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Module 5
Z-Transforms 

7.1 Introduction to z-transform:

The z-transform is a transform for sequences. Just like the Laplace transform takes a function of t and replaces it with another function of an auxiliary variable s. The z-transform takes a sequence and replaces it with a function of an auxiliary variable, z. The reason for doing this is that it makes difference equations easier to solve, again, this is very like what happens with the Laplace transform, where taking the Laplace transform makes it easier to solve differential equations. A difference equation is an equation which tells you what the k+2th term in a sequence is in terms of the k+1th and kth terms, for example. Difference equations arise in numerical treatments of differential equations, in discrete time sampling and when studying systems that are intrinsically discrete, such as population models in ecology and epidemiology and mathematical modelling of mylinated nerves.
Generalizes the complex sinusoidal representations of DTFT to more generalized representation using complex exponential signals
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· It is the discrete time counterpart of Laplace transform

The z-Plane

· Complex number z = re j is represented as a location in a complex plane (z-plane)

7.2 The z-transform:

· Let z = re j be a complex number with magnituder and angle  .
· The signal x[n] = zn is a complex exponential and x[n] = rn cos(n)+ jrn sin(n)
· The real part of x[n] is exponentially damped cosine
· The imaginary part of x[n] is exponentially damped sine
· Apply x[n] to an LTI system with impulse response h[n], Then

y[n] = H{x[n]} = h[n] ∗ x[n]
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You can see that when you do the z-transform it sums up all the sequence, and so the individual terms affect the dependence on z, but the resulting function is just a function of z, it has no k in it. It will become clearer later why we might do this.

· This has the form of an eigen relation, where zn is the eigen function and H(z) is the eigen value.
· The action of an LTI system is equivalent to multiplication of the input by the complex number H(z).
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Example 1:
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Properties of Region of Convergence:
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Properties of Z – transform:
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Inverse Z transform:

Three different methods are:
1. Partial fraction method
2. Power series method
3. Long division method 4.
Partial fraction method:
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Power series expansion method



Long division method:
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Recommended Questions

1. Using appropriate propertes find the Z-transform of x(n)=n2(1/3)nu(n-2)

2. Determine the inverse Z- transform of X(z)=1/(2-z-1 +2 z-2) by long division method

3. Determine all possible signals of x(n) associated with Z- transform X(z)= (1/4) z-1 / [1-(1/2) z-1 ][ 1-(1/4) z-1 ]


4. State and prove time reversal property. Find value theorem of Z-transform. Using suitable properties, find the Z-transform of the sequences
i)	(n-2)(1/3)n u(n-2)
ii)	(n+1)(1/2)n+1 Cos w0(n+1) u(n+1)


5. Consider a system whose difference equation is y(n - 1) + 2y(n) = x(n)
i) Determine the zero-input response of this system, if y( -1) = 2.
ii) Determine the zero state response of the system to the input x(n)=(1I4t u(n).
iii) What is the frequency response of this system
Find the unit impulse response of this system.

8.1 Transform analysis of LTI systems:
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Transfer function:
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D1FT and the z-transform

e Put the value of zin the transform then we get
H(re/?) = > hln)(ref)—"
e

= 3 (e

N=—co

o We see that H(re/) corresponds to DTET of A[n]r "

e The inverse DTFT of H(re/**) must be Alnr—"
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e Ve can write

o LT oy jon
h[n)r 721!/4H(19] ) 1dQ)

The ztransform contd..

o Multiplying A[n]r—" with r” gives
Iﬂ us 0 0
Hil=L / H(re/?) 40
2n.)-n

1

hln] = ..

H /) (1e/?) 142
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e We can convert this equation into an integral over zby putting reft=z

e Integration is over Q, we may consider r as a constant




image9.png
e Ve have
dz= jre/dQ = jzdQ)
1

dQ=-7"'dz
j
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e Consider limits on integral

- Qvaries from —mto®
— ztraverses a circle of radius r in a counterclockwise direction

§H(z)2" 'dz

where § is integration around the circle of radius |z| = r in a counter

o We can write A[n] as h[n] = an

clockwise direction
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e lhe z-transform of any signal x|n| is

X(2)= i X[z "

o
o The inverse z-transform of is
] = f X(2)7 \dz
T 2mj
o Inverse z-transform expresses x[11] as a weighted superposition of com-
plex exponentials z”
o The weights are (%)X(Z)Z’ldz

e This requires the knowledge of complex variable theory
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Convergence
o Existence of z-transform: exists only if ¥;7_ ., x{n]z~" converges

e Necessary condition: absolute summability of x{n]z~", since |x[n]z 7| =

|x[n)r~"|, the condition is

i X[ r™" < e
e

e The range r for which the condition is satisfied is called the range of

convergence (ROC) of the z-transform
e ROC is very important in analyzing the system stability and behavior

e We may get identical z-ransform for two different signals and only

ROC differentiates the two signals
o The z-transform exists for signals that do not have DTFT.
o existence of DTFT: absolute summability of x{n|

e by limiting restricted values for r we can ensure that x[n]r~" is abso-

lutely summable even though x[n] is not

e Consider an example: the DTFT of x[n] = ou[n] does not exists for

lo >1
o If > o, then r~" decays faster than x[n] grows

e Signal x[n|r~" is absolutely summable and z-fransform exists
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Im{z}

z-plane

Figure 1.31: DTFT and ztransform
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The ~Plane and D1F 1

o If x{n] is absolutely summable, then DTFT is obtained from the z-
transform by setting r =1 (z= /%), ie. X(e/2) = X(2)|,_om as shown

in Figure ??
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Poles and Zeros

e Commonly encountered form of the ztransform is the ratio of two

polynomials in 7!

byt biz by ™

b . il e B il it/ R
2 aytaiz+...+byz N

o It is useful to rewrite X(z) as product of terms involving roots of the

numerator and denominator polynomials

. Bﬂﬁ’il(l 761(2’1)

X9 =1 1=az )

where b = bo/ag
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Poles and Zeros contd..
o Zeros: The ¢y are the roots of numerator polynomials

e Poles: The dj are the roots of denominator polynomials

e Locations of zeros and poles are denoted by "()" and " x” respectively
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o lhe ztransform and DIFT of x|n] = {1,2,—1,1} starting at n= —1
o X(2) =35 oKz "=3% oz "=z4+2-71422

o X(e/?) = X(2)|,epm =242 — oSy o 20

e The ztransform and DTFT of x[n] = {1,2,—1,1} starting at n = —1
o X(A) =30 Az =32  ixnlz "= z42=7 1 47?

o X(e/) = X(2)| _o=eft 42— o S22
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Example 2

o Find the ztransform of x[n] = o"u[n], Depict the ROC and the poles

and zeros

e Solution: X(2) =¥ . o"ulnz " =37 (%)"
The series converges if |2| > |of
X@ =it =7 >l
Hence pole at z= 0. and a zero at z=0

e The ROC is
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e ROC is related to characteristics of x|n|
e ROC can be identified from X(z) and limited knowledge of x[n]

o The relationship between ROC and characteristics of the x{n] is used to

find inverse z-transform

Property 1

ROC can not contain any poles
o ROC is the set of all z for which ztransform converges
o X(z) must be finite for all z

o If pis a pole, then |H(p)| = o and ztransform does not converge at

the pole
e Pole can not lie in the ROC

Property 2
The ROC for a finite duration signal includes entire z-plane except z= 0

or/and z = oo
o Let x{n] be nonzero on the interval n; < n < m. The ztransform is
m

X(2)= Y Anjz"

n=m

The ROC for a finite duration signal includes entire z-plane except z= 0

or/and 7 = oo
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o If asignal is causal (1 > 0) then X(2) will have a term containing z ™!,

hence ROC can not include z=0
o If asignal is non-causal (m < 0) then X(z) will have a term containing
powers of z hence ROC can not include z= o

The ROC for a finite duration signal includes entire z-plane except z= 0

or/and z = oo

e If n, <0 then the ROC will include z= 0
e If n; > 0 then the ROC will include z = o

o This shows the only signal whose ROC is entire z-plane is x{n] = ¢d][n],

where c is a constant

Finite duration signals

o The condition for convergence is [X(z)| <

[X@)l=1 X Az

N=—co

< 3 sl

magnitude of sum of complex numbers < sum of individual magni-

tudes

o Magnitude of the product is equal to product of the magnitudes

3 e = 5, Itlle

s -
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e split the sum into negative and positive time parts

o Let

-1
L@= 3 lld™"

n=—co

L) = iomanr"
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e Note that X(z) =/ (z) + L (2). If both /_(z) and [, (z) are finite, then
X(2) if finite

o If x[n] is bounded for smallest +ve constants A_, A, r_ and ry such
that
[x[n]| <A_(r-)", n<0

| < Ae(r)”, 020

o The signal that satisfies above two bounds grows no faster than ()"

for +venand (r_)" for —ven

o If the n< 0 bound is satisfied then

—1
LO<A Y ()l

N=—co

43 (rea 3y
k=1 =

\Z\

e Sum converges if |z| < r_
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e [f the n> 0 bound is satistied then

L(=A, 26(14)"\2\7"

*A+2(|Z|

e Sum converges if 2| > ry

o Ifr. < |z < r_,thenboth I (z)and /_(z) converge and X(z) converges
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- Linearity

- Time reversal

- Time shift

- Multiplication by o
- Convolution

- Differentiation in the z-domain
T'he z-transform

» The z-transform of any signal x[n] is

X(2) = i X[z "

N=—co

» The inverse z-transform of X(z) is

x[n] = %j%)((z)z"’ldz
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e Ve assume that
X <% X(z), withROC Ry
<= Y(2), withROC R,

o General form of the ROC is a ring in the z-plane, so the effect of an

operation on the ROC is described by the a change in the radii of ROC
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P1: Linearity

e The z-transform of a sum of signals is the sum of individual z-transforms
ax{n) + byln] <%~ aX(z) + bY(z),

with ROC at least RyN R,
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e [he ROC is the intersection of the individual ROCs, since the z-transform

of the sum is valid only when both converge
P1: Linearity

e The ROC can be larger than the intersection if one or more terms in

x[n] or y[n] cancel each other in the sum.
o Consider an example: x[n] = (%)"u[n] = (%)"u[fuf 1]

o We have x|n] <= X(2)
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PZ: Time reversal

e Time reversal or reflection corresponds to replacing z by z!. Hence,
if Ry is of the form a < |z < b then the ROC of the reflected signal is
a<l/|d <borl/b<|4<1/a

If xin = X(2), withROC R,

z 1 F: 1
Then x[—n] — X(;) with ROC z

Proof: Time reversal

o Let y{n = x[—n]
Y(2)=Sg Az "
Let /= —n, then

Y(2) =32 __xZ
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Y(2) =3 _.All(3)™!
Y(2=X(3)

z

P3: Time shift

e Time shift of n, in the time domain corresponds to multiplication of

z ™ in the z-domain

If xin = X(2), withROC R,

Then x[n—ny| —— 7z "X(z),

with ROC Ry except z=0or |z] =
P3: Time shift, 1, > 0
e Multiplication by z~™ introduces a pole of order n, at z=0
e The ROC can not include z= 0, even if Ry does include z= 0

o If X(2) has a zero of at least order 11, at z= 0 that cancels all of the

new poles then ROC can include z= 0
P3: Time shift, n, <0
e Multiplication by z~™ introduces n, poles at infinity

o If these poles are not canceled by zeros at infinity in X(z) then the ROC

of z7™ X (z) can not include |z| = o
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Proof: lime shift

o Let y{n| = x[n—n,)
Y(2) = S xin—niz "
Let /= n— n,, then
Y(2) = S5 il ()
V() =75 Al
Y(2) =z"X(2)




image34.jpeg
P4: Multiplication by o

e Let o be a complex number
If xin «%~ X(2), withROC Ry

Then ox(n] <2 X(g). with ROC |oR,
o |0|Ry indicates that the ROC boundaries are multiplied by |ot|.

o If Ryis a < |z < bthen the new ROC is |ot]a < |z < |o|b

o If X(2) contains a pole d, ie. the factor (z— d) is in the denominator
then X(Z) has a factor (z— a.d) in the denominator and thus a pole at
od.

o If X(2) contains a zero ¢, then X(Z) has a zero at o.c

o This indicates that the poles and zeros of X(z) have their radii changed

by |of

e Their angles are changed by arg{o}
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Re{z}

Im({
arg(c} + argf)

=<l

o || arg{d} +argle)

Refz}

2-plane

(b)y
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Proof: Convolution

o Let c[n] = x[n] = y[n]

Cz2) = i‘ (x{n]* y[n))z"

C2= Y, (Y xk+yn—K)z"

f=—o0 f=—oo
€)= 3, A sn-K)z )zt

k=—co0
N —
Y(2)

C@)=( ¥ Az )Y (2

k=—oo
X(2)
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e If |0 = 1 then the radius is unchanged and if o is +ve real number then

the angle is unchanged

Proof: Multiplication by o
o Let y{n = o"x[n]

Y(z)= i o"x[n)z""
o= 3 A

y A—

)—n
o) =X2)

P5: Convolution

e Convolution in time domain corresponds to multiplication in the z
domainIf xn] <= X(2z), withROC RIf y[n] <= Y(z), withROC R,
Then x{n] #y[n] <= X(2)Y(2),

with ROC at least RyN R,

e Similar to linearity the ROC may be larger than the intersection of Ry
and R,
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P6: Differentiation in the zdomain

e Multiplication by n in the time domain corresponds to differentiation

with respect to zand multiplication of the result by —zin the z-domain
If x{n] <% X(2), withROC R, Then nx[n] <> 721%)((2) with ROC Ry
e ROC remains unchanged

Proof: Differentiation in the z domain

o We know
X@2)= Y Anz"

N 'Y
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Differentiate with respect to z

e Multiply with —z

720%/\’(2) = Ipiwf(fn)x[n]z 11y
7zdiZX (2) = ng‘wnx[n] e
d

Then nx[n| Hy 7ZIT7X (z)  with ROC R,
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Example 1

Use the ztransform properties to determine the ztransform
o A = ()"l * (§)~"ul 1]

e Solution is:

alr] = ()] 2 A = b 1> §

b[n] = na[n] <% B(z) = 7ZdZA(Z —zL %rl) 2| > 1
b[n] = na[n] <% B(z) = +1 Y

dn) = (%) uln] < 7)= , 4> 4

H
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Use the ztranstorm properties to determine the z-transform

(55 uln]) = (3)~1u[—n]

o X1
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din] = c[—n] = (3) " "u[-n] — D(2) = C(3) = 1
x[n]f(b[n]*d[n]y—»X(z) B#D(2), 1< |z| <4
] = (0l ) 2 b f<laf <4

xn] = (b[n]  d[n]) <= m;;ﬁ 3<ld<4

|7 <4
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Example 2

Use the ztransform properties to determine the ztransform
o x{n| = a"cos(Qon)u[n], where ais real and +ve

e Solution is:
b[n] = a"u[n] <%= B(2) = 17;‘71 ,|ld>a
Put cos(Q,n) = %ejQO"Jr %97190", 50 we get
x[n] = Se/2np[ ] 4 Lo~ 20np[ ]
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Use the ztranstorm properties to determine the z-transform
o x{n| = a"cos(Q,n)u[n], where ais real and +ve

e Solution continued
A <= X(z) = lB(e/ﬂoz) +1Be ), |4 >a
z 1 1
] X(2) = j1gmez +21 T |21>a

N
X[H] = X(Z) 1 1—ae/oz 141, aev/ﬂa )
(

(1—aefozT)(1—ae oz T)
& (Z) _ 1—acos(Q,)z-
— 1—2acos(Q,)z 1+a%z 2

x[n] |2l > a
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e In case of L1I systems, commonly encountered form of z-transform is

B
X(z) = %

bt biz by ™

A= ataizl+...+ayz N
Usually M < N

o If M > N then use long division method and express X(z) in the form

M-N
Xo=Y fiz* +%
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z-plane

Re{z}
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where B(z) now has the order one less than the denominator polyno-

mial and use partial fraction method to find ztransform

o The inverse z-transform of the terms in the summation are obtained

from the transform pair and time shift property
1% §[n)

L

7% 2. 8[n—ny)

o If X(z) is expressed as ratio of polynomials in z instead of z~! then

convert into the polynomial of z~!

e Convert the denominator into product of first-order terms

- bo+biz 4. +byz ™

2 a1 (1—dez 1)

where dj are the poles of X(z)

For distinct poles

o For all distinct poles, the X(z) can be written as

N Ay

Xo)=) ——

IZ‘I (1 — dkfl)

e Depending on ROC, the inverse z-transform associated with each term
is then determined by using the appropriate transform pair

o We get

Ay

n 2, R
A(dy)"uln] — T thD
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with ROC  z> di OR
Ay

1— dk271 !

with ROC  z < dy

—Al(d) u[-n—1]

o For each term the relationship between the ROC associated with X(z)
and each pole determines whether the right-sided or left sided inverse

transform is selected
For Repeated poles

o If pole d; is repeated r times, then there are r terms in the partial-

fraction expansion associated with that pole

o Here also, the ROC of X(z) determines whether the right or left sided

inverse transform is chosen.

2 A

A(n+1)4..(11+mf 1)
(1—dizH)ym’

(m—1)!

(dy)"uln) with ROC|Z > d;

o If the ROC is of the form |z| < dj, the left-sided inverse z-transform is

chosen, ie.
D). (atm-1) g A ; '
A7(1117 0l (d)"u[-n—1) = —dz 1) prE=T with ROC|z| < d;
Deciding ROC

e The ROC of X(2) is the intersection of the ROCs associated with the

individual terms in the partial fraction expansion.
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e In order to chose the correct inverse z-transform, we must infer the
ROC of each term from the ROC of X(2).

e By comparing the location of each pole with the ROC of X(z).

o Chose the right sided inverse transform: if the ROC of X(2) has the

radius greater than that of the pole associated with the given term

e Chose the left sided inverse transform: if the ROC of X(z) has the

radius less than that of the pole associated with the given term
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Partial fraction method
o It can be applied to complex valued poles
o Generally the expansion coefficients are complex valued

o If the coefficients in X(z) are real valued, then the expansion coeffi-
cients corresponding to complex conjugate poles will be complex con-

jugate of each other
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e Here we use information other than ROC to get unique inverse trans-

form

o We can use causality, stability and existence of DTFT

o If the signal is known to be causal then right sided inverse transform is

chosen
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e If the signal is stable, then t is absolutely summable and has D1FT

o Stability is equivalent to existence of DTFT, the ROC includes the unit

circle in the z-plane, ie. |z) = 1

o The inverse z-transform is determined by comparing the poles and the

unit circle

o Ifthe pole is inside the unit circle then the right-sided inverse ztransform

is chosen

o Ifthe pole is outside the unit circle then the left-sided inverse z-transform

is chosen
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L

o Express X(z) as a power series in z ! or zas given in z-transform equa-

tion
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e lhe values of the signal x|n| are then given by coefficient associated

with z™ "

e Main disadvantage: limited to one sided signals
e Signals with ROCs of the form |z > aor 7] < a

o If the ROC is |z| > a, then express X(2) as a power series in z ! and

we get right sided signal

o If the ROC is |z < a, then express X(z) as a power series in zand we

get left sided signal
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e Iind the ztransform of

24271 1

X(2) = WithROC |2 > >

_11
L—3Z;

e Solution is: use long division method to write X(z) as a power series

in z~!, since ROC indicates that x{n] is right sided sequence

o We get

X(2) = 2+22’1+Z’2+%Z’3+.,,

e Compare with ztransform

X2 =Y Anz"

=
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e We get
x{n] = 28[n] 4 28[n— 1]+ 8[n—2]
1

+28[1173]+...

o If we change the ROC to |z] < % then expand X(z) as a power series

in z using long division method




image2.jpeg




image56.jpeg
e We get
X(2)=—-2-82-162—-327+...

o We can write x{n] as
X[n] = —28[n] — 88[n+1] — 163[n+ 2]

—328[n+3]+...
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e Iind the ztransform of

= & with ROC all Zexcept |z] = oo

e Solution is: use power series expansion for ? and is given by

o
&= —
2

o We can write X(z) as

2k
2()
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X@2=Y B
k=0
o We can write x{n] as
0 n>0 ornis odd
xn) = i

, otherwise
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e We have defined the transfer function as the z-transform of the impulse

response of an LTI system

H(z) = i hKz ¥

k=—oo
o Then we have y[n] = x{n] « h{n] and Y(z) = X(2)H(z2)
o This is another method of representing the system

e The transfer function can be written as

Y(z)

H(z)= X0

e This is true for all zin the ROCs of X(z) and Y(z) for which X(z) in
nonzero
e The impulse response is the ztransform of the transfer function

e We need to know ROC in order to uniquely find the impulse response
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e If ROC is unknown, then we must know other characteristics such as

stability or causality in order to uniquely find the impulse response

System identification

e Finding a system description by using input and output is known as

system identification

o ExI: find the system, if the input is x{n] = (—1//3)"u[n] and the out is

yin] = 3(=1)"u[n] + (1/3)"u[n]|
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and write H(z) as

2
+

H(Z>:1+[1 17( -

wl—| B

with ROC 2] > 1

e Impulse response x[n] is given by

hln = 2(—1)"u[n) +2(1/3)"u[n




image62.jpeg
Relation between transfer function and difference equation

o The transfer can be obtained directly from the difference-equation de-

scription of an LTI system

e We know that

N M
Y apln—K =Y bxin—k
k=0 k=0

e We know that the transfer function H(z) is an eigen value of the system
associated with the eigen function 27, ie. if x{n] = 2" then the output of
an LTI system y[n] = Z"H(z)

o Put x[n— k] = 2" * and y[n— k] = Z"¥H(2) in the difference equation,
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e Solution: Find the z-transform of input and output. Use X(z) and Y(z2)
to find H(z), then find h(n) using the inverse z-transform

1 1
—_ ith ROC =
(1+(%>T1> witl \z\>3

Xlg =
3 1

Y(z):m+m withROC |2 > 1

o We can write Y(2) as

4

W= (1+zH(1-HzY’

with ROC |2 > 1

o We know H(z) = Y(2)/X(z2), so we get

41+

M T na- e

withROC |7 > 1

e We need to find inverse z-transform to find x{n|, so use partial fraction




image64.jpeg
we get

N M
7y az *H(z) =7 > bz ¥
k=0 k=0

e We can solve for H(z)

M 43
_ Zkzo bz %

H(z)==F7——
) SHoar

o The transfer function described by a difference equation is a ratio of

polynomials in z~! and is termed as a rational transfer function.

o The coefficient of z ¥ in the numerator polynomial is the coefficient

associated with x[n— ] in the difference equation

e The coefficient of 2 in the denominator polynomial is the coefficient

associated with y[n— ] in the difference equation

o This relation allows us to find the transfer function and also find the

difference equation description for a system, given a rational function
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e [he poles and zeros of a rational function offer much insight into L11
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system characteristics

o The transfer function can be expressed in pole-zero form by factoring

the numerator and denominator polynomial

o If c; and dj are zeros and poles of the system respectively and b =

bo/ap is the gain factor, then

B Bl‘[ﬁ’il(l = Ckz’l)
M, (1 —dez 1)

H(z)
e This form assumes there are no poles and zeros at z= 0
e The p' order pole at z= 0 occurs when by = by = ... =b, 1 =0
e The /™ order zero at z=0 occurs when ag = a; = ... =a;_; =0

e Then we can write H(z) as

bz P HkM;lp(l —ciz )
L = = TP

Lo (I —dizh)
where b= bp/a;

e In the example we had first order pole at z=0

e The poles, zeros and gain factor b uniquely determine the transfer func-

tion
e This is another description for input-output behavior of the system

e The poles are the roots of characteristic equation
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o If
xn=2"

we get

M= Y WK
Y —

) =2" i hKz*

P —
o The ztransform is defined as
Hz= Y nKz*
Y —

we may write as

H(Z) = H(2)Z"




image5.jpeg
o If H(z) = |H(2)|e/* then the system output is
sl = |H(z) |2
o Using z= re/* we get
M = |H(re/®) |7 cos(Qn-+ o(re®)+
JIH(re™ )| M sin(Qn+ o(re/?)
e Rewriting x{n]
x{n] = 2" = r"cos(Qn) + jr"sin(Qn)

o If we compare x{n] and y[n], we see that the system modifies

— the amplitude of the input by |H(re/?)| and
— shifts the phase by &(re/?)




