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3.1 Give decision trees to represent the following boolean functions:
(a) A AN —B

(b) A v I[B A C]

(c) A XOR B

(d) [AA B] v [C A D]



Decision Tree for Boolean Functions

(a) AAN—DB

(b) A v |B A C]

(c) A XOR'B

(d) [AA B] v |[C A D]



Decision Tree for Boolean Functions

Every Variable in Boolean function such as A, B, C etc. has two

possibilities that is True and False

Every Boolean function is either True or False

If the Boolean function is true we write YES (Y)

If the Boolean function is False we write NO (N)



Decision Tree for Boolean Functions
(c) A XOR B



Decision Tree for Boolean Functions
(d) [AAN B] v [C A D]



(a) AN —DB




3.1 Give decision trees to represent the following boolean functions:
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(b) A v I[B A C]
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(d) [AA B] v [C A D]
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Decision Trees

= Decision Trees is one of the most widely used Classification Algorithm
= Features
* Method for approximating discrete-valued functions (including boolean)

» Learned functions are represented as decision trees (or if-then-else

rules)
= Expressive hypotheses space, including disjunction

= Robust to noisy data



Example

Day  OQOutlook  Temperature Humidity @ Wind  PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal  Weak Yes
D6 Rain Cool - Normal < -Strong No
D7 Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal  Weak Yes
D10 Rain Mild Normal  Weak Yes
D11 Sunny Mild Normal  Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain -Mild High Strong No




Decision Tree Representation (PlayTennis)

Outlook
Sunmny Cvercast Rm’n\
Humidity Vs Wind
; igh NﬂT SI;mg WEti
No Yes No Yes

(Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong) No



Decision trees expressivity

* Decision trees represent a disjunction of conjunctions on
constraints on the value of attributes:

(Outlook = Sunny A Humidity = Normal) v

(Outlook = Overcast) v
(Outlook = Rain"A Wind = Weak)

Outlook

Sunny Overcast

Humidity

/\

Yes

High Normal

No

\

¥Yes

Rain

Wind

Strong

/

No

Weak

\

Yes



Decision tree representation (PIayTennis)

Decision trees classify instances by sorting them down the tree from the root to

some leaf node, which provides the classification of the instance.

Each node in the tree specifies a test of some attribute of the instance, and each
branch descending from that node corresponds.to.one of the possible values for

this attribute.

An instance is classified by starting at the root node of the tree, testing the
attribute specified by this node, then moving down the tree branch

corresponding to the value of the attribute in the given example.

This process is then repeated for the subtree rooted at the new node.



Decision tree representation (PlayTennis)

* In general, decision trees represent a disjunction of conjunctions of constraints
on the attribute values of instances.

* Each path from the tree root to a leaf corresponds to a conjunction of attribute

tests, and the tree itself to a disjunction of these conjunctions.

(Outlook = Sunny A Humidity = Normal)
\Y% - (Outlook = Overcast)

Y (Ouﬂook Rain N Wind = Weak)



Example

Day  OQOutlook  Temperature Humidity @ Wind  PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal  Weak Yes
D6 Rain Cool - Normal < -Strong No
D7 Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal  Weak Yes
D10 Rain Mild Normal  Weak Yes
D11 Sunny Mild Normal  Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain -Mild High Strong No




APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING

Although a variety of decision tree learning methods have been developed with
somewhat differing capabilities and requirements, decision tree learning is

generally best suited to problems with the following characteristics:

1. Instances are represented by attribute-value. pairs. Instances are described by
a fixed set of attributes (e.g., Temperature) and their values (e.g., Hot). The
easiest situation for decision tree learning is when each attribute takes on a
small number of disjoint possible values (e.g., Hot, Mild, Cold). However,
extensions to the basic algorithm allow handling real-valued attributes as well

(e.g., representing Temperature numerically).



APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING

2. The target function has discrete output values. The decision tree is usually
used for Boolean classification (e.g., yes or no) kind of example. Decision tree
methods easily extend to learning functions with more than two possible
output values.'A more-substantial extension-allows dearning target functions
with real-valued outputs, though the application of decision trees in this

setting is less common.

3. Disjunctive descriptions may be required. Decision trees naturally represent

disjunctive expressions.



APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING

4. The training data may contain errors. Decision tree learning methods are
robust to errors, both errors in classifications of the training examples and

errors in the attribute values that describe these examples.

5. The training data-may contain missing attribute values. Decision tree
methods can be used even when some training examples have unknown
values (e.g., if the Humidity of the day is known for only some of the training

examples).



APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING

* Many practical problems have been found to fit these characteristics.

* Decision tree learning has therefore been applied to problems such as
learning to classify medical patients by their disease, equipment
malfunctions by _their cause, and loan applicants-by their likelihood of

defaulting on payments.

e Such problems, in which the task is to classify examples into one of a
discrete set of possible categories, are often referred to as classification

problems.



THE BASIC DECISION TREE LEARNING ALGORITHM

Most algorithms that have been developed for learning decision trees are
variations on a core algorithm that employs a top-down, greedy search through
the space of possible decision trees.

This approach is exemplified by the ID3 algorithm (Quinlan 1986) and its
successor C4.5 (Quinlan-1993),-which form the primary focus of our discussion
here.

The basic algorithm for decision tree learning, corresponding approximately to
the ID3 algorithm.

Next, we consider a number of extensions to this basic algorithm, including
extensions incorporated into C4.5 and other more recent algorithms for decision
tree learning.



Example

Day  OQOutlook  Temperature Humidity @ Wind  PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal  Weak Yes
D6 Rain Cool - Normal < -Strong No
D7 Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal  Weak Yes
D10 Rain Mild Normal  Weak Yes
D11 Sunny Mild Normal  Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain -Mild High Strong No




CONSTRUCTING DECISION TREE - ID3 ALGORITHM

Which Attribute Is the Best Classifier?

* The central choice in the ID3 algorithm is selecting which attribute to test at each

node in the tree.
* We would like to select the attribute that is most-useful for-classifying examples.

 What is a good quantitative measure of the worth of an attribute? We will define a
statistical property, called information gain, that measures how well a given

attribute separates the training examples according to their target classification.

* ID3 uses this information gain measure to select among the candidate attributes at

each step while growing the tree.



CONSTRUCTING DECISION TREE - ID3 ALGORITHM

ENTROPY MEASURES HOMOGENEITY OF EXAMPLES
» Entropy, characterizes the (im)purity of an arbitrary collection of examples.

* Given a collection S, containing positive and negative examples of some target

concept, the entropy of S relative to this boolean-classification is

Entropy(S) = —pglog, pe — polog; po
* where p+, is the proportion of positive examples in S and p-, is the proportion of

negative examples in S.

* In all calculations involving entropy we define 0 log O to be 0.



CONSTRUCTING DECISION TREE - ID3 ALGORITHM

ENTROPY MEASURES HOMOGENEITY OF EXAMPLES

» Entropy measures the (im)purity of a collection of examples. It depends from the distribution
of the random variable p.

= Sis a collection of training examples

= p, the proportion.of positive examples-in S Entrapy(§) = Z —pi log, p;

= p_the proportion of negative examples in S i=1
Examples
Entropy (S) = —p, log, p,— p_log,p_ [0 l0g,0 = 0]
Entropy ([14+, 0—-]) = —14/14 log, (14/14) — Olog, (0) =0
Entropy ([9+, 5-]) =—-9/14 log, (9/14) — 5/14log, (5/14) = 0,94
Entropy ([7+, 7-]) =— 7/14 log, (7/14) — 7/14log, (7/14) =
=1/2+1/2=1



Example

Day  OQOutlook  Temperature Humidity @ Wind  PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal  Weak Yes
D6 Rain Cool - Normal < -Strong No
D7 Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal  Weak Yes
D10 Rain Mild Normal  Weak Yes
D11 Sunny Mild Normal  Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain -Mild High Strong No




CONSTRUCTING DECISION TREE - ID3 ALGORITHM
Entropy

Entropy(S)




CONSTRUCTING DECISION TREE - ID3 ALGORITHM

INFORMATION GAIN MEASURES THE EXPECTED REDUCTION IN ENTROPY

Given entropy as a measure of the impurity in a collection of training examples, we can

now define a measure of the effectiveness of an attribute in classifying the training data.

Now, the information gain, is simply the expected reduction in entropy caused by

partitioning the examples'according to this attribute:

More precisely, the information gain, Gain(S, A) of an attribute A, relative to a collection of
examples S, is defined as,

S
Gain(S, A) = Entropy(S) — ) '--"-'Emmpy(s,,)
veValues(A) 'SI

where Values(A) is the set of all possible values for attribute A, and S, is the subset of S for
which attribute A has value v (i.e., S, = {s € S|A(s) = v})



CONSTRUCTING DECISION TREE - ID3 ALGORITHM

* For example, suppose S is a collection of training-example days described by
attributes including Wind, which can have the values Weak or Strong.

Values(Wind) = Weak, Strong
§ = [9+,5-]
Sweak—< [6+; 2—]
Ssirong < [3+,3-]

Gain(S, Wind) = Entropy(S) — Z @Emmpy(.sv)
ve{Weak,Strong) ISl

= Entropy(S) — (8/14)Entropy(Swear)
— (6/14)Entropy(Sstrong)

= 0.940 — (8/14)0.811 — (6/14)1.00

0.048



CONSTRUCTING DECISION TREE - ID3 ALGORITHM

Information gain is precisely the measure used by ID3 to select the best attribute

at
each step in growing the tree.
The use of information gain to evaluate the relevance of attributes.

Here the information gain of two different attributes, Humidity and Wind, is
computed in order to determine which is the better attribute for classifying the

training examples.



CONSTRUCTING DECISION TREE - ID3 ALGORITHM

S: [9+,5-]
E =0.940

Humidity

Normal

[3+:4-] [6+!I -]
E=0.985 E=0.592

Gain (S, Humidity )

=.940 - (7/14).985 - (7/14).592
=.151

S: [9+,5-]
E=0.940
Wind
Weak Strong
[6+92-] [3+13-]
E=03811 - E=1.00

Gain (S, Wind)
= 940 - (8/14).811 - (6/14)1.0
=.048



ID3(Examples, Target.attribute, Artributes)
Examples are the training examples. Target_attribute is the attribute whose value is to be
predicted by the tree. Attributes is a list of other attributes that may be tested by the learned
decision tree. Returns a decision tree that correctly classifies the given Examples.

o Create a Root node for the tree
o If all Examples are positive, Return the single-node tree Root, with label = +
e If all Examples are negative, Return the single-node tree Root, with label = —

o If Attributes is empty, Return the single-node tree Root, with label = most common value of
Target_attribute in Examples
¢ Otherwise Begin
® A « the attribute from Artributes that best* classifies Examples
o The decision attribute for Root <« A
e For each possible value, v;, of A,
o Add a new tree branch below Root, corresponding to the test A = v;
o Let Examples,, be the subset of Examples that have value v; for A
o If Examples,, is empty
e Then below this new branch add a leaf node with label = most common
value of Target_attribute in Examples
¢ Else below this new branch add the subtree
ID3(Examples,,, Target attribute, Attributes — {A}))

(] End
e Return Root



CSE, HIT, Nidasoshi



DECISION TREE — ID3 ALGORITHM NUMERICAL EXAMPLE

Day Outlook | Temp | Humidity | Wind | PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast | Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast | Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast | Mild High Strong Yes
D13 Overcast | Hot Normal Weak Yes
D14 Rain Mild High Strong No




Day | Outlook | Temp | Humidity | Wind T::lar:,is
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast | Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool | Normal | Weak Yes
D6 Rain Cool Normal | Strong No
D7 Overcast | Cool Normal | Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool | Normal | Weak Yes
D10 Rain Mild | Normal | Weak Yes
D11 Sunny Mild | Normal | Strong Yes
D12 | Overcast | Mild High Strong Yes
D13 | Overcast | Hot | Normal | Weak Yes
D14 Rain Mild High Strong No

Attribute: Outlook

Values (Outlook) = Sunny,Overcast, Rain
9 9 5 5
S = [9+,5 -] Entropy(S) = —21092,— ;10927 = 0.94
2 2 3 3
Ssunny < [2+,3—] Entropy(Ssunny) = —zlogzz —clog, - =0.971
Sovercast < [4‘+, 0_]

4 4 0 0
Entropy(Sovercast) = — 1 log, 1 2 log, i 0

3 3 2 2
SRain < [3+,2—] Entropy(Sgain) = —Elogzg - Elogzg =0.971

||

Gain (S, Outlook) = Entropy(S)— 5|

v €{Sunny,Overcast,Rain}

Entropy(S,)

Gain(S,Outlook)

5 4
= Entropy(S) - ﬁ Entropy(SSunny) - ﬁ Entropy(SOUercast)

5
- E Entropy(SRain)

. 5 4 5
Gain(S,Outlook) = 0.94 — EO. 971 — 1 0-— EO' 971 = 0.2464



Day | Outlook | Temp [ Humidity | Wind T:|I1ar:lis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast | Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool [ Normal | Weak Yes
D6 Rain Cool Normal | Strong No
D7 Overcast | Cool Normal | Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild [ Normal | Weak Yes
D11 Sunny Mild | Normal | Strong Yes
D12 | Overcast | Mild High Strong Yes
D13 | Overcast | Hot | Normal | Weak | Yes
D14 Rain Mild High Strong No

Attribute: Temp
Values (Temp) = Hot,Mild, Cool
9 9 5 5
S = [9+,5 -] Entropy(S) = — 1092, — ;1092 ;= 0.94
2 2 2 2
Shot < [2+,2—] Entropy(Syor) = —7logz 7 —71092,=1.0
Swmita < [4+, 2]

4 4 2 2
Entropy(Syiiq) = —glogz Fi glogzg = 0.9183

3 3 1 1
Scool <. [3+,1—] Entropy(Sceol) = _ZlOQZZ _Zlo-gZZ =0.8113

I5,]

Gain (S, Temp) = Entropy(S) — 5]
v €{Hot,Mild,Cool}

Entropy(S,)
Gain(S,Temp)

4 6
= Entropy(S) — EEntTOP)'(SHot) - ﬁEntropy(SMild)

4
- ﬁ Entrop}'(SCool)

_ 4 6 4
Gain(S,Temp) = 0.94 — 1.0 — — 0.9183 — —0.8113 = 0.0289



Day | Outlook | Temp [ Humidity | Wind T:|I1ar:lis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast | Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool [ Normal | Weak Yes
D6 Rain Cool Normal | Strong No
D7 Overcast | Cool Normal | Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild [ Normal | Weak Yes
D11 Sunny Mild | Normal | Strong Yes
D12 | Overcast | Mild High Strong Yes
D13 | Overcast | Hot | Normal | Weak | Yes
D14 Rain Mild High Strong No

Attribute: Humidity

Values (Humidity) = High, Normal
9 9 5 5
S = [9+,5 -] Entropy(S) = —Llog2 1, —;logz 7, =0.94
3 3 4 4
SHigh < [3+,4—] Entropy(Suign) = —>logz > —-log, = 0.9852

6 6 1 1
SNormal < [6+' 1_] Entropy(SNormal) = - 7 logZ 777 logZ 7 = 0.5916

Syl

: |S]
v €{High,Normal}

Gain (S, Humidity) = Entropy(S)—

Entropy(S,)

Gain(S, Humidity)

7 7
= Entropy(S) - ﬁ Entropy(SHigh) - E Entropy(SNormal)

7 7
Gain(S, Humidity) = 0.94 — §0.9852 ~1a 0.5916 = 0.1516



Day | Outlook | Temp [ Humidity | Wind T:|I1ar:lis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast | Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool [ Normal | Weak Yes
D6 Rain Cool Normal | Strong No
D7 Overcast | Cool Normal | Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild [ Normal | Weak Yes
D11 Sunny Mild | Normal | Strong Yes
D12 | Overcast | Mild High Strong Yes
D13 | Overcast | Hot | Normal | Weak | Yes
D14 Rain Mild High Strong No

Attribute: Wind

Values (Wind) = Strong, Weak

9 9 5 5
S = [9+,5 -] Entropy(S) = —Llog2 1, —;logz 7, =0.94
SStrong < [3+' 3_] Entropy(SStrong) =10
6 6 2 2
Sweak < [6+,2—] Entropy(Swear) = -3 log, F log, 5 = 0.8113
, . Sy
Gain (S, Wind) = Entropy(S) — TEntropy(Sv)
v €{Strong Weak} | |

6 8
Gain(S,Wind) = Entropy(S) — EEntropy(S Strong) — ﬁEntropy(SWeak)

. . 6 8
Gain(S,Wind) = 0.94 — 12 1.0 ~1a 0.8113 = 0.0478



Play

Day | Outlook | Temp [ Humidity | Wind Tennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast | Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool [ Normal | Weak Yes
D6 Rain Cool Normal | Strong No
D7 Overcast | Cool Normal | Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild | Normal | Weak Yes
D11 Sunny Mild | Normal | Strong Yes
D12 | Overcast | Mild High Strong Yes
D13 [ Overcast | Hot | Normal | Weak | Yes
D14 Rain Mild High Strong No

Gain(S,Outlook) = 0.2464

Gain(S,Temp) = 0.0289

Gain(S, Humidity) = 0.1516

Gain(S, Wind) = 00478



{D1,D2, ..., D14}

[9+.5-]
Outlook
/Sum}* Overcast Rm‘n\
{D1,D2,D8,D9.D11} {D3,D7.D12,D13} {D4,D5,D06,010,D14}
[2+3-] [4+.0-] [3+.2-]




Play

Day | Outlook | Temp | Humidity | Wind .
Tennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast | Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal || Strong No
D7 Overcast| 1Cool Normal " | Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal | Strong Yes
D12 | Overcast | Mild High Strong Yes
D13 | Overcast | Hot Normal Weak Yes
D14 Rain Mild High Strong No




Day Tem Humidity | Wind PIay.
p Tennis
D1 Hot High Weak No
D2 Hot High Strong| No
D8 | Mild High Weak No
D9 | Cool | Normal | Weak | Yes
D11 | Mild | Normal |Strong| Yes

Attribute: Temp

Values (Temp) = Hot,Mild, Cool

2 2 3 3

SSunny = [2+' 3 _] Entropy(SSunny) = - 5 lng 5 5 logZ 5 =

0.97

SHot < [0+,2—] Entropy(Sgo:) = 0.0

Smita < [1+,1-] Entropy(Smia) = 1.0

SCool < [1+'0_] EntropY(SCool) =0.0

. S|
Gain (Ssynny, Temp) = Entropy(Ssunny) — S| Entropy(S,)

v €e{Hot,Mild,Cool}

Gain(Ssynny, Temp)
2 2
= Entropy(SSunny) 5 Entropy(Shot) — 5 Entropy(Suiia)
1
- E Entropy(s(.‘ool)

2 2 1
Gain(Ssumny, Temp) = 0.97 — 500-c1-20.0=0. 570



Day Tem Humidity | Wind PIay.
p Tennis
DI Hot High Weak No
D2 Hot High Strong| No
D8 | Mild High Weak No
D9 | Cool | Normal | Weak | Yes
DI1 | Mild | Normal |Strong| Yes

Attribute: Humidity

Values (Humidity) = High, Normal

2 2 3 3
Ssunny = [2+,3 -] Entropy(S) = —Elogz s~ Elogz s = 0.97
Shigh < [0+,3—] Entropy(Syign) = 0.0
SNormal < [2+,0—] Entropy(SNormal) =0.0
| \,. Sy
Gaint (Ssynny, Humidity) = Entropy(Ss,mny) — ﬁEntropy(S,,)
v e{High,Normal}

Gain(Ssynny, Humidity)
3 2
= Entropy(SSunny) - E Entropy(SHigh) - E Entropy(SNormal)

3 2
Gain(Ssynny, Humidity) = 0.97 — 50.0-20.0=0097



Day Tem Humidity | Wind PIay.
p Tennis
DI Hot High Weak No
D2 Hot High Strong| No
D8 | Mild High Weak No
D9 | Cool | Normal | Weak | Yes
DI1 | Mild | Normal |Strong| Yes

Attribute: Wind

Values (Wind) = Strong, Weak
SSunny = [2+,3 -]
SStrong < [1+' 1_]

SWeak < [1+r 2_]

0.9183

Gain (Ssynny, Wind) = Entropy(Ssunny) —

Gain(Ssynny, Wind)

Entropy(S) = —%logz % — %logz % =0.97
Entropy(Sstrong) = 1.0

1 1 2 2
Entropy(Swear) = —3log;5;—3logy 3 =

S|

|S]
v €{Strong Weak}

Entropy(S,)

2 3
= Entropy(SSunny) T 5 Entropy(SStrong) 5 Entropy(Sweax)

2 3
Gain(Ssyunny, Wind) = 0.97 —=1.0 — = 0.918 = 0.0192

5 5



Day Tem Humidity | Wind PIay.
p Tennis
D1 Hot High Weak No
D2 Hot High Strong| No
D8 | Mild High Weak No
D9 | Cool | Normal | Weak | Yes
D11 | Mild | Normal |Strong| Yes

Gain(S sunny’ Temp) = 0.570

Gain(Ssynny, Humidity) = 0.97

Gain(Ssynny, Wind) = 0.0192



{D1,D2, .., D14}

[9+.5-]
Outlook
Sunn_}'/ﬁ'm:cmt\ Rain
,./ \
Humidity {D3.D7.D12.D13% {D4,D5,D6,D10,D14}

/\ [4+,0—] [3+.2-]
‘;igh Nam<f ?

{D1, D2, D8} {D9, D11}
No Yes




Play

Day | Outlook | Temp | Humidity | Wind .
Tennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast | Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal || Strong No
D7 Overcast| 1Cool Normal " | Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal | Strong Yes
D12 | Overcast | Mild High Strong Yes
D13 | Overcast | Hot Normal Weak Yes
D14 Rain Mild High Strong No




Day Tem Humidity | Wind PIay.
p Tennis
D4 | Mild High Weak | Yes
D5 | Cool | Normal | Weak | Yes
D6 | Cool | Normal |Strong| No
D10 | Mild | Normal | Weak | Yes
D14 | Mild High Strong| No

Attribute: Temp

Values (Temp) = Hot,Mild, Cool

3 3 2 2
SRain = [3+,2 -] Entropy(Ssunny) = —zloga; —;log,: = 0.97
SHot < [0+,0—] Entropy(Sye:) = 0.0
2 2 1 1
Smita < [2+,1-] Entropy(Smua) = —3;10g25 —31l0g,5 =
0.9183
Scool < [1+: 1_] Entropy(SCool) =1.0
, S|
Gain (SRain’ Temp) = Entropy(SRain) - WEntrOpy(Sv)
v €{Hot,Mild,Cool}

Gain(Sgain, Temp)
0 3
= Entropy(Sgain) — s Entropy(Syot) — s Entropy(Smita)
2
- E Entropy(sc‘ool)

0 3 2
Gain(Sgqin Temp) = 0.97 = £0.0 —= 0.918 — = 1.0 = 0.0192



Day Tem Humidity | Wind PIay.
p Tennis
D4 | Mild High Weak | Yes
D5 | Cool | Normal | Weak | Yes
D6 | Cool | Normal |Strong| No
DIO | Mild | Normal | Weak | Yes
DI4 | Mild High Strong| No

Attribute: Humidity

Values (Humidity) = High, Normal

Sgain = [3+,2 -] Entropy(Ssunny) = —z10g2 5 —loga = =
0.97

SHign < [1+,1-] Entropy(Syign) = 1.0

SNormat < [2+, 1] Entropy(Snorma) = — g log, ; - % log, % =
0.9183

15,1

Gain (Sgqin, Humidity) = Entropy(Sgain) — 5|

v €{High,Normal}

Entropy(S,)

Gain(Sgpyin, Humidity)
2 3
= Entropy(SRain) - E Entropy(SHigh) - E EntropY(sNormal)

2 3
Gain(Sgpyin, Humidity) = 0.97 — = 1.0 — EO' 918 = 0.0192



Day Tem Humidity | Wind PIay.
p Tennis
D4 | Mild High Weak | Yes
D5 | Cool | Normal | Weak | Yes
D6 | Cool | Normal |Strong| No
DIO | Mild | Normal | Weak | Yes
DI4 | Mild High Strong| No

Attribute: Wind

Values (wind) = Strong, Weak
SRain = [3+,2 -]
0.97

SStrong < [0+' 2_]

SWeak < [3+' 0_]

Gain (Sgqin, Wind) = Entropy(Srain) —

3 3 2 2
Entropy(Ssunny) = —clog25 —log, ;=

Entropy(Sstrong) = 0.0

Entropy(Syear) = 0.0

S|

S|

Entropy(S,)
v €{Strong Weak}

. . 2 3
Galn(SRaiw Wlnd) = Entropy(SRain) - E Entropy(SStrong) - E Entropy(SWeak)

2 3
Gain(Sgain, Wind) = 0.97 —= 0.0 —=0.0 = 0.97

5 5



Day Tem Humidity | Wind PIay.
p Tennis
D4 | Mild High Weak | Yes
D5 | Cool | Normal | Weak | Yes
D6 | Cool | Normal |Strong| No
DIO | Mild | Normal | Weak | Yes
DI4 | Mild High Strong| No

Gain(Sgyin, Temp) = 0.0192

Gain(Sgyin, Humidity) = 0.0192

Gain(S pain, Wind) =097
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Sunny

Humidity

High

/

7\

{D1, D2, D8}

No
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N\
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{D1,D2, .., D14}
[9+.5-]

Outlook

Cvercast

{D3,D7,D12,1D13}%
[4+,0-]

Rean

e

Wind

/N

Strong

/

Na

{D6, D14}
No

Wealk

N\

¥Yes

{D4, D5, D10}
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DECISION TREE EXAMPLE

Instance | Classification| al | a2
1 + T T
2 + T T
3 - T F
4 + F F
5 - Fode T
6 - F T

What is the entropy of this collection of training examples with respect to
the target function classification?
What is the information gain of a2 relative to these training examples?

Draw decision tree for the given dataset.



Decision Tree Algorithm —ID3 Solved Example

1. What is the entropy of this collection of training examples with respect to the target
function classification?
2. What is the information gain of a1 and a2 relative to these training examples?

3. Draw decision tree for the given dataset.

Instance | Classification || al |- a2
1 + T T
2 + T T
3 - T F
4 + F F
5 - F T
6 - F | T

Subscribe to Mahesh Huddar Visit: vtupulse.com



Instance | Classification| al | a2 | Attribute: al
1 + T T Values (al) =T, F
2 + T T
S = [3+, 3] Entropy(S) =1.0
3 - T F
4 + F F ol s, =2+ 1] Entropy(Sp) = —>log,; —;log, 3 = 0.9183
5 - F T
6 - F T | Srei1+ 2-] Entropy(Sy) = —log;; — > log, > = 0.9183
. 1S5
Gain (S,al) = Entropy(S) — ﬁEntropy(Sv)

Example - 2 v ET.F)
Decision Tree Algorithm —ID3

3 3
Gain(S,al) = Entropy(S) — —Entropy(Sy) — —Entropy(Sr)
Solved Example PYS)— g pySr) —¢ py(Sr

3 3
Gain(S,al) = 1.0 — 6 *0.9183 — 6 *0.9183 = 0.0817

Subscribe to Mahesh Huddar Visit: vtupulse.com



Instance | Classification| al | a2 | Attribute: a2

1 + T T Values (a2) =T, F
2 + T T

S = [3+, 3] Entropy(S) =1.0
3 . T | F
4 + F F St = [2+, 2] Entropy(Sy) = 1.0
5 - F T Sp < [1+, 1-] Entropy(Sp) = 1.0
6 . F | T

Gain (S,a2) = Entropy(S) — Z ﬂEntropy(Sv)

v €{T, F} lSl
Example - 2

_ 4 2
Decision Tree Algorithm — 1D3 Gain(S,a2) = Entropy(S) — ¢ Entropy(Sr) — ¢ Entropy(Sr)

Solved Example

4 2
Gain(S,a2) = 1'0_6*1'0_8 *1.0 = 0.0

Subscribe to Mahesh Huddar Visit: vtupulse.com



'"Stjme C'ass'ficatm" aTl aTZ Gain(S,a1) = 0.0817 — Maximum Gain
2 + T T Gain(S,a2) =0.0
3 - T F 6
4 + F F
T F
5 - F T
6 - F | T
153 4,5,6
Example - 2 . e c T F
Decision Tree Algorithm —ID3
Solved Example
1,2 3 5,6 4
+ .. =

Subscribe to Mahesh Huddar

Visit: vtupulse.com
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DECISION TREE EXAMPLE

Instance | al | a2 a3 Classification
1 True | Hot | High No
2 True | Hot | High No
3 False| Hot | High Yes
4 False | Cool | Normal Yes
5 False | Cool | Normal Yes
6 True | Cool | High No
7 True | Hot | High No
8 True | Hot | Normal Yes
9 False | Cool | Normal Yes
10 False | Cool | High Yes

1. Construct the decision tree for the following tree using ID3 Algorithm



Decision Tree Algorithm —ID3 Solved Example

Instance al a2 a3 Classification
1 True | Hot High No
2 True | Hot High No
3 False | Hot High Yes
4 False | Cool | Normal Yes
5 False | Cool | ;Normal Yes
6 True | Cool High No
7 True | Hot High No
8 True | Hot | Normal Yes
9 False | Cool | Normal Yes

10 False | Cool | High Yes

Subscribe to Mahesh Huddar Visit: vtupulse.com



Instance | al | a2 a3 Classification | Attribute: al
1 True | Hot High No
2 True | Hot High No Values (al) = True, False
3 False | Hot High Yes
6 6 4 4
4 False | Cool | Normal Yes S = [6+, 4] Entropy(S) = — To log, o 1o log, T 0.9709
5 False | Cool | Normal Yes
6 True | Cool | High No Strue = [1+,4 —] Entropy(Strue) = —%logz % — g logzg =0.7219
7 True | Hot High No
8 True | Hot | Normal Yes SFlase « [5+: 0_] Entropy(SFalse) =0.0
9 False | Cool [ Normal Yes
10 False | Cool | High Yes
. S5
Gain (S,al) = Entropy(S) — ﬁEntropy(Sv)
v €{True,False}
Example - 3

e o ° 5 5
Decision Tree Algorithm - ID3 Gain(S,al) = Entropy(S) — EEntropy(STrue) - EEntropy(Spa,se)
Solved Example

_ 5 5
Gain(s,a1) = 0.9709 — 5 +0.7219 — == 1 = 0.6099

Subscribe to Mahesh Huddar Visit: vtupulse.com



Instance | al | a2 a3 Classification | Attribute: a2
1 True | Hot High No
2 True | Hot High No Values (a2) = Hot, Cool
3 False | Hot High Yes
4 False | Cool | Normal Yes S = [6+, 4] Entropy(S) = — 1—60 log, 1—60 — % log, 110 =0.9709
5 False | Cool [ Normal Yes
6 True | Cool | High No Suot = [2+,3 —] Entropy(Syot) = — % logzé — % logzg =0.9709
7 True | Hot High No
8 True | Hot | Normal Yes 4 4 1 1
5 oo | Cool | Normal Vos Scool < [4+, 1] Entropy(Scool) = —Elogz ST 3 log, 5 =0.7219
10 False | Cool | High Yes
@

Gain (S,a2) = Entropy(S) —
Example = 3 v €{Hot,Cool}

Decision Tree Algorithm — ID3 5 5
Solved Example Gain(S,a2) = Entropy(S) — EEntropy(SHot) - EEntropy(SCOO,)

Ent S

5 5
Gain(S,a2) = 0.9709 — 10 *0.9709 — 10 *0.7219 = 0.1245

Subscribe to Mahesh Huddar Visit: vtupulse.com



Instance | al | a2 a3 Classification | Attribute: a3
1 True | Hot High No
2 True | Hot | High No Values (a3) = High, Normal
3 False | Hot High Yes
4 False | Cool | Normal Yes S = [6+, 4] Entropy(S) = — 1—60 log, 1—60 - % log, 110 =0.9709
5 False | Cool | Normal Yes
6 True | Cool | High No Shigh = [2+,4 -] Entropy(Spign) = —%logz % - % logzg =0.9183
7 True | Hot High No
8 True | Hot | Normal Yes SNormal < [4’+; 0_] Entropy(SNormal) =0.0
9 False | Cool [ Normal Yes
10 False | Cool | High Yes S,|
Gain (S,a3) = Entropy(S) — 5] Entropy(S,)
v €{High,Normal}
, 6 4
Example-3 Gain(S,a3) = Entropy(S) — EEntropy(SH,-gh) — EEntropy(SNorma,)
Decision Tree Algorithm — ID3
6 4
Solved Example Gain(S,a3) = 0.9709 — 7= +0.9183 — - +0.0 = 0.4199

Subscribe to Mahesh Huddar Visit: vtupulse.com



Instance | al a2 a3 Classification
1 True | Hot High No
2 True | Hot High No
3 False | Hot High Yes
4 False | Cool | Normal Yes
5 False | Cool [ Normal Yes
6 True | Cool | High No
7 True | Hot High No
8 True | Hot | Normal Yes
9 False | Cool [ Normal Yes

10 False | Cool | High Yes
Example - 3

Decision Tree Algorithm — ID3
Solved Example

Subscribe to Mahesh Huddar

Gain(S,al) = 0.6099 — Maximum Gain
Gain(S,a2) = 0.1245
Gain(S,a3) = 0.4199

True False
1,2,6,7,8 3,4,5,9,10
Yes

Visit: vtupulse.com




Attribute: a2

Instance a2 a3 Classification Values (a2) = Hot, Cool
1 Hot High No
2 Hot High N
° 6 ° Sy = [1+, 4] Entropy(Sy) = —<log,: — = log, s = 0.7219
6 Cool High No
7 Hot High No 1 1 3 3
3 Hot | Normal Yes Suot = [1+,3 —] Entropy(Sgo) = —3logz, —log, 7 =0.8112
Scoot < [0+, 1-] Entropy(Sceo) = 0.0
i 1Sv1
Gain (S,a2) = Entropy(S) — WEntropy(S,,)
v €{Hot,Cool}
Example - 3

_ 4 1
Decision Tree Algorithm — D3 ~ §4in(S.a2) = Entropy($) — £ Entropy(So) = g Entropy(Scoo)

Solved Example

4 1
Gain(S,a2) = 0.9709 3 *0.8112 3 *0.0=0.3219

Subscribe to Mahesh Huddar Visit: vtupulse.com



Attribute: a3

Instance a2 a3 Classification Values (a3) = High, Normal
1 Hot High No
2 Hot High N
° 6 ° Sy = [1+, 4] Entropy(Sy) = —<log,: — = log, s = 0.7219
6 Cool High No
7 Hot High No s (04,4 —] E (S ) 0.0
igh = 10+,4— ntro i = 0.
8 Hot | Normal Yes High PY S High
SNormal < [1+; 0_] Entropy(SNormal) =0.0
. Sy
Gain (S,a3) = Entropy(S) — 5] Entropy(S,)
v €{High,Normal}
Example - 3

4 1
o . Gain(S,a3) = Entropy(S) — < Entropy(Syign) — = Entropy(Snormar)
Decision Tree Algorithm — ID3 > >

Solved Example _ 4 1
Gain(s,a3) = 0.9709 — = x0.0 — = x0.0=0.7219

Subscribe to Mahesh Huddar Visit: vtupulse.com



Gain(S,;,a2) = 0.3219

Instance | a2 a3 Classification Gain(S,q,a3) = 0.7219 — Maximum Gain
1 Hot High No
2 Hot High No
6 Cool High No
7 Hot High No

True False
8 Hot | Normal Yes
1,2,6,7,8 3,4,5,9,10
Yes
Example - 3 _
High Normal

Decision Tree Algorithm — ID3
Solved Example

1,2,6,7 8
No Yes

Subscribe to Mahesh Huddar Visit: vtupulse.com




CSE, HIT, Nidasoshi



When to use Decision Trees

* Problem characteristics:
® |nstances can be described by attribute value pairs
= Target function is discrete valued
= Disjunctive hypothesis may be required
= Possibly noisy training-data.samples
= Robust to errors in-training data
= Missing attribute values
= Different classification problems:
= Equipment classification
= Medical diagnosis
= Credit risk analysis

= Several tasks in natural language processing



Issues in decision trees learning

= QOverfitting
= Reduced error pruning

= Rule post-pruning
= Extensions

= Continuous valued attributes

Alternative measures for selecting attributes

Handling training examples with missing attribute values

Handling attributes with different costs

Improving computational efficiency

Most of these improvements in C4.5 (Quinlan, 1993)



Overfitting: definition
* Building trees that “adapt too much” to the training examples may lead to

“overfitting”.

» Consider error of hypothesis h over
— training data: errory(h) empirical error

— entire distribution’X'of data: error,(h) expected error

* Hypothesis h overfits training data if there is an alternative hypothesis h' e
H such that

errorp(h) <errorg(h’) and
errory(h’) <errory(h)

i.e. h’ behaves better over unseen data
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Avoid overfitting in Decision Trees

= Two strategies:

1.
2.

Stop growing the tree earlier, before perfect classification

Allow the tree to overfit the data, and then post-prune the

tree

—Training and validation set: split the training in two parts
(training and validation) and use validation to assess the

utility of post-pruning

* Reduced error pruning



Reduced-error pruning (Quinlan 1987)

Each node is a candidate for pruning

Pruning consists in removing a subtree rooted in a node: the node

becomes a leaf and is assigned the most common classification

Nodes are removed only if the resulting tree performs no worse on the

validation set.

Nodes are pruned iteratively: at each iteration the node whose removal

most increases accuracy on the validation set is pruned.

Pruning stops when no pruning increases accuracy



Accuracy
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Rule post-pruning
Create the decision tree from the training set
Convert the tree into an equivalent set of rules
— Each path corresponds to a rule
— Each nodealanga path corresponds to.a pre-condition
— Each leaf classification to the post-condition

Prune (generalize) each rule by removing those preconditions whose

removal improves accuracy over validation set

Sort the rules in estimated order of accuracy, and consider them in

sequence when classifying new instances



Converting to rules

Outlook
.S'unn}l Chvercast Rﬂm
Humlril.r}: Yex
H igh M r;rr.rﬂ.c:.i! .S':mng Wﬁ'ﬂ.ﬂ':

H r }"-E.': H fa] 1"'5.'.5'



Rule Post-Pruning

e Convert tree to rules (one for each path from root to a leaf)

 For each antecedent in a rule, remove it if error rate on validation

set does not decrease

e Sort final rule set by accuracy

Outlook=sunny * humidity=high -> No
Outlook=sunny * humidity=normal -> Yes
Outlook=overcast -> Yes

Outlook=rain * wind=strong -> No
Outlook=rain * wind=weak -> Yes

Compare first rule to:
Outlook=sunny-

>No
Humidity=high-
>No

— B B ™ > o~



Why converting to rules?

" Each distinct path produces a different rule: a condition removal
may be based on a local (contextual) criterion. Node pruning is

global and affects all the rules

" |In rule form, tests are not ordered and there is no book-keeping

involved when conditions (nodes) are removed

= Converting to rules improves readability for humans



vealing witn continuous-valuea
attributes

So far discrete values for attributes and for outcome.
Given a continuous-valued attribute A, dynamically create a new attribute A,
A.= True if A <c, False otherwise
How to determine threshold value ¢ ?
Example. Temperature in the PlayTennis example
= Sort the examples according to Temperature
Temperature 40 48 60 72 80 90
PlayTennis No No Yes Yes Yes No

= Determine candidate thresholds by averaging consecutive values where there is a
change in classification: (48+60)/2=54 and (80+90)/2=85

= Evaluate candidate thresholds (attributes) according to information gain. The best is
Temperature.s,.The new attribute competes with the other ones



m Marital Status | Taxable Income

O 00 N oo U1l A W N B

[EEY
o

Yes Single 125K

No Married 100K No
No Single 70K No
Yes Married 120K

No, - Divorced | | 9N|daso»ssh|
No Married 60K

Yes Divorced 220K No

No Single 85K Yes
No Married 75K No

No Single 90K Yes



Handling incomplete training data

How to cope with the problem that the value of some attribute may be missing?
=  Example: Blood-Test-Result in a medical diagnosis problem
The strategy: use other examples to guess attribute

1. Assign the value-that is most common among the training examples at the

node

2. Assign a probability to each value, based on frequencies, and assign values to

missing attribute, according to this probability distribution

Missing values in new instances to be classified are treated accordingly, and the

most probable classification is chosen (C4.5)



Handling attributes with different costs

* Instance attributes may have an associated cost: we would prefer

decision trees that use low-cost attributes
. ID3 can be modified to take into account costs:
1. Tan and Schlimmer (1990)

Gain?(S, A)

Cost(S, A)

2.  Nunez (1988)

2Gain(S, A) _ 1

(Cost(A) + 1)\ er0.1]



Search space in Decision Tree learning

P » The search space is made by partial decision

ﬁfl\ trees

/ l’ \ » The algorithm is hill-climbing
}5% }5332 » | The evaluationfunction is information gain

' / \\ * The hypotheses space is complete (represents

all discrete-valued functions)

A2 A2
N I FLA * No backtracking; no guarantee of optimality
A3

Ad
/ \ * It uses all the available examples (not

incremental)



Inductive bias in decision tree learning

What is the inductive bias of DT learning?
1. Shorter trees are preferred over longer trees

Not enough-Thisis the bias-exhibited by a simple breadth first

algorithm generating all DT's e selecting the shorter one

2. Prefer trees that place high information gain attributes close to

the root
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Artificial Neural Networks

ANN learning well-suited to problems which the training data corresponds to noisy, complex data (inputs from cameras or
microphones)

Can also be used for problems with symbolic representations
Most appropriate for problems where
— Instances have many attribute-value pairs
— Target function output may be discrete-valued, real-valued, or a vector of several real- or discrete-valued attributes
— Training examples may contain errors
— Long training times are acceptable
— Fast evaluation of the learned target function may be required

— The ability for humans to understand the learned target function is not important



Appropriate Problems — for ANN

Instances are represented by many attribute-value pairs. The target function to be learned is defined over instances that can
be described by a vector of predefined features, such as the pixel values in the ALVINN example. These input attributes may
be highly correlated or independent of one another. Input values can be any real values.

The target function output may be discrete-valued, real-valued, or a vector of several real- or discrete-valued attributes.
For example, in the ALVINN system the output is a vector of 30 attributes, each corresponding to a recommendation
regarding the steering direction. The value of each output is some real number between 0 and 1, which in this case
corresponds to the confidence in predicting the corresponding steering direction. We can also train a single network to output
both the steering command and suggested acceleration, simply by concatenating the vectors that encode these two output

predictions.



Appropriate Problems — for ANN

The training examples may contain errors. ANN learning methods are quite robust

to noise in the training data.

Long training times are acceptable. Network training algorithms typically require
longer training times than; say, decision tree learning algorithms. Training times
can range from a few seconds to many hours, depending on factors such as the
number of weights in the network, the number of training examples considered,

and the settings of various learning algorithm parameters.



Appropriate Problems — for ANN

Fast evaluation of the learned target function may be required. Although ANN
learning times are relatively long, evaluating the learned network, in order to
apply it to a subsequent instance, is typically very fast. For example, ALVINN
applies its neural network several times per second to continually update its
steering command-as-the-vehicle drives forward.

The ability of humans to understand the learned target function is not important.
The weights learned by neural networks are often difficult for humans to

Interpret. Learned neural networks are less easily communicated to humans than

learned rules



Neural Network History

History traces back to the 50’s but became popular in the 80’s with work by Rumelhart, Hinton, and Mclelland

— A General Framework for Parallel Distributed Processing in Parallel Distributed Processing: Explorations

in the Microstructure of Cognition

Peaked in the 90’s.:

— Hundreds of variants

— Less a model of the'actual/brain than a useful tool, but still some.debate
Numerous applications

— Handwriting, face, speech recognition

— Vehicles that drive themselves

— Models of reading, sentence production, dreaming
Debate for philosophers and cognitive scientists

— Can human consciousness or cognitive abilities be explained by a connectionist model or does it require

the manipulation of symbols?



Biological Motivation

The study of artificial neural networks (ANNSs) has been inspired by the
observation that biological learning systems are built of very complex webs of
interconnected Neurons

Human information processing system consists of brain neuron: basic building
block cell that communicates information to-and from various parts of body
Simplest model of a neuron: considered as a threshold unit —a processing
element (PE)

Collects inputs & produces output if the sum of the input exceeds an internal

threshold value



Biological Motivation

 The human brain is made up of billions of simple processing

units — neurons.

* Inputs are received on dendrites, and if the input levels are over a
threshold, the-neuron fires, passing a signal through the axon to
the synapse which then connects to another neuron.

SYMaPSE

DEMDRITES SO A0



Biological Motivation
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Simplest Neural Network

Artificial Neural Network

Hidden
Inputs Output(s)
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Simplest Neural Network
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Example Sky AirTemp Humidity @ Wind  Water Forecast EnjoySport
[ =
FI N D S * Ste p 2 1 Sunny  Warm Normal  Strong Warm Same Yes
2 Sunny  Warm High Strong Warm Same Yes
3 Rainy Cold High Strong Warm  Change - No
4 Sunny  Warm High Strong  Cool Change Yes

Iteration 4

Step 3

h3 = <Sunny, Warm Strong, Warm Same>

MK, Ndaedshn,

x4 = <Sunny, Warm ngh Strong, CooI Change>

Output

h4 = <Sunny, Warm 2, Strong, .

Y



Example Sky AirTemp  Humidity @ Wind  Water Forecast EnjoySport
1 Sunny  Warm Normal  Strong Warm Same Yes
2 Sunny  Warm High Strong Warm Same Yes
3 Rainy Cold High Strong Warm  Change No
4 Sunny Warm High Strong  Cool Change Yes
(D, D, D, D, D. D)
(Sunny,Warm, Normal, Strong, Warm, Same)
S, (Sunny,Warm, ?,-Strong, Warm, Same)
(Sunny, Warm, ?, Strong, ?, ?)
(Sunny, ?,?,?,?,?) (?, Warm, ?, ?, ?, ?)
(Sunny,?,?,?,?2,?) (?,Warm,?,?,?2,?) (?,?,Normal,?,?,?) (?,?,?2,?,Cool,?) (?,?2,2,?2,?7,Same)
G, G,. (2,222 727




Decision Trees

* Decision trees represent a disjunction of conjunctions on constraints on the

value of attributes:
(Outlook = Sunny A Humidity = Normal) => Yes
(Outlook = Overcast) => Yes

(Outlook = Rain A-Wind = Weak) => Yes Outlook
Sunmny Overcast
Humidity Yes

High Normal

/ \

No Yes

Keain

Wirnd

Strong Weak

/ \

No Yes



Artificial Neurons

Artificial neurons are based on biological neurons.
Each neuron in the network receives one or more inputs.

An activation function is applied to the inputs, which
determines the output of the neuron =the activation level.



Artificial Neurons

output,




Artificial Neurons

» output




Artificial Neurons
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Artificial Neurons

A typical activation function works as follows:

n +1 for X >t
X =ZWiXi Y =
i1 0] for X <t

Each node i has a weight, w; associated with it.
The input to node i is x..
tis the threshold.

So if the weighted sum of the inputs to the neuron is above

the threshold, then the neuron fires.



Artificial Neurons

* The charts on the right show three typical activation

functions.
Step function S1ign function Sigmoid function
(Linear Threshold Unit) . _ . _
sign(x) = +1,ifx >=0 sigmoid(x) = 1/(1+e%)
step(x) = 1, if x >= threshold -1,ifx <0

0, if x < threshold



PERCEPTRON

One type of ANN system is based on a unit called a perceptron.

A perceptron takes a vector of real-valued inputs, calculates a linear
combination of these inputs, then outputs a 1 if the result is greater than some
threshold and -1 otherwise.

More precisely, given inputs'x1 through xn, the‘output-o(x1, . . ., xn)

computed by the perceptron is

1 if wo + wyx) + waxs +--- +wux, >0
—1 otherwise

ﬂ(‘rli"'?'rﬂ)={

where each wi is a real-valued constant, or weight, that determines the
contribution of input xi to the perceptron output



PERCEPTRON

,, F)——>0
)2 @ ;
Wik Lif 2 w;x;>0

i=0 o= i=0
-1 otherwise

1 if wo+wyxy 4+ waxs+---+wpx, >0
o(xy, .-, x")_{—l ﬂthﬂ[:'wisell o ’



PERCEPTRON

For brevity, we will sometimes write the perceptron function as,

o(X) = sgn(h - X)

where
_ l1ify>0
sgn(y) = { ~1 otherwise
Learning a perceptron involves choosing values for the-weights wo, . . ., wn.

Therefore, the space H of candidate hypotheses considered in perceptron

learning is the set of all possible real-valued weight vectors.

H={w | ©e Rt



The Perceptron Training Rule

One way to learn an acceptable weight vector is to begin with random weights, then iteratively apply the perceptron to
each training example, modifying the perceptron weights whenever it misclassifies an example.

This process is repeated, iterating through the training examples as many times as needed until the perceptron classifies

all training examples correctly.

Weights are modified at each step according to the perceptron training rule, which revises the weight wi associated with

input xi according to the rule

w; < w; + Aw;
where

Aw; = n(t — 0)x;



The Perceptron Training Rule

w; < w; + Aw;

where

Here t is the i Aw; = n(t —0)x; yerceptron, and n is a positive
constant called the learning rate.

The role of the learning rate is to,moderate the degree to which weights. are changed-at each step.

It is usually set to some small value (e.g., 0.1) and is sometimes made to decay as the number of weight-tuning iterations

increases.



The Perceptron Training Rule

INPUT INPUT LAYER OUTPUT LAYER OUTPUT CATEGORY

BRIGHT

DARK




The Perceptron Training Rule

Why should this update rule converge toward successful weight values?

To get an intuitive feel, consider some specific cases.

Suppose the training example 1s correctly classified already by the perceptron. In this
case, (t - 0) 1s zero, making Awi zero, so that no weights are updated.

Suppose the perceptron outputs a -1, when the target output is + 1.

To make the perceptron output a + 1 instead of - 1 in this case, the weights must be
altered to increase the value of w. x.

For example, if xi > 0, then increasing wi will bring the perceptron closer to correctly
classifying this example. Notice the training rule will increase wi in this case, because
(t - 0), n, and xi are all positive.

For example, ifxi =.8, ¢ = 0.1, t = 1, and o = - 1, then the weight update will be Awi =
qt-o0)xi=0.1(1-(-1))0.8= 0.16.

On the other hand, if #=-1 and o = 1, then weights associated with positive xi will be
decreased rather than increased.



The Perceptron Training Rule

A single perceptron can be used to represent many Boolean functions weights 0.6 and 0.6

AND function
If A=0 & B=0 — 0%0.6 + 0*0.6 = 0 Threshhold 6 =1
This is not greater than the threshold of 1, so the output =0 Learning Raten = 0.5
IfA=0 & B=1 — 0*0.6 + 1*0.6 = 0.6 A B A B
This is not greater than the threshold, so the output =0 0 0 0
IfA=1 & B=0 — 1*0.6 + 0*0.6 = 0.6 0 1 0
This is not greater than the threshold, so the output = 0 1 0 0
IfA=1 & B=1 — 1*0.6 + 1*0.6 = 1.2 1 1 1
This exceeds the threshold, so the output =1

Weighted

Sum

o




The Perceptron Training Rule

A single perceptron can be used to represent many Boolean functions weights 1.2 and 0.6

AND functjon

If A=0 & B=0 — 0*1.2 + 0%0.6 = 0 Threshhold 6 =1
This is not greater than the threshold of 1, so the output = 0 Learning Rate n = 0.5
IfA=0 & B=1 - 0*1.2 + 1*0.6 = 0.6 A B A B

This is not greater than the threshold, so the output =0

IfA=1 & B=0 —- 1*1.2+0*0.6 =12

This is greater than the threshold, so the output = 1

— = o o

0 0
1 0
0 0
But the expected output is 0 1 1




The Perceptron Training Rule

A single perceptron can be used to represent many Boolean functions weights 1.2 and 0.6
AND function
Threshhold 8 = 1
Learning Rate n = 0.5

wi = wi +n(t — o)xi i B AR

wl=12+05(0-1)1=07

w2 =06+ 0.5(0—1)0 =06

— = o o

0 0
1 0
0 0
1 1




The Perceptron Training Rule

A single perceptron can be used to represent many Boolean functions weights 1.2 and 0.6

AND function
If A=0 & B=0 — 0*0.7 + 0*0.6 = 0 Threshhold 6 =1
This is not greater than the threshold of 1, so the output =0 Learning Raten = 0.5
If A=0 & B=1 — 0*0.7 + 1*0.6 = 0.6 A B A B
This is not greater than the threshold, so the output =0 0 0 0
If A=1 & B=0 — 1*0.7 + 0*0.6 = 0.7 0 1 0
This is greater than the threshold, so the output =0 1 0 0
IfA=1 & B=0 — 1*0.7 + 1*0.6 = 1.3 1 1 1
This is greater than the threshold, so the output =0

Weighted

Sum

0.7
Output
ﬁ_’
0.6




The Perceptron Training Rule

A single perceptron can be used to represent many Boolean functions with initial weights 0.6 and

0.6 Threshhold 8 = 1
OR function Learning Rate n = 0.5
If A=0 & B=0 — 0*0.6 + 0*0.6 =0 A B Y=A+B

This is not greater than the.threshold of 1,/sothe output= 0

0

If A=0 & B=1 — 0*0.6 + 1*0.6 = 0.6

[—

pt |

o
el B0 Bl )

[e—

—

This is not greater than the threshold, so the output = 0
But the expected output is 1
wi =wi+n(t —o)xi
wl=06+05(1-0)0=0.6
w2=06+05(1-0)1=1.1




The Perceptron Training Rule

A single perceptron can be used to represent many Boolean functions

OR function Threshhold 6 = 1
If A=0 & B=0 — 0*0.6 + 0*1.1 =0 Learning Rate n = 0.5
This 1s not greater than the threshold of 1, so the output =0 A B |Y=A:B
IfA=0 & B=1 — 0*0.6 + 1*1.1 =1.1 0 0 0
This is greater than the thréshold,-so.the output = 1 (1) (1) 1
IfA=1 & B=— 1*1.1 +0*1.1 = 1.1 1 1 1

This 1s greater than the threshold, so the output = 1
But the expected output is 1
wi = wi + n(t — o)xi
wl=06+05(1-0)1=1.1
w2=11+05(1-0)0=1.1



The Perceptron Training Rule

A single perceptron can be used to represent many Boolean functions

QR function Threshhold 6 = 1
If A=0 & B=0 — 0*1.1+0*1.1=0 Learning Rate n = 0.5
This is not greater than the threshold of 1, so the output =0 A B |Y=A+B
IfA=0 & B=1 — 0*1.1+ 1*14 =11 - ‘1) =
This is greater than the threshold, so the output = 1. 1 0 1
IFA=1 & B= — 1*1.1+0*1.1=1.1 1 1 1

This is greater than the threshold, so the output = 1. i
IfA=1 & B=— 1*1.1+1*1.1=2.2 @\ 1.1 Sum

Output
This is greater than the threshold, so the output = 1. 1.1 XZD_’ -




The Perceptron Training Rule

A single perceptron can be used to represent many Boolean functions

NOT function




The Perceptron Training Rule

Perceptron_training_rule (X, n)
initialize w (wi < an initial (small) random value)
repeat
for each training instance (x, tx) € X
compute the real output ox=Summation(w.x)
If (tX # 0x)
for each wi
wi €< wi + Awi
Awi € n(tx-0x)xi
end for
end if
end for
until all the training instances in X are correctly classified
return w

X: training data
n: learning rate (small
positive constant, e.g., 0.1)

Examples

e x is correctly classified, ox—ox=0
= no update

e ox=-1 but tx=1, tx-ox>0

- wi is increased if xi>0,
decreased otherwise

—>W.X is increased

e 0x=1, but outx=-1, outx-ox<0
—>wi is decreased if xi>0,
increased otherwise

—>w.BX is decreased



Representational Power of Perceptron's

* We can view the perceptron as representing a hyperplane decision surface in
the n-dimensional space of instances (1.e., points).

e The perceptron outputs a 1 for instances lying on one side of the hyperplane
and outputs a -1 for instances lying on the other side.

* The equation for-this'decision hyperplane w.x ="0.

* Of course, some sets of positive and negative examples cannot be separated by
any hyperplane.

* Those that can be separated are called linearly separable sets of examples.



Representational Power of Perceptron's

Linearly separable Non-linearly separable



Representational Power of Perceptron's

A single perceptron can be used to represent many boolean functions.

For example, if we assume boolean values of 1 (true) and -1 (false), then one
way to use a two-input perceptron to implement the AND function is to set the
weights wo = -0.8, and wl =w2 = 0.5.

This perceptron can be made to represent the OR function instead by altering
the threshold to'wo="-0.3.

In fact, AND and OR can be viewed as special cases of m-of-n functions: that
IS, functions where at least m of the n inputs to the perceptron must be true.
The OR function corresponds to m =1 and the AND function to m = n.

Any m-of-n function is easily represented using a perceptron by setting all
Input weights to the same value (e.g., 0.5) and then setting the threshold wo
accordingly.



Representational Power of Perceptron's

» Perceptrons can represent all of the primitive boolean functions AND, OR,
NAND, and NOR.

« Unfortunately, however, some boolean functions cannot be represented by a
single perceptron, such as the XOR function whose value is 1 if and only if x|
1= X2.

* Note the set of linearly nonseparable training examples shown in Figure (b)

corresponds to this XOR function.



Representational Power of Perceptron's

The ability of perceptrons to represent AND, OR, NAND, and NOR is important because every boolean function can be
represented by some network of interconnected units based on these primitives.

In fact, every boolean function can be represented by some network of perceptrons only two levels deep, in which the
inputs are fed to multiple units, and the outputs of these units are then input to a second, final stage.

One way is to represent the boolean function in disjunctive normal form (i.e., as the disjunction (OR) of a set of
conjunctions (ANDs) of the inputs and their negations).

Note that the input to an AND perceptron can be negated simply by changing the sign of the corresponding input weight.
Because networks of threshold units can represent arich variety of functions and because single units alone cannot, we
will generally be interested.in.learning multilayer networks of threshold units.



Representational Power of Perceptron's

4 Decision boundary (WX = 0)
+ L
_|_
- ~ .

A perceptron can learn only examples that are called “linearly separable”™. These are
examples that can be perfectly separated bv a hyperplane.
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Gradient Descent and the Delta Rule

Although the perceptron rule finds a successful weight vector when the training examples are linearly separable, it can
fail to converge if the examples are not linearly separable.

A second training rule, called the delta rule, is designed to overcome this difficulty.

If the training examples are not linearly separable, the delta rule converges toward a best-fit approximation to the target
concept.

The key idea behind the delta rule is to use gradient descent to search the hypothesis space of possible weight vectors to
find the weights that best fit the training examples.

This rule is important because gradient descent provides the basis for the BACKPROPAGATON algorithm, which can
learn networks with many interconnected units.

It is also important because gradient-descent can serve as the basis for learning algorithms that must search through
hypothesis spaces containing many different types of continuously parameterized hypotheses.



Gradient Descent and the Delta Rule

inputs

@\weights
weighted

Wy sum unit step function

O
=

> @ >
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Gradient Descent and the Delta Rule

Global Maxima

0.5
|

Local Maxima

0.0

Local Minima

-0.5
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Gradient Descent and the Delta Rule

The delta training rule is best understood by considering the task of training an unthresholded perceptron; that is, a linear
unit for which the output o is given by

O=wy+uwuxr+ -+ w,x,
Thus, a linear unit corresponds to the st staye ¢ {}(.}E) — 1‘,-!..," ) iﬁ Luie unesnuid.
In order to derive a weight learning rule for lir by specifying a measure for the training error of a
hypothesis (weight vector), relative to the training examples.
Although there are many ways to define this error, ane common measure is

where D is the set of training examples, td is the target output for training example d, and od is the output of the linear unit
for training example d.

- 1
E(D) = 5 de(rd —04)*
eD



Derivation of Gradient Descent Rule

How can we calculate the direction of steepest descent along the error surface?
This direction can be found by computing the derivative of E with respect to each
component of the vector w.

This vector derivative is called the gradient of E with respect to w, written as VE(W).

i dE OJE dE
va =l T T
2 [Bwn dw ﬂw,,]
Since the gradient specifies the direction of steepest increase of E, the training rule for
gradient descent 1s b i+ A
Aw; = n(t — 0)x;
where

A

—nyVE(w)



Derivation of Gradient Descent Rule
W «— w4+ Aw
where

< Here nis a positive ( A = —nVE(w) in the gradient descent search. The
negative sign is present because we want to move the weight vector in the direction that decreases E.

*  This training rule can also be written in its component form

w; < w; + Aw;
where VE(#) = [SE dE dE

JE
Aw; = —n—
ﬂw;—



Derivation of Gradient Descent Rule

oFE g 1 2 1
— = —x ta —0 D) = = — o2
dw; . w, zdsﬂ( a = 0a) E() = zgim 04)
1 d
= 5 _( — 0, ) == = =
2 deD dw . ’ oX)=w-x
1 d
=5 2(ta— ﬂd)ﬁ“_(fd ~0g)
deD wi
d . . dE
= E(fd“ad]‘r(fd_w‘xd) Aw; = R
deD W w;
oFE
= (ta — 0g)(—xia) Aw; =1n ) (g —04) Xig
duy JEZ!; ;

w; <— w; + Aw;



Gradient-Descent(training examples, )

Each training example is a pair of the form (I,t), where T is the
vector of input velues, and t is the targel ouiput value. n is the
learning rate (e.q., .05).

e Initialize each w; to some small random walue
e Until the termination condition is met, Do

— Initialize éach Aw,; to-zero.
— For each (7.t} in training_eramples, Do

+ Input the instance ¥ to the unit and compute the output o

* For each linear unit weight w;, Do
Aw; = Aw; + n(t — o)x;
— For each linear unit weight w;, Do

w; = w; + Aw;



STOCHASTIC APPROXIMATION TO GRADIENT DESCENT

«  Gradient descent is an important general paradigm for learning.
« ltisastrategy for searching through a large or infinite hypothesis space that can be applied whenever
1. the hypothesis space contains continuously parameterized hypotheses (e.g., the weights in a linear unit), and
2. the error can be differentiated with respect to these hypothesis parameters.
»  The key practical difficulties in applying gradient descent are
1. converging to a local minimum can sometimes be quite slow (i.e., it can require many thousands of gradient descent
steps), and
2.  if there are multiple local minima in the error surface, then there‘is no guarantee-that the procedure will find the global
minimum.



STOCHASTIC APPROXIMATION TO GRADIENT DESCENT
Stochastic Gradient-Descent(training examples, n)

Fach training example is a pair of the form (T t), where T is the
vector of input values, and t is the target output value. 1 s the
learning rate (e.g., .05).

e Initialize each w; to some small random value
e UUntil the termination condition,is met, Do
Initialize each Aw; to zero.
For each (Z,t) in tratning_examples, Do
» Input the instance I to the unit and compute the output o
# For each linear unit weight w;, Do

wy; = w;+ Nt — o)x;



STOCHASTIC APPROXIMATION TO GRADIENT DESCENT

The key differences between standard gradient descent and stochastic gradient descent are:

* In standard gradient descent, the error is summed over all examples before updating
weights, whereas in stochastic gradient descent weights are updated upon examining each
training example.

* Summing over multiple examples in standard gradient descent requires more computation
per weight update step. On the other hand, because it.uses the true gradient, standard
gradient descent 1s often used with a larger step size per weight update than stochastic
gradient descent.

 In cases where there are multiple local minima with respect to E (w), stochastic gradient
descent can sometimes avoid falling into these local minima because it uses the various
VE;(w) rather than VE (W) to guide its search.



MULTILAYER NETWORKS

* Multilayer neural networks can classify a range of

functions, including non linearly separable ones.

* Each input layer. neuron connects to all neurons in the

hidden layer.

* The neurons in the hidden layer connect to all neurons in

the output layer.



MULTILAYER NETWORKS

(_
<7

QN <
\\ . output layer
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input layer



MULTILAYER NETWORKS

A Differentiable Threshold Unit

What type of unit shall we use as the basis for constructing multilayer networks?

At first we might be tempted to choose the linear units discussed in the previous
section, for which we have already derived a gradient descent learning rule.
However, multiple layers of cascaded linear units still produce only linear functions,
and we prefer networks capable of representing highly-nonlinear functions.

The perceptron unit is another possible choice, but its discontinuous threshold makes
it undifferentiable and hence unsuitable for gradient descent.

What we need is a unit whose output is a nonlinear function of its inputs, but whose
output is also a differentiable function of its inputs.

One solution is the sigmoid unit-a unit very much like a perceptron, but based on a
smoothed, differentiable threshold function.



MULTILAYER NETWORKS

The sigmoid unit is illustrated in below Figure. Like the perceptron, the sigmoid
unit first computes a linear combination of its inputs, then applies a threshold to

the result.

In the case of the sigmoid unit, however, the threshold output is a continuous
function of its input.




MULTILAYER NETWORKS

More precisely, the sigmoid unit computes its output o as

o=oc(w-X)

1
1+

o(yr=

20 = 5(y) - (1 — a(y))




The BACKPROPAGATIAON Algorithm

Multilayer neural networks learn in the same way as perceptrons.

However, there are many more weights, and it is important to

assign credit (or blame) correctly when changing weights.

E sums the errors over all of the network output units

E(w) = Z > (tig —04q)”

d eD keoutputs



The BACKPROPAGATIAON Algorithm

xj; = the ith input to unit j
wj; = the weight associated with the ith input to unit j
nety = ) . wjix;; (the weighted sum of inputs for unit j)

. 0; = the output computed by junit-j

" t; = the target output for unit j

o = the sigmoid function

- outputs = the set of units in the final layer of the network

- Downstream(j) = the set of units whose immediate inputs include the
output of unit
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Back Propagation Algorithm

Create a feed-forward network with n; inputs, n;;44, hidden units, and n,,, output units.
Initialize all network weights to small random numbers
Until the termination condition is met, Do
» For each (x, t), in training examples, Do
* Propagate the input forward through the network:

1. Input the instance x, to the network and compute the output o, of every unit u in the network.

* Propagate the errors backward through the network

2. For each network unit k, calculate its error term §, 4. Update each network weight w;

0. = op(1 — o)t — op) Wii <— Wii + A Wji

] ] Where
3. For each network unit h, calculate its error term 6,

5;, — ();,(1 - ();;) > H‘f,_,f,.(if_. A Wit = ’Il}rd_!"r.]'i

k€outputs

171



Derivation of Back Propagation Algorithm

« To derive the equation for updating weights in back propagation algorithm, we use
Stochastic gradient descent rule.

 Stochastic gradient descent involves iterating through the training examples one at a time,
for each training example d descending the gradient of the error Ed with respect to this
single example.

 In other words, for each training example d every weight wji is updated by adding to it
Aw;;.

+ Thatis, Wi Wi + A Wi

Where

JF
Awj; = —r}-—-i
awjf

172



Derivation of Back Propagation Algorithm

Wii <= Wiji + A Wi
Where

oF
Awj; = —r}-—-i
dwj;

» where Ed is the error on training example d, that is half the squared difference between the
target output and the actual-output-over all output units in'the network,

. |
Eq(w) =3 D (- o)

keoutpits

 Here outputs is the set of output units in the network, t, is the target value of unit k for
training example d, and o, is the output of unit k given training example d.
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Derivation of Back Propagation Algorithm

Notation Used:
x;; = the i™ input to unit |
w;; = the weight associated with the i input to unit
net; = },;w;;X;; (the weighted sum of inputs for unit j )
o; = the output computed by unit |
t; = the target output for unit j
o = the sigmoid function
outputs = the set of units in the final layer of the network

Downstream(j) = the set of units whose immediate inputs include the output of unit j

174



Derivation of Back Propagation Algorithm
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Derivation of Back Propagation Algorithm

Wii <— Wji + A Wji
Where
dE,

» To begin, notice that weight wji can influence the rest of the network only through netj.

Therefore, we can use the chain rule to.write,

3E; | OEy ‘onet net; = Zwﬁxﬁ
= i
Bw,-,» anetj an;,' anetj
aEd aW]l N xji
= Xii
Bner,- #*
dE;
Aw: = — i
= et
dEy

« Our remaining task is to derive a convenient expression fol

net;

176



Derivation of Back Propagation Algorithm

dEy,

To derive a convenient expression for -
J

We consider two cases in turn:
« Case 1, where unit/j is an output unit for the network,-and

» Case 2, where unit j is an internal unit of the network.
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Derivation of Back Propagation Algorithm

Case 1: Training Rule for Output Unit Weights

* Just as wji can influence the rest of the network only through net;, net; can influence the

network only through oj. Therefore, we can invoke the chain rule again to write,

dE;  dE4 doj IE,

dnet; - do; dnet;  do;

2
s (5 —op
0j keoutputs

do; do(net;) 99X _ 5(x) (1-6(x))

d(net;) F d(net;) )

= o(net;) (1-
o(net;))
= Oj (1 — 0])

0E,
ﬂney

= —(!‘j — 0_,') D_,'(l —Oj)
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Derivation of Back Propagation Algorithm

Case 1: Training Rule for Output Unit Weights

dE
By = Y
. ’
It Hnet_, = —(tj — Oj) ﬂj(l —OJ-)
dE,
Aw; = — -
a 1 dnet; it

Awj; =n (4 —0j) 0;(1 = 0))xji
8] =(Ij - Oj) Oj(l - Oj).

Awji =ng;x;i




Derivation of Back Propagation Algorithm
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Derivation of Back Propagation Algorithm

Case 2: Training Rule for Hidden Unit Weights

dE, dE; Onety dE,
= 2 - = —(t; — 0)) 0;(1 — 05)
net; lkeﬂawnslream{_,"]ane k Onel; BHEIJ
anety
= = onet
. ner;
keDownstream()) ! 5., =(tj - Oj) Oj(l p— 0}) aoj B aa(netj)
3 Z s, onet, 00; d(net;)  a(net))
keDownstream(j) 3Dj BnEtj d nety _ 0XkjWi; _ do;jwy;
an B 60] B 60] = O'(net]) (1 )
30_,'
= Z =8k wyj e a(net;))
keDownstream () nel;
= 0]' (1 - O])

-"5;; Wk;j ﬂj(l — Uj)
keDownstream(j)



Derivation of Back Propagation Algorithm

Case 2: Training Rule for Hidden Unit Weights

Eq xii 9Ea _ Z -8 wy; 0j(1 — 0j)
aﬂffj J 3?28!.‘_,‘ k€Downstream(j)

Awﬁ = =n

Awj; = n oj(1 — o)) Z Ok Wrj x;ji

ke Downstream(j)

ﬂ'wﬁ =n ﬁf Xji 8; = 0;(1 — o) z: Ok Wkj
keDownstream(j)





