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Vector Analysis

Scalars and Vectors

Scalar Fields (temperature)

Vector Fields (gravitational, magnetic)

Vector Algebra



There are three co-ordinate systems

1. Cartesian or rectangular co-ordinate system

2. Cylindrical co-ordinate System

3. Spherical co-ordinate System



The Cartesian Coordinate System : vertices are x,y,z 



Vector Components and Unit Vectors



Constant planes



Contd…

Distance vector  - dl

Differential surfaces -

dv =



The Dot product

A.B = |A||B| cos qAB

B in the direction of A

You need to normalize a 

before the dot product.



The Cross Product
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Circular Cylindrical Coordinate System



Differential volume







Circular Cylindrical Coordinate 

System
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Spherical co-ordinate system



The Spherical Coordinate System
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Sperical Co-ordinate System





The Spherical Coordinate System

x r sin q  cos  

y r sin q sin   
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The Experimental Law of Coulomb
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Electric Field Intensity
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Electric Field Intensity

E r( )

1

n

m

Qm

4  0 r rm 2

am




Field of a Line Charge
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Field of a Line Charge (neglect symmetry)
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Field of a Line Charge (neglect symmetry)



Field of a Sheet of Charge
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This is a very interesting result.  The field is constant in magnitude and 

direction.  It is as strong a million miles away from the sheet as it is right of the 

surface.



Streamlines and Sketches of Fields

Cross-sectional 

view of the line 

charge.

Lengths 

proportional to the 

magnitudes of E 

and pointing in the 

direction of E



Streamlines and Sketches of Fields
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3.1 Electric Flux Density

• Faraday’s Experiment



Electric Flux Density, D

• Units:  C/m2

• Magnitude:  Number of flux lines (coulombs) 

crossing a surface normal to the lines divided 

by the surface area.

• Direction:  Direction of flux lines (same 

direction as E).

• For a point charge: 

• For a general charge distribution, 



D3.1

Given a 60-uC point charge located at the origin, find 

the total electric flux passing through:

(a) That portion of the sphere r = 26 cm bounded by

0 < theta < Pi/2 and 0 < phi < Pi/2



Gauss’s Law

• “The electric flux passing through any 

closed surface is equal to the total 

charge enclosed by that surface.”



• The integration is performed over a 

closed surface, i.e. gaussian surface.



• We can check Gauss’s law with a point 

charge example.



Symmetrical Charge Distributions

• Gauss’s law is useful under two conditions.

1. DS is everywhere either normal or tangential to the 
closed surface, so that DS

.dS becomes either DS

dS or zero, respectively.

1. On that portion of the closed surface for which 
DS

.dS is not zero, DS = constant.



Gauss’s law simplifies the task of finding D near an infinite line 

charge.



Infinite coaxial cable:



Differential Volume Element

• If we take a small enough closed surface, 

then D is almost constant over the surface.





Divergence

Divergence is the outflow of flux from a 
small closed surface area (per unit 
volume) as volume shrinks to zero.



-Water leaving a bathtub

-Closed surface (water itself) is essentially incompressible

-Net outflow is zero

-Air leaving a punctured tire

-Divergence is positive, as closed surface (tire) exhibits net outflow



Mathematical definition of divergence
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Cylindrical

Spherical
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Divergence in Other Coordinate Systems



4.1 Energy to move a point charge 

through a Field

• Force on Q due to an electric field

• Differential work done by an external 

source moving Q

• Work required to move a charge a finite 

distance

F E QE

dW QE dL



Line Integral

• Work expression without using vectors

EL is the component of E in the dL direction

• Uniform electric field density
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Potential

• Measure potential difference between a 

point and something which has zero 

potential “ground”
VAB VA VB



Potential Field of a Point Charge

• Let V=0 at infinity 

• Equipotential surface:

– A surface composed of all points having 

the same potential



Potential due to n point 

charges
Continue adding charges
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Potential as point charges 

become infinite
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Potential as point charges 

become infinite
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Gradients in different 

coordinate systems

The following equations are found on page 104 and inside the back 

cover of the text:

Cartesian

Cylindrical

Spherical
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Chapter 7 – Poisson’s and Laplace Equations

A useful approach to the calculation of electric potentials

Relates potential to the charge density. 

The electric field is related to the charge density by the divergence 

relationship

The electric field is related to the electric potential by a gradient 

relationship

Therefore the potential is related to the charge density by Poisson's equation

In a charge-free region of space, this becomes Laplace's equation



57

Magnetic Field Sources

Magnetic fields are produced by electric currents, which can be macroscopic 

currents in wires, or microscopic currents associated with electrons in atomic 

orbits.



Maxwell’s equations
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Maxwell’s equations for TVF




