SJP N Trust's
ECE Dept.

Hirasugar Institute of Technology, Nidasoshi. os

— — — H YO\ - T ,—:,;VSem
Approved by AICTE, Recognized by Govt. of Karnatakaand Affiliated to VTU Belagavi 2018-19

Department of Electronics & Communication Engg.

Course : Operating Systems -15EC553. Sem.: 51" (2018-19 ODD)

Course Coordinator:

Prof. Nyamatulla M Patel

Operating Systems-15EC553

Module-05
Message Passing & Deadlocks

Introduction

What is a Deadlock?

Deadlocks in Resource Allocation

Handling Deadlocks

Deadlock Detection and Resolution

Deadlock Prevention

Deadlock Avoidance

Characterization of Resource Deadlocks by Graph Models
Deadlock Handling in Practice

What is a Deadlock?

Definition 8.1 Deadlock A situation involving a set of processes D in which
each process P; in D satisfies two conditions:

1. Process P; 1s blocked on some event ¢;.
2. Event ¢; can be caused only by actions of other processés) in D.

— Resource deadlock B primary concern of OS

Process Py Process Py
Request tape drive; Request printer;
Request printer; Request tape drive;
Use tape drive and printer; Use tape drive and printer;
Release printer; Release tape drive;
Release tape drive; Release printer;

* P, P;are deadlocked after their second requests

— Deadlocks can also arise in synchronization and message
communication [user concern

Deadlocks in Resource Allocation

* 0OS may contain several resources of a kind
— Resource unit refers to a resource of a specific kind

— Resource class to refers to the collection of all resource units
of a kind

* Resource allocation in a system entails three kinds of
events:

— Request for the resource
— Actual allocation of the resource

— Release of the resource

* Released resource can be allocated to another process

Deadlocks in Resource Allocation
(continued)

Table 8.1 Events Related to Resource Allocation

Event Description

Request A process requests a resource through a system call. If the resource 1s
free, the kernel allocates it to the process immediately; otherwise, it
changes the state of the process to bhlocked.

Allocation The process becomes the fiolder of the resource allocated to it. The
resource state information is updated and the state of the process is
changed to ready.

Release A process releases a resource through a system call. If some processes
are blocked on the allocation event for the resource, the kernel uses some
tie-breaking rule, e.g., FCFS allocation, to decide which process should
be allocated the resource.

Conditions for a Resource Deadlock

Table 8.2 Conditions for Resource Deadlock

Condition Explanation

Nonshareable resources Resources cannot be shared; a process needs exclusive
access to a resource.

No preemption A resource cannot be preempted from one process and
allocated to another process.

Hold-and-wait A process continues to hold the resources allocated to it
while waiting for other resources.

Circular waits A circular chain of hold-and-wait conditions exists in the

system; e.g., process Py waits for Py, P; waits for Py, and
Py waits for F;.

 Another condition is also essential for deadlocks:

— No withdrawal of resource requests: A process blocked on a
resource request cannot withdraw it

Modelling the
Resource Allocation State

* (Resource) allocation state:

— Information about resources allocated to processes and
about pending resource requests

— Used to determine whether a set of processes is deadlocked

* Two kinds of models are used to represent the allocation
state of a system:

— A graph model

— A matrix model

Resource request and allocation graph
(RRAG)

* Nodes and edges in an RRAG

— Two Kkinds of nodes exist in an RRAG
» Acircle is a process
* Arectangle is a resource class
— Each bullet in a rectangle is one resource unit

— Edges can also be of two kinds

* An edge from a resource class to a process is a
resource allocation

* An edge from a process to a resource class is a
pending resource request

Wait-for graph (WFG)

A WFG can be used to depict the resource
state of a system in which every resource
class contains only one resource unit

— A Node in the graph is a process

— An edge is a wait-for relationship between
processes
* A wait-for edge (P, P;) indicates that
— Process P; holds the resource unit of a resource class

— Process P; has requested the resource and it has become
blocked on it

— In essence P; waits for P, to release the resource

Graph Models

P, printer

P;
RRAG RRAG WEG

(a) (b)

Figure 8.1 (a) Resource request and allocation graph (RRAG); (b) Equivalence of RRAG
and wait-for graph (WFG) when each resource class contains only one resource unit.

Paths in WFG and RRAG

* A path in a graph is a sequence of edges
such that the destination node of an edge is
the source node of the subsequent edge

— Consider an RRAG path P, -R,-P,-R,... P, -
Rn-l i Pn

This path indicates that

* Process P, has been allocated a resource unit of R, ,

* Process P, ; has been allocated a resource unit of
R, ,and awaits a resource unit of R, _;, etc.

— In WFG, the same path would be P, - P, - ... P
-P
1 n

n_

Graph Models (continued)

A deadlock cannot exist unless an RRAG, or a WFG,
contains a cycle

« Acycle in an RRAG does not necessarily imply a
deadlock if a resource class has multiple resource units

™ P;
When P, completes, O

winter tape
[o f

its tape unit can be [+]

allocated to P, (/' AN
: v PJ,‘ *{___) P.{'

Figure 8.3 RRAG after all requests of Example 8.4 are made.

Matrix Model

Allocation state represented by two matrices:
— Allocated_resources

— Requested_resources

If system has n processes and r resource classes, each of
these matrices is an n X r matrix

Printer Tape Printer Tape Printer Tape
. . Total o]
P 0] Pi I 0 resources ! -
Pil 1 10 Pil o | 1 -
ree
P 0 | Pl 0 0 resources 0 0
Allocated Requested
resources resources

Auxiliary: Total_resources and Free_resources

Handling Deadlocks

Table 8.3 Deadlock Handling Approaches

Approach

Description

Deadlock detection and
resolution

Deadlock prevention

Deadlock avoidance

The kernel analyzes the resource state to check whether
a deadlock exists. If so, it aborts some process(es) and
allocates the resources held by them to other processes
so that the deadlock ceases to exist.

The kernel uses a resource allocation policy that ensures
that the four conditions for resource deadlocks
mentioned in Table 8.2 do not arise simultaneously.

It makes deadlocks impossible.

The kernel analyzes the allocation state to determine
whether granting a resource request can lead to a
deadlock in the future. Only requests that cannot lead to
a deadlock are granted, others are kept pending until
they can be granted. Thus, deadlocks do not arise.

Deadlock Detection and Resolution

* A blocked process is not currently involved in a deadlock if
request on which it is blocked can be satisfied through a

sequence of process completion, resource release, and
resource allocation events

— If each resource class in system contains a single resource
unit, check for a cycle in RRAG or WFG

* Not applicable if resource classes have multiple resource units
— We will use matrix model

« Applicable in all situations

Example: Deadlock Detection

* The allocation state of a system containing 10 units of a
resource class R, and three processes:

Ry Ry Ry

: Total
Py 4 Py 6 resources
) 4 Py 2
Free
2 0 resources III
Allocated Requested

Iresources Iresources

* Process P, is in the running state

— We simulate its completion

* Allocate its resources to P,

— All processes can complete in this manner
* No blocked processes exist when the simulation ends
— Hence no deadlock

A Deadlock Detection Algorithm

Algorithm 8.1 Deadiock Detection

Inputs
H : Number of processes;
r : Number of resource classes;
Blocked : set of processes;
Running : set of processes;
Free_resources :array [1..r] of integer;
Allocated_resources @ array [1..n. 1..r] of integer;
Requested_resources : array [l..n, 1..r] of integer;

Data structures
Finished . set of processes;

1. repeatuntil set Running is empty
a. Select a process P; from set Running:
b. Delete P; from set Running and add it to set Finished:
c. fork=1.r
Free_resources[k] := Free_resources[k]| + Allocated_resources[i k];
d. while set Blocked contains a process P; such that
for k = 1..r, Requested_resources[l.k] < Free_resources[k]
i fork=1.r
Free_resources|k]:= Free_resources[k] — Requested_resources|l. k)
Allocated_resources|l. k] := Allocated_resources[l, k]
+ Requested_resources]l. k];
ii. Delete P; from set Blocked and add it to set Running;
2. if set Blocked is not empty then
declare processes in set Blocked to be deadlocked.

Example: Operation of a Deadlock
Detection Algorithm

Ry Ry R;

1

L

0
1
1
2

— D= b

1
2

Allocated

resources

Ry Ry R;

-

1

3

|

4

0

I

0

-

Requested
resources

Total

resources

Free
resources

Ry Ry R,
Ry Ry Ry

(a) Initial state

Ry Ry R, Ry R, R;
Pyl2|1]0 Pil2]1]3
Pyl1]3]1 Pyl1]4]0
Pil11]1 Py
Pyl1]2]2 Py1]0]2

Allocated Requested

resources resources

R R,yR;

Fre

resources

(b) After simulating allocation of resources to Py when process P; completes

Pi[2]1]0 P12]1]3
Py1]3]1 Py1]4]0
Pi{0]0]0 Py
Pyl2]2]4 P,
Allocated Requested
resources resources

Free

resources

(c) After simulating allocation of resources to P when process Py completes

Pil4]2]3 Py
Pyl1[3]1] Py[1]4]0
Pylo]0]0 Py
Pylol0]0 Py
Allocated Requested
resources resources

Free mn

resources

(d) After simulating allocation of resources to P, when process P| completes

Pilojo|o P,
Py2]7]1 Py
P;l0f0]0 Py
Fyl0]0(0 Py
Allocated Requested
resources resources

P

resources

Figure 8.4 Operation of Algorithm 8.1, the deadlock detection algorithm.

Deadlock Resolution

* Deadlock resolution for a set of deadlocked processes D is
breaking of deadlock to ensure progress for some
processes in D

— Achieved by aborting one or more processes in D
* Each aborted process is called a victim

— Choice of victim made using criteria such as process priority,
resources consumed by it, etc.

Ry [-j«—fv«—mk R; ?f}—é

Py
PO PO
(a) (b)

Figure 8.5 Deadlock resolution. (a) a deadlock; (b) resource allocation state after deadlock
resolution.

Deadlock Prevention

Approach Iustration
Without this approach In this approach
(&) Make resources shareable R, R,
— No waits

Process P; does not get E:}

blocked on resource R;.
P; P; P, P;
R, R Ry R

(b) Make resources preemptible
— No circular paths [:)
Resource R; is preempted
and allocated to P,

i i i i
Rk RJ’ Rk RJ’
(c) Prevent Hold-and-wait) Q‘
— No paths in RRAG E:)
with > 1 process
Process P; is either (1) P P
not permitted to block on
resource R, or (2) not R, R,
allowed to hold R; while
requesting R). E>(2)|I|
P;
pj. Pj-
(d) Prevent circular waits
Process P; is not permitted to R, R, R, R
request resource R;. :>
P; P;

Figure 8.6 Approaches to deadlock prevention.

All Resources Together

Simplest of all deadlock prevention policies

Process must ask for all resources it needs in a single
request

— Kernel allocates all of them together
* Ablocked process does not hold any resources
— Hold-and-wait condition is never satisfied

Attractive policy for small operating systems
Has one practical drawback:

— Adversely influences resource efficiency

Resource Ranking

Resource rank associated with each resource class

Upon resource request, kernel applies a validity
constraint to decide if it should be considered

— Rank of requested resource must be larger than rank of
highest ranked resource allocated to the process

Result: absence of circular wait-for relationships

Works best when all processes require their resources in
the order of increasing resource rank

— In worst case, policy may degenerate into the “all resources
together” policy of resource allocation

Deadlock Avoidance

* Banker's algorithm

— Analogy: bankers admit loans that collectively exceed the
bank’s funds and then release each borrower’s loan in
installments

— Uses notion of a safe allocation state

 When system is in such a state, all processes can complete their
operation without possibility of a deadlock

— Deadlock avoidance implemented by taking system from
one safe allocation state to another

Deadlock Avoidance

Table 8.4 Notation Used in the Banker’s Algorithm

Notation Explanation

Requested_resources; ;. -~ Number of units of resource class Ry currently requested by
process P;

Max_need; Maximum number of units of resource class Rj that may be
needed by process P;

Allocated_resources; .~ Number of units of resource class Ry allocated to process P;

Total_allocy, Total number of allocated units of resource class R, i.e.,
L; Allocated_resources;

Total_resourcesy, Total number of units of resource class R existing in the
system

Definition 8.2 Safe Allocation State An allocation state in which it is possible
to construct a sequence of process completion, resource release, and resource
allocation events through which each process P; in the system can obtain
Max_need, . resources for each resource class R; and complete its operation.

Deadlock Avoidance (continued)

* QOutline of the approach:

1. When a process makes a request, compute projected allocation state
— This would be the state if the request is granted

2. If projected allocation state is safe, grant request by updating
Allocated_resources and Total_alloc; otherwise, keep request pending

— Safety is checked through simulation
— A process is assumed to complete only if it can get its maximum
requirement of each resource satisfied simultaneously

3. When a process releases any resource(s) or completes its operation, examine
pending requests and allocate those that would put the system in a new safe
allocation state

Example: Banker’s Algorithm for a
Single Resource Class

Py]8 Py 13 Pl }:ﬁglf 7
Py 7 Py |1 Py |0 o
Py [5 P; [3 P; [0 Toral Ty
resources
Max Allocated Requested
need resources resources

Figure 8.7 An allocation state in the banker’s algorithm for a single resource class.

Now consider the following requests:

1. P, makes arequest for 2 resource units
2. P, makes a request for 2 resource units
3. P; makes a request for 2 resource units

— Requests by P, and P, do not put the system in safe
allocation states, hence they will not be granted

— Request by P, will be granted

Algorithm 8.2 Banker's Algorithm

Inputs
n . Number of processes:
¥ : Number of resource classes:
Blocked . set of processes;
Running . set of processes;
P roquesting_process : Process making the new resource request;
Max_need :array [l..n, 1..r] of integer:
Allocated_resources :array [l.n, 1..r] of integer:
Requested_resources : array [l.n, 1..r] of integer;
Total_alloc . array [1..r] of integer;
Total_resources . array [1..r] of integer;

Data structures

Active . set of processes;
feasible . boolean;
New_request : array [1..r] of integer;
Simulated_allocation — : array [l..n, 1..r] of integer;
Simulated_total_alloc . array [1..r] of integer;
1. Active := Running | | Blocked.
fork =1.r

New_request[k] := Requested_resources[requesting_process, kJ;

2. Simulated_allocation := Allocated_resources:
fork=1.r /* Compute projected allocation state */
Simulated_allocation[requesting_ process, k| :=
Simulated_allocation[requesting_ process, k] + New_request[k];
Simulated_total_alloc[k] := Total_alloc[k] + New_request[k];
3. feasible := true;
fork=1..r /* Check whether projected allocation state 1s feasible */
if Total_resources[k] < Simulated_total_alloc[k) then feasible := false;
4. if feasible = true
then /* Check whether projected allocation state is a safe allocation state */
while set Active contains a process Py such that
For all k, Total_resources[k] — Simulated_total_alloc[k]
= Max_need|l, k] — Simulated_allocation[l, k]
Delete P; from Active:
fork =1..r
Simulated_total_alloc[k] :=
Simulated_total_alloc[k] — Simulated_allocation|l. k:
S. if ser Active is empty
then /* Projected allocation state is a safe allocation state */
fork =1..r /* Delete the request from pending requests */
Reque.i-Ied_t‘e.ﬂ-ource.w[rec;ue.a-ffr:-'g_pmce.ﬂ-.i-, :’{] = 0;
fork =1..r /* Grant the request */
Allocated_resources[requesting_process, k] :=
Allocated_resources[requesting_ process, k| + New_request[k];
Total_alloc[k] := Total_alloc[k] + New_request[k];

Example: Banker’s Algorithm for
Multiple Resource Classes

(@) State after Step 1

R\RyR;3R, RiRyR;3R, RiRyR;3R,
P, T2T1]2T1] P, [1J1[1[1] P, [o]o]ofo R R, R3R,
Py [2]4]3]2] P [2]01]0] P [o]1[t]0] ™ [5]3]5]4
Py 51422 Py l210(2]2 Py lol0|0|0
P, (o341 P fo[2[1[1] Psfofojojo] T [eTals][s
X150
Max A]lcrczlsi_‘ed Requelsfed Active [P}, Py, Py, Py}
need resources resources
(b) State before while loop of Step 4
P, TaTil2]1] B Tafa]a] PJDG{JGS_md
muiate -
Py 21432 Py l211(2]0 Pg{:l'llﬂmml_anmﬁriﬁd-
P;|5(4(2]2 P;1210[2]2 Py lO|0]O|0O
P,lo[3]4[1]| P fo[2[1[1] Psfofojojo] T [eTals][s
2X151
Max Simu]a.ted Requelsfed Active {Py. Py, P3. Py}
need allocation resources

Figure 8.8 Operation of the banker’s algorithm for Example 8.11.

(€) State after simulating completion of Process P,

Pl
PE
Py
‘D-l

| b | b

=

FES S LT S]

oo | | s | =

Max

need

P
P,
Py
P,

| =] =

|—-[-,_}||,'::||—-

= | b | b | =

]

Simulated
allocation

(d) State after simulating completion of Process P,

P
P,
P;
P,

| b | b

=

PN) RS]

O [T (P

Max

need

P
P,
P;
Py

|—-[-._}|(::||—-

o b | d | =
o] ==

Simulated
allocation

(e) State after simulating completion of Process P>

Figure 8.8 Operation of the banker’s algorithm for Example 8.11.

| b | bd

=

P,
P,
P,
Py

| = =

|—-[-,_:||,'::|>—-

[I S Y S N
—_ o] =

)

Simulated
allocation

0
0
0
0

= o I e e

oo ==

0
1
0
0

Requested
resources

0
0
0
0

o o Jf e I e

el e B Ll e

0
1
0
0

Requested
resources

o=

o=l e e e

00
01
00
0(0]0

Requested
resources

Simulated
total_alloc

Total
exist

Active

Simulated
total_alloc

Total

exist

Active

Simulated
total_alloc

Total

exist

Active

OEHE
[a]e]5]

1Py Py, Py}

4] 1]af2)
[6]4]8]5]

{ Py, Pa}

2

0|22

[6]4]8]5]

{Ps)

Characterization of Resource Deadlocks
by Graph Models

A deadlock characterization is a statement of the essential
features of a deadlock

— We discuss characterization using graph models of
allocation state and elements of graph theory

* Acycle in a RRAG or WFG is a sufficient condition for a deadlock in
some systems, but not in others

Resource request models

Single request (SR) Multiple request (MR)

model model

Multiple Multiple-instance, Multiple-instance,
instance (MI) single-request multiple-request

Resource model (MISR) (MIME)

instance

models Single Single-instance, Single-instance,
instance (SI) single-request multiple-request

model (SISR) (SIMR)

Figure 8.9 Classification of systems according to resource class and resource request
models.

Single-Instance, Single-Request (SISR)
Systems

* Each resource class contains a single instance of the
resource and each request is a single request

* A cycle in an RRAG implies a mutual wait-for relationship
for a set of processes
— Since each resource class contains a single resource unit

» Each blocked process P, in cycle waits for exactly one other process,
say P,, to release required resource

* Hence a cycle that involves P; also involves P,
* A cycle is thus a necessary and sufficient condition to
conclude that a deadlock exists in the system

Multiple-Instance, Single-Request
(MISR) Systems

 AKknot in RRAG is a necessary and sufficient condition
for the existence of a deadlock in an MISR system

Definition 8.3 Knot A nontrivial subgraph G’ = (N’.E’) of an RRAG in
which every node n; € N’ satisfies the following conditions:

1. For every edge of the form (n;,n;) in E: (n;, n;) is included in E’ and nj 1s

included in N’.
2. Ifapathn; — ... —njexists in G'. a path nj — ... —n; also exists in G'.

Figure 8.10 A knot in the RRAG of an MISR system implies a deadlock.

Single-Instance, Multiple-Request
(SIMR) Systems

* A process making a multiple request has > 1 out-edge

— It remains blocked until each of the requested resources is
available

— A cycle is a necessary and sufficient condition for a

deadlock in an SIMR system
PO

R R R,
P,

Figure 8.11 A cycle is a necessary and a sufficient condition for a deadlock in an SIMR
system.

Multiple-Instance, Multiple-Request
(MIMR) Systems

 We must differentiate between process and resource
nodes in the RRAG of an MIMR system

— All out-edges of a resource node must be involved in cycles
for a deadlock to arise

— A process node needs to have only one out-edge involved in
a cycle

* Aresource knot incorporates these conditions

Definition 8.4 Resource Knot A nontrivial subgraph G’ = (N',E’) of an
RRAG in which every node n; € N’ satisfies the following conditions:

1. If n; is a resource node, for every edge of the form (n;, n;) in E: (n;.n;) is
included in £’ and #; is included in N,
2. If a path n; — ... —nj exists in G', a path n; — ... — n; also exists in G'.

Multiple-Instance, Multiple-Request
(MIMR) Systems (continued)

* Aresource knot is a necessary and sufficient condition for
the existence of a deadlock in an MIMR system...

Figure 8.12 RRAG for an MIMR system.

— And, in all classes of systems discussed in this section

Processes in Deadlock

RR; The set of resource classes requested by process P;.
HS). The holder set of resource class Ry. i.e., set of processes to which
units of resource class Ry are allocated.
KS The set of process nodes in resource knot(s) (we call it the knot-set
of RRAG).
AS An auxiliary set of process nodes in RRAG that face indefinite
waits. These nodes are not included in a resource knot.

AS ={ P; | RR; contains Ry such that HS; C (KS U AS)} (8.4)
D=KSUAS (8.5)

PE

Ve E*—O*
E—»{')P; S E

R4 P, R
' \@

Figure 8.13 Processes in deadlock.

Deadlock Handling in Practice

* Deadlock detection-and-resolution and deadlock
avoidance are unattractive in practice (overhead)

— OS uses deadlock prevention approach or simply does not
care about possibility of deadlocks

* 0OSs tend to handle deadlock issues separately for each
kind of resource
— Memory: Explicit deadlock handling is unnecessary
— 1/0 devices: Resources are not limited (virtual devices)
— Files: Deadlocks are handled by processes, not 0S
— Control blocks: Resource ranking or all-resources-together

Deadlock Handling in Unix

* Most operating systems simply ignore the possibility of
deadlocks involving user processes
— Unix is no exception

* Unix addresses deadlocks due to sharing of kernel data
structures by user processes

— Kernel uses resource ranking (deadlock prevention) by
requiring processes to set locks on kernel data structures in
a standard order
* There are exceptions to this rule; deadlocks can arise
— Special deadlock handling for buffer cache and file system

Deadlock Handling in Windows

 Vista has feature called wait chain traversal (WCT)

— Assists applications and debuggers in detecting
deadlocks

— Await chain starts on a thread and is analogous to a path
In the RRAG

« Debugger can investigate cause of a freeze by invoking
getthreadwaitchain with the id of a thread to

retrieve a chain starting on that thread

Summary

Deadlock: set of processes wait indefinitely for events
because each of the events can be caused only by other
processes in the set

Resource deadlock arises when:
— Resources are nonshareable and nonpreemptible
— Hold-and-wait
— Circular wait exists

OS can discover a deadlock by analyzing the allocation
state of a system

— Use RRAG, WFG or matrix model
Deadlocks can be detected, prevented and avoided

