SJP N Trust's
ECE Dept.

Hirasugar Institute of Technology, Nidasoshi. os

— — — H YO\ - T ,—:,;VSem
Approved by AICTE, Recognized by Govt. of Karnatakaand Affiliated to VTU Belagavi 2018-19

Department of Electronics & Communication Engg.

Course : Operating Systems -15EC553. Sem.: 51" (2018-19 ODD)

Course Coordinator:

Prof. Nyamatulla M Patel

Operating Systems-15EC553

Module-04
File Systems & [OCS

Introduction

Overview of File Processing

Files and File Operations

Fundamental File Organizations and Access Methods
Directories

Mounting of File Systems

File Protection

Allocation of Disk Space

Interface Between File System and IOCS

Introduction (continued)

File Processing

File Sharing Semantics

File System Reliability
Journaling File Systems
Virtual File System

Case Studies of File Systems
Performance of File Systems

Overview of File Processing

Process

)2

view of
file data

Directory structure

Directory

File data
in memory

File data
on disk

Figure 13.1 File system and the 10CS.

File
system

10CS

File System and the IOCS

* File system views a file as a collection of data that is
owned by a user, shared by a set of authorized users, and
reliably stored over an extended period

* [OCS views it as a repository of data that is accessed
speedily and stored on /0 device that is used efficiently

Table 13.1 Facilities Provided by the File System
and the Input-Output Control System

File System
e Directory structures for convenient grouping of files
e Protection of files against illegal accesses
e File sharing semantics for concurrent accesses to a file
e Reliable storage of files

Input-Output Control System (IOCS)
o Efficient operation of I/O devices
¢ Efficient access to data in a file

* Two kinds of data: file data and control data

File Processing in a Program

* At programming language level.:

— File: object with attributes describing organization of its
data and the method of accessing the data

(@) (b) (€)

file alpha
sequential
record=60
call...
open alpha, E:i> call open(alpha,® [:i)
‘read’ read’,..)
call...
read alpha, call read(alpha,
KYZ Xyz)

File system
modules open
& close

4

IOCS module I

seq_read

Figure 13.2 Implementing a file processing activity: (a) program containing file declaration
statements; (b) compiled program showing calls on file systerm modules; (c) process invoking
file system and IOCS modules during operation.

Files and File Operations

* File types can be grouped into two classes:

— Structured files: Collection of records

* Record: collection of fields

 Field: contains a single data item

* Each record is assumed to contain a unique key field
— Byte stream files: “Flat”

employee_info

report
L1 1] [abscdI8735... |
—
AN employee id
o
5 51
h Anita Ingle

A

Manager

(a) * 33 Years (b)

Figure 13.3 Logical views of (a) a structured file employee info; (b) a byte stream file

'8 A fireport.

1C 110 dlll 1yuiLLy, oLl LU 111 10 U111 C\/LUL)’ CllLly

Fundamental File Organizations and
Access Methods

Fundamental record access patterns:
— Sequential access
— Random access
File organization is a combination of two features:
— Method of arranging records in a file
— Procedure for accessing them

Accesses to files governed by a specific file organization
are implemented by IOCS module called access method

Sequential File Organization

Records are stored in an ascending or descending
sequence according to the key field

Record access pattern of an application is expected to
follow suit

Two kinds of operations:
— Read the next (or previous) record
— Skip the next (or previous) record
Uses:

— When data can be conveniently presorted into an ascending
or descending order

— For byte stream files

Direct File Organization

Provides convenience/efficiency of file processing when
records are accessed in a random order

Files are called direct-access files
Read/write command indicates value in key field

— Key value is used to generate address of record in storage
medium

Disadvantages:
— Record address calculation consumes CPU time
— Some recording capacity of disk is wasted

— Dummy records exist for key values that are not in use

Example: Sequential and Direct Files

 Employees with the employee numbers 3, 5-9 and 11
have left the organization

— Direct file has dummy records for them

employee # dummy records
\ ¥ ~
= —
L1] (2] [4] 0] [12] - - - (0] (2] [0 (4] [I80 - - - [10]
(a) (b)

Figure 13.4 Records in (a) sequential file; (b) direct-access file.

Index Sequential File Organization

* Anindex helps determine location of a record from its key

value

— Pure indexed organization: (key value, disk address)

— Index sequential organization uses index to identify section
of disk surface that may contain the record

* Records in the section are then searched sequentially

Track

group Low High

1

1

43

Track Low

High

2

45

96

1

1

13

2

16

31

Higher-level

index

3

32

43

Track index

Track

[PV] —

A

D BETEE
i6][17)21] 2]
253 6] 7] o]

Figure 13.5 Track index and higher-level index in an index sequential file.

Records

Access Methods

* Access method: I0CS module that implements accesses to
a class of files using a specific file organization

— Procedure determined by file organization

— Advanced I/0 techniques are used for efficiency:
* Buffering of records

— Records of an input file are read ahead of the time when they are
needed by a process

* Blocking of records

— Alarge block of data, whose size exceeds the size of a record in
the file, is always read from, or written onto, the I/O medium

Directories

File Type and Location Protection — Open Misc
name size info info count Lock Flags info
Field Description

File name

Type and size

Location info

Protection info

Open count
Lock

Flags

Misc info

Name of the file. If this field has a fixed size, long file names
beyond a certain length will be truncated.

The file’s type and size. In many file systems, the type of file is
implicit in its extension; e.g., a file with extension .c is a byte
stream file containing a C program, and a file with extension
.0bj is an object program file, which is often a structured file.
Information about the file’s location on a disk. This information
is typically in the form of a table or a linked list containing
addresses of disk blocks allocated to a file.

Information about which users are permitted to access this file,
and in what manner.

Number of processes currently accessing the file.

Indicates whether a process is currently accessing the file in an
exclusive manner.

Information about the nature of the file—whether the file 15 a
directory, a link, or a mounted file system.

Miscellaneous information like id of owner, date and time of
creation, last use, and last modification.

Figure 13.6 Fields in a typical directory entry.

Directories (continued)

* File system needs to grant users:
— File naming freedom
— File sharing
* File system creates several directories

— Uses a directory structure to organize them
* Provides file naming freedom and file sharing

Master
Directory

User - * =
Directories A B C
{ UDs) J 7 \\..
A N
_/

O O O O

beta alpha gamma beta calendar

Figure 13.7 A directory structure composed of master and user directories.

Directory Trees

root
.-""-)-- --/-- ------\-\-\--- --"'\-_
i ¥ T
X A B
r \
) 1dmin ojects
| : rojects

alpha \
=N A

NV RN AN :
betaﬁ/ \

|/ i\' '/’-_-\ll

./

main pgm

real time

Figure 13.8 Directory trees of the file system and of user A.

* Some concepts: home directory, current directory
* Path names used to uniquely identify files

— Relative path name

— Absolute path name

Directory Graphs

* Tree structure leads to a fundamental asymmetry in the
way different users can access a shared file

— Solution: use acyclic graph structure for directories

* Alinkis a directed connection between two existing files in the
directory structure

\ ,__hh quest
i ¥ R

personal job softwarsl

\ N
50 o

web server

\x_) k)r

Figure 13.9 A link in the directory structure.

Operations on Directories

Most frequent operation on directories: search
Other operations are maintenance operations like:

— Creating or deleting files

— Updating file entries (upon a close operation)
— Listing a directory

— Deleting a directory

Deletion becomes complicated when directory structure
is a graph
— A file may have multiple parents

— File system maintains a link count with each file

Organization of Directories

* Flatfile that is searched linearly Bl inefficient

* Hash table directory @ efficient search
— Hash with open addressing requires a single table
— (Sometimes) at most two comparisons needed to locate a
file
— Cumbersome to change size, or to delete an entry
* B+ tree directory B fast search, efficient add/delete
— m-way search tree where m < 2xd (d: order of tree)
— Balanced tree: fast search
— File information stored in leaf nodes

— Nonleaf nodes of the tree contain index entries

Directory as a B+ tree

|

b

L T

|

!

Figure 13.10 A directory organized as a B+ tree.

v

C

[

e A
vy v

v

[nformation in directory entries

Pl

| S
v

v

Iy by

[nformation in directory entries

Mounting of File Systems

* There can be many file systems in an OS

* Each file system is constituted on a logical disk
— li.e., on a partition of a disk

* Files can be accessed only when file system is mounted

B meeting “n
admin agenda J/J admin
t ime / \

{_ agenda (_::

items /i\ time
N
items

(@) (b)

Figure 13.11 Directory structures (a) before a mount command; (b) after a mount command.

File Protection

* Users need controlled sharing of files

— Protection info field of the file’s directory entry used to
control access to the file

* Usually, protection info. stored in access control list

— List of (<user_name>,<list_of access_privileges>)

* User groups can be used to reduce size of list
* In most file systems, privileges are of three kinds:
— Read
— Write

— EXxecute

Allocation of Disk Space

* Disk space allocation is performed by file system

* Before B contiguous memory allocation model
— Led to external fragmentation

* Now B noncontiguous memory allocation model

— [ssues:
* Managing free disk space
— Use: free list or disk status map (DSM)
* Avoiding excessive disk head movement
— Use: Extents (clusters) or cylinder groups
» Accessing file data
— Depends on approach: linked or indexed

Allocation of Disk Space (continued)

 The DSM has one entry for each disk block

— Entry indicates if block is free or allocated to a file

— Information can be maintained in a single bit
 DSM also called a bit map

 DSM is consulted every time a new disk block has to be
allocated to a file

Disk block address dud; -

v
Disk block status 011100101 ...
Disk block
is allocated
Disk block

—
is free

Figure 13.12 Disk status map (DSM).

Linked Allocation

File Location

name info] Free list pointer
alpha — ____/ - Data
beta N N [T] é Metadata

Directory v

Figure 13.13 Linked allocation of disk space.

Each disk block has data, address of next disk block
— Simple to implement
— Low allocation/deallocation overhead

Supports sequential files quite efficiently

Files with nonsequential organization cannot be
accessed efficiently

Reliability is poor (metadata corruption)

Linked Allocation (continued)

File Location N
name info 1 [free \ _//
2| end -
aipha 3 2pad e | 2
beta 4 45 12 3] 14
5071 ~
G| free) 5 |:| |:| b6
7end 7] B8
8 |_free v
Directory File allocation table

Figure 13.14 File Allocation Table (FAT).
MS-DOS uses a variant of linked allocation that stores the
metadata separately from the file data

FAT has one element corresponding to every disk block in
the disk

— Penalty: FAT has to be accessed to obtain the address of the
next disk block

 Solution: FAT is held in memory during file processing

Indexed Allocation

File Location - =1 /—\
name info _— e \ _/
alpha — \
beta - — Jmitgy pha]]
=
- x_,_,—ﬂ"_‘/
Directory fmtyerq

Figure 13.15 Indexed allocation of disk space.
* Anindex (file map table (FMT)) is maintained to note the
addresses of disk blocks allocated to a file

— Simplest form: FMT can be an array of disk block addresses

Indexed Allocation (continued)

e (Other variations:

— Two-level FMT organization: compact, but access to data
blocks is slower

— Hybrid FMT organization: small files of n or fewer data
blocks continue to be accessible efficiently

=l
-
T —"I:l 1 __"I:l Data
. _}I:I I:I blocks
I:I Data i /”J |:|
—— I:l blocks rd —> |
o = I:l - ‘—”D Data
x'\“‘x —* m ~_ =— | blocks
FMT — | FMT A=]
__,.l:l
Index Index
blocks blocks

Figure 13.16 A two-level FMT organization. Figure 13.17 A hybrid organization of FMT.

Performance Issues

* Issues related to use of disk block as allocation unit
— Size of the metadata
— Efficiency of accessing file data
* Both addressed using a larger unit of allocation
— Use the extent as a unit of disk space allocation
» Extent: set of consecutive disk blocks
* Large extents provide better access efficiency

— Problem: more internal fragmentation
— Solution: variable extent sizes
» Size is indicated in metadata

Interface Between File System and IOCS

* Interface between file system and IOCS consists of
— File map table (FMT)
— Open files table (OFT)
— File control block (FCB)

internal idg; pna

e

+
=6

L2

e l
i

a—
fn’ ra lpha

ffbalpha -

Open files table
(OFT)

File system data structures

in memory

File alpha
is opened

T _""'--—--_____: alphal
File alpha

is closed

i
N

Figure 13.18 Interface between file system and IOCS—OFT, FCB and FMT.

ﬁ?”alpha

Interface Between File System and IOCS
(continued)

Table 13.3 Fields in the File Control Block (FCB)

Category

Fields

File organization

Directory information

Current state of processing

File name

File type, organization, and access method
Device type and address

Size of a record

Size of a block

Number of buffers

Name of access method

Information about the file’s directory entry
Address of parent directory’s FCB
Address of the file map table (FMT)

(or the file map table itself)

Protection information

Address of the next record to be processed

Addresses of buffers

Interface Between File System and IOCS
(continued)

When alpha is opened:
* File system copies FMT,,,, in memory

* Creates fcb

alpha

in the OFT

* Initializes fields appropriately
» Passes offset in OFT to process, as

internal_id

alpha

Open files table (OFT)

_f

internal_id

alpha

<file declaration>

jtbalpha

open (alpha,
‘read’)

read (alpha,
<record_info>,
XYZ)

close (alpha)

open (alpha. read’,
<file_attributes>)

read (internal id alpha’

<record_info=,
Ad(xyz))

close (internal id yp.)

Source program

Compiled program

Figure 13.19 Overview of file processing.

Directory
U

10CS

File system and IOCS actions

File Processing

* File System Actions at open

— Sets up the arrangement involving FCB and OFT
* File System Actions during a File Operation

— Performs disk space allocation if necessary
* File System Actions at close

— Updates directories if necessary

File system actions at open

* Perform path name resolution

— For each component in the path name, locate the correct directory
or file

— Handle path names passing through mount points
 Afile should be allocated disk space in its own file system
— Build FCB for the file
* Retain sufficient information to perform a close operation on the file
— Close may have to update the file’s entry in the parent directory

— It may cause changes in the parent directory’s entry in ancestor
directories

File System Actions at open

Directory root

info \
\
\
:.‘ Directory info
alpha ~
N ;
II'|| p _D Director v
— FCB pointer
.-'I i f ch info “ P
- ¥
) g 5 febarpna e File
-~ E] FCB pointer
-
ﬁ? ”a lpha
OFT

Figure 13.20 File system actions at open.

File System Actions during a File
Operation

» Each file operation is translated into a call:

— <opn > (internal_id, record_id,< I0_areaaddr >);
* Internal_id is the internal id of <file_name> returned by the open call
* Record_id is absent for sequential-access files

— Operation is performed on the next record

e Disk block address obtained from record id

File System Actions at close

Directory
FCB pointer

File
FCB pointer

(a)

info

alpha

Y

=

fd}info

]

j%bphi

OFT

AR

info
alpha >
rhi :
!
\1 7
+—»
Jmigny e
(b)

Figure 13.21 File system data structures (a) before; (b) after close.

File Sharing Semantics

* File system provides two methods of file sharing for
processes to choose from:

— Sequential sharing

* Only one process accesses a file at a time

* Implemented through lock field in file’s directory entry

— Concurrent sharing
* System creates a separate FCB for each process

* Three sharing modes exist (see Table 13.4)
* File sharing semantics:

— Determine how results of file manipulations performed by
concurrent processes are visible

File Sharing Semantics (continued)

Table 13.4 Modes of Concurrent File Sharing

Mode

Description

Immutable files

Single-image mutable files

Multiple-image mutable
files

The file being shared cannot be modified by any
process.

All processes concurrently sharing a file “see” the same
image of the file, i.e., they have an identical view of file’s
data. Thus, modifications made by one process are
immediately visible to other processes using the file.
Processes sharing a file may “see” different images of
the file. Thus, updates made by a process may not be
visible to some concurrent processes. The file system
may maintain many images of a file, or it may reconcile
them in some manner to create a single image when
processes close the file.

Single-image Mutable Files

P

= f cb a ipha
hh /
Data blocks B

of alpha »

< ™~ f cb a]z_pha
f mrt alpha
OFT

Figure 13.22 Concurrent sharing of a single-image mutable file by processes P4 and P».

Multiple-image Mutable Files

P
ﬁ”‘ra]l_pha
)
Data blocks \
. -
of alphal - be;Jipha
~—
P,
= < beaipha
Data blocks
of alpha’: “—F
P
.IPE
Jmtg ena OFT

Figure 13.23 Concurrent sharing of a multiple-image mutable file by processes P4 and P».

File System Reliability

Degree to which a file system will function correctly even
when faults occur

— E.g.,, data corruption in disk blocks, system crashes due to
power interruptions

Two principal aspects are:
— Ensuring correctness of file creation, deletion, and updates
— Preventing loss of data in files
Fault: defect in some part of the system
— Occurrence of a fault causes a failure
Failure: system behavior that is erroneous
— Or that differs from its expected behavior

Loss of File System Consistency

File system consistency implies correctness of metadata
and correct operation of the file system
A fault may cause following failures:
— Some data from an open file may be lost
— Part of an open file may become inaccessible
— Contents of two files may get mixed up
For example, consider addition of a disk block to a file and
a fault during step 3:
1. dj.next :=d,.next;
2. dy.next := address (d);

3. Write d, to disk.
4. Write dj to disk.

Loss of File System Consistency
(continued)

Before adding d; After adding d; After a fault
d, d, d d, d; dy d, dy d,
L= b= — [~ b~ — [N [
d;
(a) (b) (c) [I—

Figure 13.24 Inconsistencies in metadata due to faults: (a}-(b) before and after adding d; during normal operation; (c)
after a fault.

ﬂrh ._'fk {?T; dh d]
beta [F—{ B—[B - H—
ﬂrl {i‘}' ﬂl\ {?Tl ﬂ} dz
apha [JF— F—>[B~ [EF-[BB -
(a) (b)

Figure 13.25 Files alpha and beta: (a) after adding dj during normal operation;
(b) if oﬂ, = di, alpha is closed and a power outage occurs.

Approaches to File System Reliability

Table 13.5 Approaches to File System Reliability

Approach Description

Restore data and metadata of the file system to some
previous consistent state.

Recovery

Fault tolerance Guard against loss of consistency of data and metadata
due to faults, so that system operation is correct at all
times, 1.e., failures do not occur.

* Recovery is a classic approach that is activated when a
failure is noticed

* Fault tolerance provides correct operation of file system
at all times

Recovery Techniques

* A backup is a recording of the file system state

— Overhead of creating backups

 When indexed allocation of disk space is used, it is possible to create
an on-disk backup of a file cheaply with technique that resembles
copy-on-write of virtual memory

— Overhead of reprocessing

* Operations performed after lash backup have to be reprocessed

— Solution: Use a combination of backups and incremental
backups

Recovery Techniques (continued)

Time File system Backup media Kind of backup

f i [OOOOOO 000000000 | Backup
f i [Ooo0] Incremental backup
t5 a [OOo] Incremental backup
ty a I=[s]u]u]u|u]u]s]=|u]s|s]s]u|=]=] Backup

Figure 13.26 Backups and incremental backups in a file system.

Recovery Techniques (continued)

* Toreduce overhead of creating backups (when indexed
allocation is used) only the FMT and disk block whose
contents are updated after the backup is created would be
copied

— Conserves both disk space and time

File Location PN File Location PN
name info / = name info V==
phi __..-'“"'; --\-\-"""h-.\\\--..____.--’/ phi 1 T \N-..______...-“/
b_phi ¥ \\] [] b _phi I N
Jmiton; [] S Sty NN
., .]
\ e —
Jmty, _phi [] 77 I
L1 [(1 [75]
Directory A g Directory \-hh__.__-/
ﬁj iy, phi
a b
(a) o a®

Figure 13.27 Creating a backup: (a) after backing up file phi; (b) when phi is modified.

Fault Tolerance Techniques

* File system reliability can be improved by taking two
precautions:
— Preventing loss of data or metadata due to I/0 device
malfunction

* Approach: use stable storage

— Preventing inconsistency of metadata due to faults

* Approach: use atomic actions

Stable Storage

* Maintain two copies of data
— Can tolerate one fault in recording of a data item
— Incurs high space and time overhead

— Can't indicate if copy that survived is old or new

Primary Secondary
copy is copy is Primary Secondary
updated updated copy copy
(a) ; — I
: b | old old
| | | |
(b) b : =] [
| Lo | unreadable old
| Lo |
() i < | =
! ! ! ! new old
(d) : — I = B
: Lo | new new
| Lo |
| [|
fl f fa 4 Time —>

Figure 13.28 Fault tolerance using the stable storage technique.

Atomic Actions

Definition 13.1 Atomic Action An action that consists of a set of subactions
and whose execution has the property that either

1. The effects of all of its subactions are realized. or
2. The effects of none of its subactions are realized.

begin atomic action add_a_block;
d;.next := dy.next;
d, .next = address(d;);
write d, ;
write dj :

end atomic action add _a_block;

Figure 13.29 Atomic action add_a_block.

Disk New
hlock contents
d L [B>
Transaction id Value d L B dy
add a block| NC
Commit flag Intentions list d;
(a) (b)

Figure 13.30 (a) Before and (b) after commit processing. (Note: NC means not committed.)

Atomic Actions (continued)

Algorithm 13.2 Implementation of an Atomic Action

1. Execution of an atomic action A;.

a. When the statement begin atomic action is executed, create a commit flag
and an intentions list in stable storage, and initialize them as follows:
commit flag := (A;, “not committed”);
intentions list := “empty”;

b. For every file update made by a subaction. add a pair (d.v) to the
intentions list, where d 1s a disk block id and v is its new content.

¢. When the statement end atomic action is executed, set the value of A4;’s
commit flag to “committed™ and perform Step 2.

2. Commit processing:

a. For every pair (d,v) in the intentions list, write v in the disk block with
the id d.

b. Erase the commit flag and the intentions list.

3. On recovering after a failure:

[f the commit flag for atomic action A4; exists,

a. If the value in commit flag 1s “not committed™: Erase the commit flag
and the intentions list. Reexecute atomic action A;.

b. Perform Step 2 if the value in commit flag is “committed.”

Journaling File Systems

* An unclean shutdown results in loss of data

— Traditional approach: recovery techniques
— Modern approach: use fault tolerance techniques so system

can resume operation quickly after shutdown
* Ajournaling file system implements fault tolerance by maintaining a

jJournal

Table 13.6 Journaling Modes

Mode Description

Protects only metadata. Does not provide any
protection to file data.

Protects metadata. Limited protection is oftered for file
data as well—it is written to disk before metadata

Write behind

Ordered data

concerning it is written.

Full data Journals both file data and metadata.

Virtual File System

» Avirtual file system (VFS) facilitates simultaneous
operation of several file systems

— It provides generic open, close, read and write

— Invokes operations of a specific file system

Processes
E = Virtual ﬁ]el system
(VFS)
Metadata ' :

=|s Ejl =f Eﬁl =| Ejl

Metadata File data Metadata File data Metadata File data

T e T

File systems of type X File systems of type Y File systems of type Z

Figure 13.31 Virtual file system.

Case Studies of File Systems

Unix File System

— Berkeley Fast File System
Linux File System
Solaris File System
Windows File System

Unix file system

File system data structures
— A directory entry contains only the file name

— Inode of a file contains file size, owner id, access permissions and
disk block allocation information

— A file structure contains information about an open file
* It contains current position in file, and pointer to its inode
— Afile descriptor points to a file structure
— Indexed disk space allocation uses 3 levels of indirection
Unix file sharing semantics

— Result of a write performed by a process is immediately visible to
all other processes currently accessing the file

Unix File

System

0
1
2 >
- Offset
Inode pointer T T
) . 1 Disk
Per-process File e
- blocks
table of structure of
file descriptors < alpha
Inode A
for alpha

Figure 13.32 Unix file system data structures.

1 —{]

/D

— | Single

12 /

-—*|:| indirection

14 .

¥
e ‘_"l:l Double

__,..|:| indirection

15 \

g = ‘_"I:l Triple

N N =—»{] indirection

Figure 13.33 Unix file allocation table.

Berkeley Fast File System

FFS was developed to address the limitations of the file
system s5fs

Supports some enhancements like long file names and use
of symbolic links

Includes several innovations concerning disk block
allocation and disk access:

— Permits use of large disk blocks (up to 8KB)
— Uses cylinder groups to reduce disk head movement

— Tries to minimize rotational latency when reading
sequential files

Linux File System

* Linux provides a virtual file system (VFS)

— Supports a common file model that resembles the Unix file
model

» Standard file system is ext2

— Variety of file locks for process synchronization

» Advisory locks, mandatory locks, leases

— Uses notion of a block group

* ext3 incorporates journaling

Solaris File System

Unix-like file access permissions

— Three access control pairs in each access control list

Convenience and flexibility in file processing, through a
virtual file system

Record-level locking provided to implement fine-grained
synchronization between processes

— Nonblocked I/0 mode to avoid indefinite waits

Asynchronous I/0 mode: a process is not blocked for its
[/0O operation to complete

Provides file integrity

Windows File System

NTES is designed for servers and workstations

— Key feature: recoverability of the file system

Notion of partition and volumes (single and spanned);
volumes have a master file table (MFT)

Directory organized as a B+ tree

Hard links and symbolic links (called junctions)

Special techniques for sparse files and data compression
Metadata modifications are atomic transactions

Write behind capabilities of journaling file systems

Vista has many new features for recovery

Performance of File Systems

Cached and buffered
data and metadata

Process P; phi
Directories
open phi
= i —
=> FMTs
read phi, .. >
L1
L] Filedata
[I—
Operation Techniques employed for speedup
Directory access Directory cache
Directory search Hashtables, B+ trees
Accessing file map table File map table cache in memory
Accessing a disk block Disk block allocation in extents and cylinder groups,
Disk block cache in memory. disk scheduling, disk
block cache in I/O device
Accessing data Buffering and blocking of data, or use of a file cache

Figure 13.34 Techniques employed to provide high file access performance.

Log-Structured File System

(a) Index block
__,_.---i?:_—_—__::_-_;;: r's
)= E Log file
J\"-J L o

Index block

— r's

M e g f-*E Log filc

'«.J'\.

Figure 13.35 File update in a log-structured file system.

* (Caching reduces disk head movement during reads
* Log-structured file systems reduce head movement
through a radically different file organization

— Writes file data of all files in a single sequential structure
that resembles a journal (log file)

 Little head movement during write operations

Summary

Files are structured or unstructured (byte stream)

File system provides:
— File organizations (sequential, direct, indexed)
— Directories for grouping of related files logically
— Sharing and protection of files

— Disk space allocation, typically indexed
 File map table (FMT) stores allocation information

File control block (FCB) stores information about a file’s
processing

Atomic actions can be used for fault tolerance
Journaling file systems provide reliability modes
VFS permits several file systems to be in operation

