
 

Energy and Potential 



4.1 Energy to move a point 

charge through a Field 

• Force on Q due to an electric field 

 

• Differential work done by an external 

source moving Q 

 

• Work required to move a charge a finite 

distance 

F E QE

dW QE dL



4.2 Line Integral 

• Work expression without using vectors 
 
 
EL is the component of E in the dL direction 

 

 

 

• Uniform electric field density 
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Example 
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Calculate the work to cary the charge from point B to point A.
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Example 

• Same amount of work with a different path 

• Line integrals are path independent 

E x y( )

y

x

2











 Q 2 A

.8

.6

1











 B

1

0

1











 Path: y 3 x 1( ) z 1

(straight l ine) 

Calculate the work to cary the charge from point B to point A.

W Q

B0

A0

xE x y( )
0






d Q

B1

A1

yE x y( )
1






d Q

B2

A2

zE x y( )
2






d

Plug path in for x and y in E(x,y)

W Q

B0

A0

xE 0 3 x 1( )[ ]
0






d Q

B1

A1

yE
y

3
1 0









1






d Q

B2

A2

zE 0 0( )
2






d W 0.96



4.3 Potential Difference 

• Potential Difference 

 

• Using radial distances from the point charge 



4.3 Potential 

• Measure potential difference between a 

point and something which has zero 

potential “ground” 
V AB V A V B



Example – D4.4 
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b) Find Vm if V=0 at Q(4,-2,-35) 

Q

4

2

35











 VM
Q0

M0

x6x
2




d

Q1

M1

y6y




d

Q2

M2

z4




d VM 120

c) Find Vn if V=2 at P(1, 2, -4)
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4.4 Potential Field of a Point 

Charge 

• Let V=0 at infinity  

 

• Equipotential surface: 

– A surface composed of all points having the 

same potential 

 



Example – D4.5 
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Potential field of single point 

charge 

Q1 

A 

|r - r1| 

Move A 

from infinity 
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Potential due to two charges 
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Potential due to n point charges 

Continue adding charges 
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Potential as point charges become 

infinite 

Volume of charge 

Line of charge 

Surface of charge 
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Example 

Find V on the z 

axis for a uniform 

line charge L in 

the form of a ring 
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Conservative field 

No work is done (energy is conserved) around a 

closed path 

KVL is an application of this 



4.6 

Potential gradient Relationship between 

potential and electric field intensity 

Two characteristics of relationship: 

 

1. The magnitude of the electric field intensity is given 

by the maximum value of the rate of change of potential 

with distance 

 

2. This maximum value is obtained when the direction 

of E is opposite to the direction in which the potential is 

increasing the most rapidly 

V = -  




dE dL



Gradient 

• The gradient of a scalar is a vector 

 

• The gradient shows the maximum space rate of change 

of a scalar quantity and the direction in which the 

maximum occurs 

 

• The operation on V by which -E is obtained 

E = - grad V = - V 



Gradients in different coordinate 

systems 

The following equations are found on page 104 and 

inside the back cover of the text: 

Cartesian 

Cylindrical 

Spherical 
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 a 



Example 4.3 

Given the potential field, V = 2x2y - 5z, and a point P(-4, 

3, 6), find the following: potential V, electric field intensity 

E 

 

potential  VP = 2(-4)2(3) - 5(6) = 66 V 

 

electric field intensity - use gradient operation 

    

   E = -4xyax - 2x2ay + 5az 

 

   EP = 48ax - 32ay + 5az 



Dipole 

The name given to two point charges of equal magnitude 

and opposite sign, separated by a distance which is small 

compared to the distance to the point P, at which we want 

to know the electric and potential fields 



Potential 

To approximate the 

potential of a dipole, 

assume R1 and R2 are 

parallel since the point 

P is very distant 
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Dipole moment 

p = Q*d 

The dipole moment is assigned the symbol p and is 

equal to the product of charge and separation 

The dipole moment expression simplifies the 

potential field equation 



Example 

An electric dipole located at the origin in free space 

has a moment p = 3*ax - 2*ay + az nC*m.  Find V at 

the points (2, 3, 4) and (2.5, 30°, 40°). 
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into rectangular 

coordinates
Pspherical

2.5

30


180


40


180




















Prectangular

2.5sin 30


180










 cos 40


180












2.5sin 30


180










 sin 40


180












2.5cos 30


180






























 Prectangular

0.958

0.803

2.165













V
p

4  0 Prectangular 2

Prectangular

Prectangular
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Potential energy 

Bringing a positive charge from infinity into the field 

of another positive charge requires work.  The work is 

done by the external source that moves the charge into 

position.  If the source released its hold on the charge, 

the charge would accelerate, turning its potential 

energy into kinetic energy. 

The potential energy of a system is found by finding 

the work done by an external source in positioning the 

charge. 



Empty universe 

Positioning the first charge, Q1, requires no work (no field present) 

Positioning more charges does take work 

Total positioning work = potential energy of field = WE = 

Q2V2,1 + Q3V3,1 + Q3V3,2 + Q4V4,1 + Q4V4,2 + Q4V4,3 + ... 

Manipulate this expression to get 

WE = 0.5(Q1V 1 + Q2V2 + Q3V3 + …) 



Where is energy stored? 

The location of potential energy cannot be precisely 

pinned down in terms of physical location - in the 

molecules of the pencil, the gravitational field, etc? 

So where is the energy in a capacitor stored? 

Electromagnetic theory makes it easy to believe that 

the energy is stored in the field itself 


