist model or does it require 

the manipulation of symbols?  
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Biological Motivation 
• The study of artificial neural networks (ANNs) has been inspired by the 

observation that biological learning systems are built of very complex webs of 

interconnected Neurons 

• Human information processing system consists of brain neuron: basic building 

block cell that communicates information to and from various parts of body 

• Simplest model of a neuron: considered as a threshold unit –a processing 

element (PE) 

• Collects inputs & produces output if the sum of the input exceeds an internal 

threshold value 
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Biological Motivation 
• The human brain is made up of billions of simple processing 

units – neurons. 

• Inputs are received on dendrites, and if the input levels are over a 

threshold, the neuron fires, passing a signal through the axon to 

the synapse which then connects to another  neuron. 

104 104 
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Biological Motivation 
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Simplest Neural Network 
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Simplest Neural Network 
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FIND-S: Step-2 
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, , , , .  S0: 

?,  ?,  ?,  ?,  ?,  ? G0: 

Sunny,Warm, Normal, Strong, Warm, Same S1: 

Sunny,Warm, ?, Strong, Warm, Same S2: 

?,?,?,?,?,Same G3: 

G4: 

Sunny, Warm, ?, Strong, ?, ? S4 

Sunny, ?, ?, ?, ?, ? 

G1: G2: 

S3: 

Sunny,?,?,?,?,? ?,Warm,?,?,?,?  ?,?,Normal,?,?,?  ?, ?,?,?,Cool,? 

?, Warm, ?, ?, ?, ? 
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Decision Trees 

• Decision trees represent a disjunction of conjunctions on constraints on the 
value of attributes: 

(Outlook = Sunny  Humidity = Normal) => Yes 

(Outlook = Overcast) => Yes 

(Outlook = Rain  Wind = Weak) => Yes CSE, HIT, Nidasoshi



Artificial Neurons 
 

• Artificial neurons are based on biological neurons. 

• Each neuron in the network receives one or more inputs. 

• An activation function is applied to the inputs, which 
determines the output of the neuron – the activation level.  
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Artificial Neurons 
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Artificial Neurons 
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Artificial Neurons 
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Artificial Neurons 
 

• A typical activation function works as follows: 

 

• Each node i has a weight, wi associated with it.  

• The input to node i is xi. 

• t is the threshold. 

• So if the weighted sum of the inputs to the neuron is above 

the threshold, then the neuron fires. 


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
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



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 0
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Artificial Neurons 
 

• The charts on the right show three typical activation 
functions.  
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PERCEPTRON 
• One type of ANN system is based on a unit called a perceptron. 

• A perceptron takes a vector of real-valued inputs, calculates a linear 

combination of these inputs, then outputs a 1 if the result is greater than some 

threshold and -1 otherwise.  

• More precisely, given inputs x1 through xn, the output o(x1, . . . , xn) 

computed by the perceptron is 

 

 

• where each wi is a real-valued constant, or weight, that determines the 

contribution of input xi to the perceptron output 
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PERCEPTRON 
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PERCEPTRON 
• For brevity, we will sometimes write the perceptron function as, 

 

 

 

• Learning a perceptron involves choosing values for the weights wo, . . . , wn. 

• Therefore, the space H of candidate hypotheses considered in perceptron 

learning is the set of all possible real-valued weight vectors. 
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The Perceptron Training Rule 
• One way to learn an acceptable weight vector is to begin with random weights, then iteratively apply the perceptron to 

each training example, modifying the perceptron weights whenever it misclassifies an example.  

• This process is repeated, iterating through the training examples as many times as needed until the perceptron classifies 

all training examples correctly.  

• Weights are modified at each step according to the perceptron training rule, which revises the weight wi associated with 

input xi according to the rule 
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The Perceptron Training Rule 
 

 

 

 

• Here t is the target output for the current training example, o is the output generated by the perceptron, and n is a positive 

constant called the learning rate.  

• The role of the learning rate is to moderate the degree to which weights are changed at each step.  

• It is usually set to some small value (e.g., 0.1) and is sometimes made to decay as the number of weight-tuning iterations 

increases. 
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The Perceptron Training Rule 
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The Perceptron Training Rule 
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The Perceptron Training Rule 
A single perceptron can be used to represent many Boolean functions weights 0.6 and 0.6 

AND function 

If A=0 & B=0 → 0*0.6 + 0*0.6 = 0 

This is not greater than the threshold of 1, so the output = 0 

If A=0 & B=1 → 0*0.6 + 1*0.6 = 0.6 

This is not greater than the threshold, so the output = 0 

If A=1 & B=0 → 1*0.6 + 0*0.6 = 0.6 

This is not greater than the threshold, so the output = 0 

If A=1 & B=1 → 1*0.6 + 1*0.6 = 1.2 

This exceeds the threshold, so the output = 1 
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The Perceptron Training Rule 
A single perceptron can be used to represent many Boolean functions weights 1.2 and 0.6 

AND function 

If A=0 & B=0 → 0*1.2 + 0*0.6 = 0 

This is not greater than the threshold of 1, so the output = 0 

If A=0 & B=1 → 0*1.2 + 1*0.6 = 0.6 

This is not greater than the threshold, so the output = 0 

If A=1 & B=0 → 1*1.2 + 0*0.6 = 1.2 

This is greater than the threshold, so the output = 1 

But the expected output is 0 
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The Perceptron Training Rule 
A single perceptron can be used to represent many Boolean functions weights 1.2 and 0.6 

AND function 
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The Perceptron Training Rule 
A single perceptron can be used to represent many Boolean functions weights 1.2 and 0.6 

AND function 

If A=0 & B=0 → 0*0.7 + 0*0.6 = 0 

This is not greater than the threshold of 1, so the output = 0 

If A=0 & B=1 → 0*0.7 + 1*0.6 = 0.6 

This is not greater than the threshold, so the output = 0 

If A=1 & B=0 → 1*0.7 + 0*0.6 = 0.7 

This is greater than the threshold, so the output = 0 

If A=1 & B=0 → 1*0.7 + 1*0.6 = 1.3 

This is greater than the threshold, so the output = 0 

0.7 

0.6 
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The Perceptron Training Rule 
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The Perceptron Training Rule 
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The Perceptron Training Rule 
A single perceptron can be used to represent many Boolean functions 

OR function 

If A=0 & B=0 → 0*1.1 + 0*1.1 = 0 

This is not greater than the threshold of 1, so the output = 0 

If A=0 & B=1 → 0*1.1 + 1*1.1 = 1.1 

This is greater than the threshold, so the output = 1.  

If A=1 & B= → 1*1.1 + 0*1.1 = 1.1 

This is greater than the threshold, so the output = 1.  

If A=1 & B= → 1*1.1 + 1*1.1 = 2.2 

This is greater than the threshold, so the output = 1.  

 

0.7 

0.6 

1.1 

1.1 
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The Perceptron Training Rule 
A single perceptron can be used to represent many Boolean functions 

NOT function 
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The Perceptron Training Rule 
Perceptron_training_rule (X, η) 

initialize w (wi  an initial (small) random value) 

repeat 

 for each training instance (x, tx) ∈ X 

  compute the real output ox=Summation(w.x) 

  if (tx ≠ ox) 

   for each wi 

    wi  wi + ∆𝑤𝑖 
    ∆𝑤𝑖  η(tx-ox)xi 

   end for 

  end if 

 end for 

until all the training instances in X are correctly classified 

return w 

X: training data 
η: learning rate (small 
positive constant, e.g., 0.1) 

Examples 
• x is correctly classified, ox–ox=0 
 no update 
• ox=-1 but tx=1, tx-ox>0 
 wi is increased if xi>0, 
decreased otherwise 
w.x is increased 
• ox=1, but outx=-1, outx-ox<0 
wi is decreased if xi>0, 
increased otherwise 
w. x is decreased 
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Representational Power of Perceptron's 
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Representational Power of Perceptron's 
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Representational Power of Perceptron's 
• A single perceptron can be used to represent many boolean functions.  

• For example, if we assume boolean values of 1 (true) and -1 (false), then one 

way to use a two-input perceptron to implement the AND function is to set the 

weights wo = -0.8, and w1 = w2 = 0.5.  

• This perceptron can be made to represent the OR function instead by altering 

the threshold to wo = -0.3.  

• In fact, AND and OR can be viewed as special cases of m-of-n functions: that 

is, functions where at least m of the n inputs to the perceptron must be true.  

• The OR function corresponds to m =1 and the AND function to m = n.  

• Any m-of-n function is easily represented using a perceptron by setting all 

input weights to the same value (e.g., 0.5) and then setting the threshold wo 

accordingly. 
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Representational Power of Perceptron's 
• Perceptrons can represent all of the primitive boolean functions AND, OR, 

NAND, and NOR.  

• Unfortunately, however, some boolean functions cannot be represented by a 

single perceptron, such as the XOR function whose value is 1 if and only if xl 

!= x2.  

• Note the set of linearly nonseparable training examples shown in Figure (b) 

corresponds to this XOR function. 
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Representational Power of Perceptron's 
• The ability of perceptrons to represent AND, OR, NAND, and NOR is important because every boolean function can be 

represented by some network of interconnected units based on these primitives.  

• In fact, every boolean function can be represented by some network of perceptrons only two levels deep, in which the 

inputs are fed to multiple units, and the outputs of these units are then input to a second, final stage.  

• One way is to represent the boolean function in disjunctive normal form (i.e., as the disjunction (OR) of a set of 

conjunctions (ANDs) of the inputs and their negations).  

• Note that the input to an AND perceptron can be negated simply by changing the sign of the corresponding input weight.  

• Because networks of threshold units can represent a rich variety of functions and because single units alone cannot, we 

will generally be interested in learning multilayer networks of threshold units. CSE, HIT, Nidasoshi



Representational Power of Perceptron's 
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Gradient Descent and the Delta Rule 
• Although the perceptron rule finds a successful weight vector when the training examples are linearly separable, it can 

fail to converge if the examples are not linearly separable. 

• A second training rule, called the delta rule, is designed to overcome this difficulty.  

• If the training examples are not linearly separable, the delta rule converges toward a best-fit approximation to the target 

concept.  

• The key idea behind the delta rule is to use gradient descent to search the hypothesis space of possible weight vectors to 

find the weights that best fit the training examples.  

• This rule is important because gradient descent provides the basis for the BACKPROPAGATON algorithm, which can 

learn networks with many interconnected units.  

• It is also important because gradient descent can serve as the basis for learning algorithms that must search through 

hypothesis spaces containing many different types of continuously parameterized hypotheses. 
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Gradient Descent and the Delta Rule 
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Gradient Descent and the Delta Rule 
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Gradient Descent and the Delta Rule 
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Gradient Descent and the Delta Rule 
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Gradient Descent and the Delta Rule 
• The delta training rule is best understood by considering the task of training an unthresholded perceptron; that is, a linear 

unit for which the output o is given by 

 

 

• Thus, a linear unit corresponds to the first stage of a perceptron, without the threshold.  

• In order to derive a weight learning rule for linear units, let us begin by specifying a measure for the training error of a 

hypothesis (weight vector), relative to the training examples.  

• Although there are many ways to define this error, one common measure is 

 

 

• where D is the set of training examples, td is the target output for training example d, and od is the output of the linear unit 

for training example d.  
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Derivation of Gradient Descent Rule 
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Derivation of Gradient Descent Rule 
 

 

 

• Here n is a positive constant called the learning rate, which determines the step size in the gradient descent search. The 

negative sign is present because we want to move the weight vector in the direction that decreases E. 

• This training rule can also be written in its component form 
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Derivation of Gradient Descent Rule 
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STOCHASTIC APPROXIMATION TO GRADIENT DESCENT 
• Gradient descent is an important general paradigm for learning.  

• It is a strategy for searching through a large or infinite hypothesis space that can be applied whenever  

1. the hypothesis space contains continuously parameterized hypotheses (e.g., the weights in a linear unit), and  

2. the error can be differentiated with respect to these hypothesis parameters.  

• The key practical difficulties in applying gradient descent are  

1. converging to a local minimum can sometimes be quite slow (i.e., it can require many thousands of gradient descent 

steps), and  

2. if there are multiple local minima in the error surface, then there is no guarantee that the procedure will find the global 

minimum. 
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Stochastic 

STOCHASTIC APPROXIMATION TO GRADIENT DESCENT 
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STOCHASTIC APPROXIMATION TO GRADIENT DESCENT 
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MULTILAYER NETWORKS 

• Multilayer neural networks can classify a range of 

functions, including non linearly separable ones. 

• Each input layer neuron connects to all neurons in the 

hidden layer.  

• The neurons in the hidden layer connect to all neurons in 

the output layer. 
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MULTILAYER NETWORKS 
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MULTILAYER NETWORKS 
A Differentiable Threshold Unit 

• What type of unit shall we use as the basis for constructing multilayer networks? 

• At first we might be tempted to choose the linear units discussed in the previous 

section, for which we have already derived a gradient descent learning rule. 

• However, multiple layers of cascaded linear units still produce only linear functions, 

and we prefer networks capable of representing highly nonlinear functions.  

• The perceptron unit is another possible choice, but its discontinuous threshold makes 

it undifferentiable and hence unsuitable for gradient descent.  

• What we need is a unit whose output is a nonlinear function of its inputs, but whose 

output is also a differentiable function of its inputs.  

• One solution is the sigmoid unit-a unit very much like a perceptron, but based on a 

smoothed, differentiable threshold function. 
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MULTILAYER NETWORKS 

• The sigmoid unit is illustrated in below Figure. Like the perceptron, the sigmoid 

unit first computes a linear combination of its inputs, then applies a threshold to 

the result.  

• In the case of the sigmoid unit, however, the threshold output is a continuous 

function of its input. CSE, HIT, Nidasoshi



MULTILAYER NETWORKS 
More precisely, the sigmoid unit computes its output o as 
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The BACKPROPAGATIAON Algorithm 

• Multilayer neural networks learn in the same way as perceptrons. 

• However, there are many more weights, and it is important to 

assign credit (or blame) correctly when changing weights. 

• E sums the errors over all of the network output units 

 
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The BACKPROPAGATIAON Algorithm 
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Back Propagation Algorithm 

171 

• Create a feed-forward network with ni inputs, nhidden hidden units, and nout output units. 

• Initialize all network weights to small random numbers 

• Until the termination condition is met, Do 

• For each (𝑥, t), in training examples, Do 

• Propagate the input forward through the network: 

1. Input the instance 𝑥, to the network and compute the output ou of every unit u in the network. 

• Propagate the errors backward through the network 

2. For each network unit k, calculate its error term δk 

 

 

3. For each network unit h, calculate its error term δh 

 

4. Update each network weight wji 
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Derivation of Back Propagation Algorithm 

172 

• To derive the equation for updating weights in back propagation algorithm, we use 

Stochastic gradient descent rule. 

• Stochastic gradient descent involves iterating through the training examples one at a time, 

for each training example d descending the gradient of the error Ed with respect to this 

single example. 

• In other words, for each training example d every weight wji  is updated by adding to it 

∆𝑤𝑖𝑗 . 

• That is, 
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Derivation of Back Propagation Algorithm 

173 

 

 

 

 

• where Ed is the error on training example d, that is half the squared difference between the 

target output and the actual output over all output units in the network, 

 

 

 

• Here outputs is the set of output units in the network, tk is the target value of unit k for 

training example d, and ok is the output of unit k given training example d. 
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Derivation of Back Propagation Algorithm 

174 

Notation Used: 

𝒙𝒋𝒊 = the ith input to unit j 

𝒘𝒋𝒊 = the weight associated with the ith input to unit j 

𝒏𝒆𝒕𝒋 =   𝒘𝒋𝒊𝑿𝒋𝒊 𝒊 (the weighted sum of inputs for unit j ) 

𝒐𝒋 = the output computed by unit j 

𝒕𝒋 = the target output for unit j 

𝝈 = the sigmoid function 

outputs = the set of units in the final layer of the network 

Downstream(j) = the set of units whose immediate inputs include the output of unit j 
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Derivation of Back Propagation Algorithm 

176 

 

 

 

• To begin, notice that weight wji can influence the rest of the network only through netj. 

Therefore, we can use the chain rule to write, 

 

 

 

 

 

• Our remaining task is to derive a convenient expression for   

𝒏𝒆𝒕𝒋 =  𝒘𝒋𝒊𝑿𝒋𝒊
𝒊

 

𝝏𝒏𝒆𝒕𝒋

𝝏𝒘𝒋𝒊
= 𝒙𝒋𝒊 
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Derivation of Back Propagation Algorithm 

177 

To derive a convenient expression for 

 

We consider two cases in turn:  

• Case 1, where unit j is an output unit for the network, and  

• Case 2, where unit j is an internal unit of the network. 
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Derivation of Back Propagation Algorithm 

178 

Case 1: Training Rule for Output Unit Weights 

• Just as wji can influence the rest of the network only through netj, netj can influence the 

network only through oj. Therefore, we can invoke the chain rule again to write, 

 
𝝏𝝈 𝒙  
𝝏 𝒙
= 𝝈 𝒙  (1 - 𝝈 𝒙 ) 

𝝏𝒐𝒋 

𝝏 𝒏𝒆𝒕𝒋
=
𝝏𝝈 𝒏𝒆𝒕𝒋

𝝏 𝒏𝒆𝒕𝒋
 

              =  𝝈 𝒏𝒆𝒕𝒋  (1 - 

𝝈 𝒏𝒆𝒕𝒋 ) 

              = 𝒐𝒋 (𝟏 − 𝒐𝒋)  
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Derivation of Back Propagation Algorithm 
Case 1: Training Rule for Output Unit Weights 

 

 

CSE, HIT, Nidasoshi



1 

2 

3 

4 

5 

6 

7 

X1 

X2 

X3 

X41 , w41  

X64 , w64  

X75, w75  

X74, w74  

X65 , w65  

X53 , w53 

X42 , w42  

X43 , w43  

X51 , w51 

X52 , w52 

Derivation of Back Propagation Algorithm 

O6 

O7 

CSE, HIT, Nidasoshi



Case 2: Training Rule for Hidden Unit Weights 

 

Derivation of Back Propagation Algorithm 

𝝏 𝒏𝒆𝒕𝒌
𝝏𝒐𝒋
=  
𝝏𝒙𝒌𝒋𝒘𝒌𝒋

𝝏𝒐𝒋
=
𝝏𝒐𝒋𝒘𝒌𝒋

𝝏𝒐𝒋
 

𝝏𝒐𝒋 

𝝏 𝒏𝒆𝒕𝒋
=
𝝏𝝈 𝒏𝒆𝒕𝒋

𝝏 𝒏𝒆𝒕𝒋
 

              =  𝝈 𝒏𝒆𝒕𝒋  (1 - 

𝝈 𝒏𝒆𝒕𝒋 ) 

              = 𝒐𝒋 (𝟏 − 𝒐𝒋)  
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Case 2: Training Rule for Hidden Unit Weights 
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