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Vector Analysis

Scalars and \ectors

Scalar Fields (temperature)
Vector Fields (gravitational, magnetic)

Vector Algebra

+ B



There are three co-ordinate systems

1. Cartesian or rectangular co-ordinate system
2. Cylindrical co-ordinate System
3. Spherical co-ordinate System



The Cartesian Coordinate System : vertices are X,Y,z
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Vector Components and Unit Vectors
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Constant planes

X~ X=constant
parallel to yz plane

(a) (b) (c)




Contd...

Distance vector -dl
Differential surfaces -
dv =



The Dot product

B in the direction of A

A.B = |A||B| COS GAB You need to normalize a
before the dot product.




The Cross Product

A X B =a,|A||B| sin B,g

Example

A 2
9 A = _3
W AE B "

lAXB -13
AxB=|-14

ax ay az
Ax Ay Az
Bx By Bz



Circular Cylindrical Coordinate System

(P1-P1-51)
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Differential volume

IO, TN W ..

Z+dz



dS, = Differential vector surface area normal to r direction

rd¢dz a,

dSy = Differential vector surface area normal to ¢ direction
= drdz a,

dS, = Differential vector surface area normal to z direction
= rdr d# i:
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x=rcos¢ y=rsing and z=2

It can be seen that, r can be expressed interms of x and y as,



Circular Cylindrical Coordinate

System
x= p-cos(0) -
p =X +Y p=>C
y = p-SIn((I)) ¢= atan(xj
/=7 X
=17
Dot
Product

A = Ax-ax + Ay-ay + Az-az

L

A =Ap-ap + Apad+ Az-az

5 . Ap=Aap  Ap= Aad Az = Az

Ap = (Ax-ax + Ay-ay + Az-az)-ap = Ax-ax-ap + Ay-ay-ap
Ad= (Ax-ax + Ay-ay + Az-az)-ap= Ax-ax-ap+ Ay-ay-adp

Az = (Ax-ax + Ay-ay + Az-az)-az = Az-az-az = Az

az-ap=az-¢p=0



Spherical co-ordinate system
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(s) Sphere of radius r Right circular cone
with centre as origin (b) wl%.:t-m at origin () *:oa" !;:‘:cmwmndlcuur



The Spherical Coordinate System

x = r-sin(0)-cos ()

v Re ™ y = rosin(e-sin(q)))
/ . 0 25 ar
\ a constant .
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Sperical Co-ordinate System

>




r sind

Intersection
of two surfaces
is horizontal
circle




The Spherical Coordinate System

x = r-sin(0)-cos ()

y = r-sin(e-sin(q)))

Z= r-cos(e)
r-dr-do
> r-sin(e)-dr-dq)
: ;"- rdé r2-sin(6)-de-dq

I .\in {/ J'f;‘;

rz-sin(G)odr-dGodd

(d)
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—— Ty

r sinf do

dr

dS.

dSe

dSs

>y

Differential vector surface area normal to r direction
rZsin 06d0dé
Differential vector surface area normal to 0 direction

= rsinB8drdé

Differential vector surface area normal to ¢ direction
rdrdf



P(x.y.z) = P(r0.9)

rsinBeosd and y=rsinBsin¢

rcosf

t=rsinfcosd, y=rsinfsing and z=rcos




The Experimental Law of Coulomb

: 1.Q2
F =k = — eo= 8854102 = = .10° © O | p_alte :
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(") i E = E
, Qt
E(r) = 2 . £
v 4-TE-80-(|r—I’1|) |r_rl|
Origin
e Qf (x—xD-ay+ (y - yl)-ay + (z—z1)-a, |

3

4-7:-80-[(X— xj)2 + (y — yl)2 + (z- 21)2] i



Electric Field Intensity

E)= D om

n=1 4meo([r=rm|)’

E(r)



Field of a Line Charge

0,0,2") K .
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Field of a Line Charge (neglect symmetry)

E:r ol pva =) ady1da
4-11-¢0 (|r—r1|)3

pvl=pldzl

r=p-ap + z-az r1=z1.az

R=r-rl=p-ap + (z-21)-az

_pap+(z-2)az

R:\/p2+(2—21)2 aR
Jpz + (z—zl)2
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Field of a Line Charge (neglect symmetry)

rQ2 Q)

I ap- (p-dz1) dz1 + az- (2-2) dz1
(4-7'['80) 3 3
2 2
L%+ -] | o2+ -]
e -Q
—Q toQ2 —Q toQ2
E = pL |:appi _(Z_ Zl) az- 1
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Field of a Sheet of Charge

Ps

R=\/x2+y2

dyl -cos(e) __psS x-dyl

/ il A7
2-1t-€0- x2+y2 ( naO) X +Yy

dEx= pS-

- toQ2

[ 1
Ex= PIRE. | X dyl= pS -atan(y—)
(2-7’5'80) J X2 ” y2 (2-7‘[-80) X

- Q

S S
Ex= p— E= p—-aN

2-¢0 2-¢0

This is a very interesting result. The field is constant in magnitude and
direction. It is as strong a million miles away from the sheet as it is right of the

surface.



Streamlines and Sketches of Fields

A
T .Y f A Cross-sectional
\T/ view of the line
T ey «_‘,_/I\—f_" charge.
& r "
l e N T
:) Lengths

proportional to the
: magnitudes of E

~ | and pointing in the
9‘% - — = i direction of E

(c) (d)




Streamlines and Sketches of Fields

Ey _dy
Ex dz
B i-ap E= - -ax + Y -ay
p 2 2
X +Yy X +Yy
U By _ i e
dx Ex X y Y
In(y) = In(X) + C1 In(y) = In(X) + In(c)



3.1 Electric Flux Density

« Faraday's Experiment

Metal [nsulating or
conducting dielectric
spheres - material

Flux =¥, same units as QO

¥ 1z responsible for creating — O on outer sphere



Electric Flux Density, D

Units: C/m?

Magnitude: Number of flux lines (coulombs)
crossing a surface normal to the lines divided
by the surface area.

Direction: Direction of flux lines (same
direction as E). .

For a point charge: D= —— a,

-~

4 71 p-
For a general charge distribution,

oo dv
D=¢ K = f }_[} 5 Ay
Jvol 4 T R?



D3.1
Given a 60-uC point charge located at the origin, find

the total electric flux passing through:

(a) That portion of the sphere r = 26 cm bounded by
0 < theta < Pi/2 and 0 < phi < Pi/2
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Gauss’s Law

he electric flux passing through any
osed surface Is equal to the total

narge enclosed by that surface.”

P = ‘4; Ds-dS = charge enclosed = O
S



* The integration is performed over a
closed surface, I.e. gaussian surface.

D S normal

AS



* We can check Gauss’s law with a point
charge example.

2 i q
J J a’sin[e] de d¢
0 0 4xma2

q

o\ r=a dS



Symmetrical Charge Distributions

Gauss’s law is useful under two conditions.

1. DgIs everywhere either normal or tangential to the
closed surface, so that D4'dS becomes either Dg
dS or zero, respectively.

1. On that portion of the closed surface for which
D dS Is not zero, Dg = constant.



Gauss'’s law simplifies the task of finding D near an infinite line

charge.
Q:§ DS'{fS=DSf (ES+OI n?S+0f d.s
cyl sides top bottom
Line charge S w— i oron
= D pdodz=Ds2mpl
PL P L:DL:D
I
Dy=D, = Q _ pr
2mpl 2mp
Y




Infinite coaxial cable;

Conducting
lind PL
7} D= ; a, (a<p<b)
p
| D=0 (p>b)

=)



Differential Volume Element

 |If we take a small enough closed surface,
then D Is almost constant over the surface.

P(x, y, Z)
D=Dy=D.ya,+D,ga,.+D.ga.

® A g
M 2 4 -.‘[,..I} ds = [ + [ + [ + [ + [ + [

7 Ay Jiront Jback Jleft Jright Jtop Jbottom



D, 9Dy, 4D
_ﬁﬁD'ffSﬁ L L+ 2 ) AxAyAz
= ( dx 6)1 A= ) X4}

aD
Charge enclosed m volume Av = ( (Z’J'(;D_x 4 p Yoy aé)D z
X v =

) x volume Av



Divergence

Divergence Is the outflow of flux from a
small closed surface area (per unit
volume) as volume shrinks t~,7~r~

open surface. closed surface



-Water leaving a bathtub

-Closed surface (water itself) is essentially incompressible

-Net outflow is zero

-Alir leaving a punctured tire

-Divergence is positive, as closed surface (tire) exhibits net outflow




Mathematical definition of divergence

(l

div(D) = lim DS

AV = 0 AV
J

Surface integral as the volume element (Av) approaches zero

D is the vector flux density

+ — +
OX oY oZ

5D, 8D, SDZJ

diV(D) = (

- Cartesian



Divergence in Other Coordinate Systems

Cylindrical

M= sl P L By T
Spherical

div(D) = S(Dr°f2>+ 1 .5(De-sin(6))+ 1 D

1
E. or r-sin(e) 0 r-sin(e) )



4.1 Energy to move a point charge
through a Field

* Force on Q due to an electric field
FE=QE
 Differential work done by an external
source moving Q
dwW = —QE.dL
* Work required to move a charge a finite
distance

final

W =—0 [ E-dL

il



Line Integral

« Work expression without using vectors

EL is the component of E in the dL direction

final
W = —Q-J ELdL

initial
dL = dva, +dva, + dza; (cartesian)
dL. = dpap + pdpag + dz a; (cylindrical)

dL. = dra, + rdfag +rsmé doay (spherical)
« Uniform electric field density

W = —QELBA



Potential

* Measure potential difference between a
point and something which has zero
potential "ground”

Vag=Va-Vp



Potential Field of a Point Charge

« Let V=0 at infinity

v

B -’-htED-r

« Equipotential surface:

— A surface composed of all points having
the same potential



Potential due to n point
charges

Continue adding charges

V(1) = Q1 4- &2 A+ Qn

!
dmeg|r—rl| Ameqy|r—r2| 4me(y ‘r = rn‘

Qm

n
V(r) =
. 4-1-¢ 0 |r = rm|

m



Potential as point charges
become Infinite

Volume of charge V() = [ P w{" primd i
J 4me(y |r 2 rprime‘
[ ol

Line of charge V() =J 4_75.80'.‘(|rp_”rme)_ ‘ AL prim

prime
P s(rpri

Surface of charge V() = | 4ﬂ805(|rp“rme) | dS prime

J ‘e ' =" prime




Potential as point charges
become Infinite

Volume of charge V() = [ P w{" primd i
J 4me(y |r 2 rprime‘
[ ol

Line of charge V() =J 4_75.80'.‘(|rp_”rme)_ ‘ AL prim

prime
P s(rpri

Surface of charge V() = | 4ﬂ805(|rp“rme) | dS prime

J ‘e ' =" prime




Gradients In different
coordinate systems

The following equations are found on page 104 and inside the back
cover of the text:

oV oV oV
gradV = —-a, + —ay+ —a,
OX oy %4
oV 1 &V oV
gradV = A, — A+ —a,
op p o oz
NV 18V 1 &V
gradV= —-a .+ ——-ag+— il
or r o0 r-sm(e) )

Cartesian

Cylindrical

Spherical



Chapter 7 — Poisson’s and Laplace Equations

A useful approach to the calculation of electric potentials
Relates potential to the charge density.
The electric field is related to the charge density by the divergence

ralatinnchin
p I = electric field
V-E= .‘:‘_ [ = charge density
i
En = permittivity

The electric field is related to the electric potential by a gradient
relationship
E==-VV

Therefore the potential is related to the charge density by Poisson's equation
V.Vv=viv=F
IIEII

In a charge-free region of space, this becomes Laplace's equation

V'V =0



Magnetic Field Sources

Magnetic fields are produced by electric currents, which can be macroscopic
currents in wires, or microscopic currents associated with electrons in atomic

orbits.
vub diw RN
Wity "". ”
% I-.:-_:' oy O . 1-‘E|-r .
! '._.-I'.'-'g'"'i._.' N ', '._.l'.-':-:.'l'-_.'
Abuidy, L
Current Loap of Solenoid Bar Magnet The Earth

in wire Wire
Magnetic Field Sources

57
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Maxwell’s equations

x E = = . <
ot [ e
Xﬂ:ag=ic+‘]l
ot =
B =d,,



Maxwell’s equations for TVF

Differential form Controlling principle Integral form

VxH=D+J |Ampere’s Circuital Law fi; H-dL = J'f) +3-dS
VxE=-B Potential around a closed path is zero :[-]72 .dL = —IE .dS
VeD=p Gauss’s Law j'.f) S = J'p dv

VeB Non-existence of isolated magnetic poles| {B-dS =0







