SJP N Trust's
ECE Dept.

Hirasugar Institute of Technology, Nidasoshi. os

— — — H YO\ - T ,—:,;VSem
Approved by AICTE, Recognized by Govt. of Karnatakaand Affiliated to VTU Belagavi 2018-19

Department of Electronics & Communication Engg.

Course : Operating Systems -15EC553. Sem.: 51" (2018-19 ODD)

Course Coordinator:

Prof. Nyamatulla M Patel

Operating Systems-15EC553

Module-02
Processes & Threads

Introduction

Processes and Programs
Implementing Processes

Threads
Case Studies of Processes and Threads

Processes and Programs

What Is a Process?

Relationships between Processes and Programs
Child Processes

Concurrency and Parallelism

What Is a Process?

Program P
file info;
int item; Address space
open (info, "read"); o of P
while not 1into —
Instructions,

end-of-file (info)

read (info, item); data area and .
. CPLI E:’ stack of P Printer

print ...;
astop;

(a) (b)

Figure 5.1 A program and an abstract view of its execution.

Definition 5.1 Process An execution of a program using resources allocated
to it.

A process comprises six components:
— (id, code, data, stack, resources, CPU state)

Relationships between Processes and
Programs

* A program is a set of functions and procedures

— Functions may be separate processes, or they may
constitute the code part of a single process

Table 5.1 Relationships between Processes and Programs

Relationship Examples

A single execution of a sequential program.

One-to-one
Many simultaneous executions of a program,

Many-to-one
execution of a concurrent program.

Child Processes

* Kernel initiates an execution of a program by creating a
process for it

— Primary process may make system calls to create other
processes
* Child processes and parents create a process tree
* Typically, a process creates one or more child processes
and delegates some of its work to each

— Multitasking within an application

Child Processes (continued)

Table 5.2 Benefits of Child Processes

Benefit

Explanation

Computation speedup

Priority for critical
functions

Guarding a parent process
against errors

Actions that the primary process of an
application would have performed sequentially if
it did not create child processes, would be
performed concurrently when it creates child
processes. It may reduce the duration, i.e.,
running time, of the application.

A child process that performs a critical function
may be assigned a high priority; it may help to
meet the real-time requirements of an
application.

The kernel aborts a child process if an error
arises during its operation. The parent process is
not affected by the error; it may be able to
perform a recovery action.

Example: Child Processes in a
Real-Time Application

register

buffer copy-
_area, gt

X record_ -
sample | — T >
~

house-)
keeping
copy_ record_ housekeen: —
sample sample ousekeeping
Memory
(a) (b)

Figure 5.2 Real-time application of Section 3.7: (a) process tree; (b) processes.

Concurrency and Parallelism

Parallelism: quality of occurring at the same time

— Two tasks are parallel if they are performed at the same
time
— Obtained by using multiple CPUs
e Asin a multiprocessor system

Concurrency is an illusion of parallelism

— Two tasks are concurrent if there is an illusion that they are
being performed in parallel whereas only one of them may
be performed at any time

— In an OS, obtained by interleaving operation of processes on
the CPU

Both concurrency and parallelism can provide better
throughput

Implementing Processes

* To OS, a process is a unit of computational work

— Kernel’s primary task is to control operation of processes to
provide effective utilization of the computer system

Process States and State Transitions

Definition 5.2 Process state The indicator that describes the nature of the
current activity of a process.

Table 5.3 Fundamental Process States

State Description

Running A CPU i1s currently executing instructions in the process code.

Blocked The process has to wait until a resource request made by it is granted,
or it wishes to wait until a specific event occurs.

Ready The process wishes to use the CPU to continue its operation;
however, it has not been dispatched.

Terminated The operation of the process, 1.e., the execution of the program

represented by it, has completed normally, or the OS has aborted it.

Process States and State Transitions
(continued)

« A state transition for a process is a change in its state

— Caused by the occurrence of some event such as the
start or end of an I/O operation

Completion

Running

Resource or

Dispatching :
- wait request

Preemption

New

Process

Blocked

Resource granted
or wait completed

Figure 5.4 Fundamental state transitions for a process.

Process States and State Transitions

(continued)

Table 5.4 Causes of Fundamental State Transitions for a Process

State transition

Description

ready — running
blocked — ready

running — ready

running — blocked

The process is dispatched. The CPU begins or resumes
execution of its instructions.
A request made by the process is granted or an event for
which it was waiting occurs.
The process is preempted because the kernel decides to
schedule some other process. This transition occurs either
because a higher-priority process becomes ready, or
because the time slice of the process elapses.
The process in operation makes a system call to indicate
that it wishes to wait until some resource request made by
it is granted, or until a specific event occurs in the system.
Five major causes of blocking are:

® Process requests an 1/O operation

® Process requests a resource

¢ Process wishes to wait for a specified interval of time

® Process waits for a message from another process

Process waits for some action by another process.

Table 5.4 Causes of Fundamental State Transitions for a Process

State transition Description

running —terminated Execution of the program is completed. Five primary
reasons for process termination are:

® Self-termination: The process in operation either
completes its task or realizes that it cannot operate
meaningfully and makes a “terminate me” system call.
Examples of the latter condition are incorrect or
inconsistent data, or inability to access data in a
desired manner, e.g., incorrect file access privileges.

® Termination by a parent: A process makes a
“terminate P;” system call to terminate a child process
P, when it finds that execution of the child process is
no longer necessary or meaningful.

® [Exceeding resource utilization: An OS may limit the
resources that a process may consume. A process
exceeding a resource limit would be aborted by the
kernel.

e Abnormal conditions during operation: The kernel
aborts a process if an abnormal condition arises due
to the instruction being executed, e.g., execution of an
invalid instruction, execution of a privileged
instruction, arithmetic conditions like overflow, or
memory protection violation.

® [ncorrect interaction with other processes: The kernel
may abort a process if it gets involved in a deadlock.

Example: Process State Transitions

* A system contains two processes P, and P,

Table 5.5 Process State Transitions in a Time-Sharing System

New states

Time Event Remarks Py P>
0 Pq 1s scheduled running ready
10 Py 1s preempted P> 1s scheduled ready running
20 P> 1s preempted P1 1s scheduled running ready
25 Py starts 1/O P> 1s scheduled blocked running
33 P> 1s preempted — blocked ready
P> 1s scheduled blocked running
45 P> starts 1/O — blocked blocked

Suspended Processes

* AKkernel needs additional states to describe processes
suspended due to swapping

Completion Termi-
L

Running

nated
Dispatching RC&.;OUI.CC ot
= wall request
Preemption
New Resource granted
—>| Ready |« .
process or wait completed
Swap-in Swap-out Swap-in

Resource granted / pjocked

or wait completed \Swapped

-l
-

Figure 5.5 Process states and state transitions using two swapped states.

Process Context and the Process Control
Block

» Kernel allocates resources to a process and schedules it
for use of the CPU

— The kernel’s view of a process is comprised of the process
context and the process control block

(B 2

Memory Resource File
info info pointers

Processid
- . - Process state
GPR contents

\Ccadc Data Stay PC value

Process context Process control block

(PCB)

Figure 5.6 Kernel's view of a process.

Table 5.6 Fields of the Process Control Block (PCB)

PCB field

Contents

Process 1d

Parent, child ids

Priority

Process state
PSW

GPRs

Event information

Signal information

PCB pointer

The unique 1d assigned to the process at its creation.

These ids are used for process synchronization, typically for
a process to check if a child process has terminated.

The priority 1s typically a numeric value. A process is
assigned a priority at its creation. The kernel may change
the priority dynamically depending on the nature of the
process (Whether CPU-bound or I/O-bound), its age, and
the resources consumed by it (typically CPU time).

The current state of the process.

This 1s a snapshot, i.e., an image, of the PSW when the
process last got blocked or was preempted. Loading this
snapshot back into the PSW would resume operation of the
process. (See Fig. 2.2 for fields of the PSW.)

Contents of the general-purpose registers when the process
last got blocked or was preempted.

For a process in the hlocked state, this field contains
information concerning the event for which the process is
waiting.

[nformation concerning locations of signal handlers (see
Section 5.2.6).

This field 1s used to form a list of PCBs for scheduling
purposes.

Context Save, Scheduling, and
Dispatching

 (Context save function:

— Saves CPU state in PCB, and saves information concerning
context

— Changes process state from running to ready
* Scheduling function:

— Uses process state information from PCBs to select a ready
process for execution and passes its id to dispatching
function

* Dispatching function:

— Sets up context of process, changes its state to running, and
loads saved CPU state from PCB into CPU

— Flushes address translation buffers used by MMU

Event Handling

* Events that occur during the operation of an OS:
1. Process creation event
2. Process termination event
3. Timer event
4. Resource request event
5. Resource release event

6. /0 initiation request event

Event Handling (continued)

* Events that occur during the operation of an OS
(continued):

[/0 completion event
Message send event
Message receive event
Signal send event
Signal receive event

A program interrupt

B 1 & o=

A hardware malfunction event

Event Handling (continued)

 When an event occurs, the kernel must find the process
whose state is affected by it

— OSs use various schemes to speed this up
» E.g., event control blocks (ECBs)

Event description

Process id

ECB pointer

Figure 5.7 Event control block (ECB).

PCB

ECBJ-
Pi
End of /O on d
P
blocked '
— >

Event information

P1 initiates 1/O operation on d

Figure 5.8 PCB-ECB interrelationship.

Resource or
message
request

/0
request

Create or
terminate
process

Timer
interrupt

I/0
completion

Send
message

Resource
release

Figure 5.9 Event handling actions of the kernel.

Sharing, Communication and
Synchronization Between Processes

Table 5.7 Four Kinds of Process Interaction

Kind of interaction

Description

Data sharing

Message passing
Synchronization

Signals

Shared data may become inconsistent if several processes modity
the data at the same time. Hence processes must interact to
decide when it is safe for a process to modify or use shared data.
Processes exchange information by sending messages to one
another.

To fulfill a common goal, processes must coordinate their
activities and perform their actions in a desired order.

A signal 1s used to convey occurrence of an exceptional situation
to a process.

Signals

* Asignalis used to notify an exceptional situation to a
process and enable it to attend to it immediately

— Situations and signal names/numbers defined in OS

CPU conditions like overflows

Conditions related to child processes
* Resource utilization

* Emergency communications from a user to a process

* Can be synchronous or asynchronous

* Handled by process-defined signal handler or OS provided
default handler

Example: Signal handling

Start address Kernel | -—. Kernel

register handler | |
gigl, shil) - - —

register handler (
gigl, shil)

) <- | <]
of Slgnﬂl — area P area I
[
vectors area X Dl
D Il
|
sigl [Shi | i sigl [shl i
[
PCB X |
. ! . I
Signal N Signal X
[
vectors] vectors X
4 = K g !
shl: N shl: -=
. F c ¥
[signalhandler} N {signalhandler} ¥
o : :
X !
| |
I
I
I
I
I
|

bl: --=

(a) (b)

Figure 5.10 Signal handling by process P;: (a) registering a signal handler; (b) invoking a
signal handler.

Threads

Definition 5.3 Thread An execution of a program that uses the resources of
d Process.

A thread is an alternative model of program execution

A process creates a thread through a system call

Thread operates within process context

Use of threads effectively splits the process state into two
parts

— Resource state remains with process
— CPU state is associated with thread

Switching between threads incurs less overhead than
switching between processes

Threads (continued)

Threads

4 ‘= E)

Memory Resource File
info info pointers . . .
ey I SEE

Context of Context of Thread control
process P; process P; blocks (TCBs)

(a) (b)

Figure 5.11 Threads in process P;: (a) concept; (b) implementation.

Table 5.8 Advantages of Threads over Processes

Advantage Explanation
Lower overhead of creation Thread state consists only of the state of a
and switching computation. Resource allocation state and

communication state are not a part of the thread
state, so creation of threads and switching between
them incurs a lower overhead.

More efficient communication Threads of a process can communicate with one
another through shared data, thus avoiding the
overhead of system calls for communication.

Simplification of design Use of threads can simplify design and coding of
applications that service requests concurrently.

Server Server Server
® R Qs

Pending /7~ / AN VR ~ Pending
requests ‘1_\.| |(_\| ‘/_\.| \—D—‘ \H‘ \E‘ \D—‘ \E‘ \E‘ \D—‘ requests
Clients Clients Clients

(a) (b) ()

Figure 5.12 Use of threads in structuring a server: (a) server using sequential code;
(b) multithreaded server; (c) server using a thread pool.

Coding for use of threads

 Use thread safe libraries to ensure
correctness of data sharing

 Signal handling: which thread should
handle a signal?

— Choice can be made by kernel or by application

* A synchronous signal should be handled by the
thread itself

* An asynchronous signal can be handled by any
thread of the process

— Ideally highest priority thread should handle it

POSIX Threads

 The ANSI/IEEE Portable Operating System Interface
(POSIX) standard defines pthreads API

— For use by C language programs

— Provides 60 routines that perform the following:
* Thread management
 Assistance for data sharing—mutual exclusion
 Assistance for synchronization—condition variables

— A pthread is created through the call

pthread_create(< data structure >,< attributes >,
< start routine >,< arguments >)

— Parent-child synchronization is through pthread_join
— A thread terminates pthread_exit call

#include <pthread.h>

#include <gtdio.h>

int size, buffer[100], no_of samples_in buffer;

int main()

{
pthread t idil, id2, id3;
pthread mutex t buf mutex, condition mutex;
pthread cond t buf full, buf empty;
pthread create(&idl, NULL, move to buffer, NULL) ;
pthread create(&id2, NULL, write_ intc file, NULL);
pthread create(&id3, NULL, analysis, NULL);
pthread join(idl, NULL);
pthread join(id2, NULL);
pthread join(id3, NULL);
pthread exit (0);

}

void *move to buffer()
{
/* Repeat until all samples are received */
/* If no space in buffer, wait on buf full */
/* Use buf mutex to access the buffer, increment no. of samples */
/* Signal buf empty */
pthread exit (0) ;

}
void *write into file()
{
/* Repeat until all samples are written into the file */
/* If no data in buffer, wait on buf empty */
/* Use buf mutex to access the buffer, decrement no. of samples * /
/* Signal buf full */
pthread exit (0);

}
void *analysis ()

{
/* Repeat until all samples are analyzed */
/* Read a sample from the buffer and analyze it */
pthread exit (0);

}
Figure 5.13 Outline of the data logging application using POSIX threads.

Kernel-Level, User-Level, and Hybrid
Threads

* Kernel-Level Threads
— Threads are managed by the kernel
* User-Level Threads
— Threads are managed by thread library

* Hybrid Threads

— Combination of kernel-level and user-level threads

Kernel-Level Threads

PCB

EIE Thread control blocks
(TCBs)

&
I

Selected TCB

PCB pointer

Figure 5.14 Scheduling of kernel-level threads.
A kernel-level thread is like a process except that it has a

smaller amount of state information

Switching between threads of same process incurs the
overhead of event handling

User-Level Threads
N

P; P;
Process context
+ thread library
> Thread control blocks
/ (TCBs)

|:| D D D |:| Mapping performed
/ by thread library

D Process control blocks
(PCBs)

-

b

B 0

Selected PCB

Figure 5.15 Scheduling of user-level threads.

* Fast thread switching because kernel is not involved
* Blocking of a thread blocks all threads of the process
* Threads of a process: No concurrency or parallelism

Scheduling of User-Level Threads

N||R | |P N||R | |B R|IN| |B R|IN||B
kl hl hl hl

ANEENA \ \

P(_Fj B Ready Running Running Blocked
of P; ' d,

TCBs

(a) (b) (c) (d)
Figure 5.16 Actions of the thread library (N, R, B indicate running, ready, and blocked)).

* Thread library maintains thread state, performs switching

Hybrid Thread Models

C o~ N) ()

PCB PCB PCB
L D
e
KTCBs KTCBs KTCBs
(a) (b) (c)

Figure 5.17 (a) Many-to-one; (b) one-to-one; (c) many-to-many associations in hybrid threads.

* Can provide a combination of parallelism and low overhead

Case Studies of Processes and Threads

Processes in Unix

Processes and Threads in Linux
Threads in Solaris

Processes and Threads in Windows

Processes in Unix

* Process executes kernel code on an interrupt or system
call, hence kernel running and user running states

* A process P, can wait for the termination of a child
process through the system call wait

Processes in Unix (continued)

Table 5.9 Interesting Signals in Unix

User

Signal Description runmng

SIGCHLD Child process died or suspended Interrupt/ R_c'”:'f]l “'“;"

SIGFPE Arithmetic fault system call t;;:]c;llzl|::]£-l|]]

SIGILL [llegal instruction e)

SIGINT Tty interrupt (Control-C) Kernel Exit _
SIGKILL Kill process running » Zombie
SIGSEGV Segmentation fault

SIGSYS [nvalid system call Dispatching RCE:LOU]‘CC or
SIGXCPU CPU time limit is exceeded i _ wail request
SIGXFSZ File size limit is exceeded Preemption

-
Resource granted
or wait completed

Figure 5.19 Process state transitions in Unix.

Processes and Threads in Linux

Process states: Task_running, Task_interruptible, Task-
uninterruptible, task_stopped and task_zombie

Information about parent and child processes or threads
is stored in a task_struct

data_logger

copv_sample record_sample housekeeping

Figure 5.20 Linux process tree for the processes of Figure 5.2(a).

Threads in Solaris

Three kinds of entities govern concurrency and
parallelism within a process:

— User threads
— Lightweight processes (LWPs)

* Provides arallelism within a process
* User thread are mapped into LWPs

— Kernel threads

Supported two different thread models
— M x N model upto solaris 8
— 1:1 model Solaris 8 onwards

Provides scheduler activations to avoid thread blocking
and notify events

Threads in Solaris (continued)

Process
context
+
thread
library

N

agh

L.

;

Threads

PCB

EIB m Thread control blocks

Mapping performed
T by thread library

al ... u" |_|f *,.-" LWP control blocks

D D] Kernel thread control blocks

Selected KTCB

Figure 5.21 Threads in Solaris.

Processes and Threads in
Windows

* Each process has at least one thread in it.
* Uses three control blocks per process

— Executive process block: process id, a kernel process
block and address of process environment block

— Kernel process block: process state, KTB addresses

— Process environment block: information about code
and heap

* Uses three thread blocks per thread

— Executive thread block contains pointer to kernel
thread block and executive process block

— Kernel thread block: stack, state and kernel
environment block

Processes and Threads in Windows
(continued)

Dispatch Completion [Termi-

Standby Running

nated

Resource
or wait
request

Select
for
execution

Preemption

Resource granted

Waiting

-

or wait completed

Kernel stack
reloaded Kernel stack

removed

Figure 5.22 Thread state transitions in Windows.

Summary

Execution of a program can be speeded up through either
parallelism or concurrency

A process is a model of execution of a program

— Can create other processes by making requests to the OS
through system calls
* Each of these processes is called its child process

* Provides parallelism or concurrency
OS provides process synchronization means

OS allocates resources to a process and stores information
about them in the process context of the process

