CBCS Scheme

	- 17		1			
USN)				

15EC36

Third Semester B.E. Degree Examination, Dec.2016/Jan.2017 Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Point charges of 50 nano-coulomb each are located at A(1, 0, 0), B(-1, 0, 0), C(0, 1, 0) and D(0, -1, 0) in free space. Find the total force on the charge at A.

 (08 Marks)
 - b. Define electric field intensity and electric flux density.

(04 Marks)

c. A uniform line charge of infinite length with $\rho_L = 40$ nc/m lies along zaxis. Find \bar{E} at (-2, 2, 8) in air. (04 Marks)

OR

- 2 a. Derive the expression for electric field intensity due to infinite line charge. (08 Marks)
 - b. Two particles having charges 2nano-coulomb and 5nano-coulomb are spaced 80 cm apart. Determine the electric field intensity at point "A" situated at a distance of 0.5 m from each of the two particles. Assume dielectric constant of 5. (08 Marks)

Module-2

3 a. Evaluate both sides of the divergence theorem for the field $\vec{D} = 2xy \hat{a} x + x^2 \hat{a} yc/m^2$ and the rectangular parallel piped formed by the planes x = 0 and 1, y = 0 and 2, and z = 0 and 3.

(08 Marks)

b. Derive the expression for equation of continuity.

(06 Marks)

c. Give the vector density $J = 10\rho^2 z \,\hat{a} \,\rho - 4\rho \cos^2 \phi \,\hat{a} \,\rho$ mA/m². Determine the total current flowing outward through the circular band. $\rho = 3$, $0 < \phi < 2\pi$, 2 < z < 2.8. (02 Marks)

OR

4 a. State and explain Gauss law in point form.

(05 Marks)

- b. Given the electric field $\bar{E} = 2x \hat{a}_x 4y \hat{a}_y$ v/m. Find the work done in moving a point charge +2C from (2, 0, 0,) to (0, 0, 0) and then form (0, 0, 0) to (0, 2, 0). (05 Marks)
- c. A potential field in free space is expressed as $V = \frac{60 \sin \theta}{r^2} v$. Find the electric flux density at the point (3, 60°, 25°) in spherical co-ordinates. (06 Marks)

Module-3

5 a. State and explain uniqueness theorem.

(08 Marks)

b. Determine the magnetic field intensity H at point P(0.4, 0.3, 0), if the 8A current in a conductor inward from infinity to origin on the x axis and outward to infinity along y axis.
(08 Marks)

OR

- a. Find the potential and volume charge density at P(0.5, 1.5, 1)m in free space given the potential field V = 6ρφZ volts.
 (08 Marks)
 - b. Explain the concepts of scalar and vector magnetic potential.

(08 Marks)

Module-4

7 a. Derive an equation for the magnetic force between two differential current elements.

(06 Marks) H = 120 A/m

- b. Find the magnetization in a material where : i) $\mu = 1.8 \times 10^{-5}$ H/m and H = 120 A/m ii) $\mu_r = 22$. There are 8.3×10^{28} atom/m³ and each atom has a dipole moment of 4.5×10^{-27} A/m². iii) B = 300 μ T and $X_{on} = 15$. (06 Marks)
- c. A conductor 4m long lies along the y axis with a current of 10A in the \overline{ay} direction. Find the force on the conductor if the field in the region is $\overline{B} = 0.005 \overline{ax}$ Tesla. (04 Marks)

OR

- 8 a. Find the expression for force on differential current element moving in a steady magnetic field. Deduce the result to a straight conductor in a uniform magnetic field. (08 Marks)
 - b. For region 1, $\mu_1 = 4\mu H/m$ and for region 2, $\mu_2 = 6\mu H/m$. The regions are separated by z = 0 plane. The surface current density at the boundary is K = 100ax A/m. Find B_2 if

$$\overline{B}_1 = 2\hat{a}x - 3\hat{a}y + \hat{a}z$$
 militesla for $z > 0$.

Module-5
 a. For the given medium ε = 4 × 10⁻⁹ F/m and σ = 0. Find 'K' so that the following pair of fields satisfy Maxwell's equation:

$$\overline{E} = (20y - kt)\overline{ax} \sqrt[6]{v/m}$$

(08 Marks)

(08 Marks)

- $\overline{H} = (y + 2 \times 10^6 \text{ t}) \overline{az} \text{ A/m}$
- b. A plane wave of 16 GHz frequency and E = 10 v/m propagates through the body of salt water having constants ε = 100, μ_r = 1 and σ = 100 S/m. Determine attenuation constant, phase shift, phase velocity and intrinsic impedance of the medium and depth of penetration. (08 Marks)

OR

- 10 a. State and explain Poynthing theorem. (08 Marks)
 - b. Find the amplitude of displacement current density in the free space within a large power distribution transformer where $\overline{H} = 10^6 \cos(377t + 1.2566 \times 10^{-6} z) \hat{ay}$ A/m. (05 Marks)
 - c. The depth of penetration in a conducting medium is 0.1m and the frequency of the electromagnetic wave is 1 MHz. Find the conductivity of the conducting medium. (03 Marks)
