SJP N Trust's
ECE Dept.

leasugar Instltute of Technology N|dasosh| NHDL

- ,“_ ,“_ - ~;*VSem
Appreved by AICTE Recogmzed by Govt of Kamataka and Afflllated to VTU Belagaw =2017-18

Department of Electronics & Communication Engg.

Course : Verilog HDL-15EC53. Sem.; 5th

Course Coordinator:
Prof. Sachin S Patil

Verilog HDL -Introduction

Ref: Verilog — HDL by samir palnitkar 2"d Edition

Module- Basic building block

module <module name> (<module terminal list=);

<module internals=

endmodul e

- — -, —

A module can be an element or collection of low level design blocks

Levels of Abstraction-1

dSwitch Level: Module implemented with
switches and interconnects. Lowest level
of Abstraction

dGate Level: Module implemented in
terms of logic gates like (and ,or) and
Interconnection between gates

Levels of Abstraction-2

d Dataflow Level: Module designed by specifying
dataflow. The designer is aware of how data flows
between hardware registers and how the data is
processed in the design

d Behavioral Level :Module can be implemented In
terms of the desired design algorithm without
concern for the hardware implementation details.
Very similar to C programming

{:ﬂm

£\

Hierrarchy

Ripple Carry
Counter

"/

{H'HJ

)

AN /m\

o

{th]

AN

Inverter
gate

gate

gate

Inverter
gate

Basic Concepts

d Number is specified as
<size>'<phaseformat><number>

4'b1l111 // This is a 4-bit binary number
12'habec // This is a 12-bit hexadecimal number
16'd255 // This is a 16-hit decimal number.

23456 // This is a 32-bit decimal number by default
‘hed // This is a 32-bit hexadecimal number
‘o021 // This is a 32-bit octal number

Contd.

-6'd3 // 8-bit negative number stored as 2's complement of 3

Value Level Condition in Hardware Circuits
0 | Logic iem; false condition

1 Logic one, true condition

X Unknown value

z High impedance, floating state

Nets " o

 Nets represent connections between hardware
elements. Just as in real circuits, nets have values
continuously driven on them by the outputs of
devices that they are connected to.

wire a: // Declare net a for the above circuit

| wire b,c; // Declare two wires b,oc for the above circuit

Registers

 Registers represent data storage elements.
Registers retain value until another value is placed
onto them.

d In Verilog, the term register merely means a
variable that can hold a value.

d Unlike a net, a register does not need a driver.

req reset; // declare a variable reset that can hold its value

reset = 1'bl; //initlalize reset to 1 to reset the digital circuit.

Vectors

JArrays of Regs and Nets

wire a; // scalar net variable, default

wire [7:0] bus; // 8-bit bus

wire [31:0] busi,busB,busC; // 3 buses of 32-bit width.

reg clock; // scalar register, default

reg [0:40] virtual_addr; // Vector register,virtual address 41bitswide

Integers and Parameters

integer counter; // general purpose variable used as a counter.
initial
counter = -1; // A negative one 18 stored in the counter

|parameter port_id = 5; //Defines a constant port_id
parameter cache line width=236; //Constant defines width of cache line

Ports

 Ports provide interface for by which a module can
communicate with its environment

nodule fulladdd(sum, ¢ out, &, b, c in):

Top

a—®» o

adder - sum iﬂpﬂt Input F'Uﬂ
b —| (4bit)
C_in ——gu fulladd4 —m= c_out autput Dlltpl]t FD”

inout Bidirectional port

Module

Module Name,
Port List, Port Declarations (if ports present)

Parameters{optional),

Declarations of wires, Data flow statements

rags and other variables (lﬂliﬂ'ﬂ}

Instantiation of lower always and initial blocks.

level modules All behavioral statements
g0 in these blocks.

Tasks and functions

endmodule statement

Port connection rules

net t
net ginnut

mput output
: - —> >
reg or net net reg or net net

Example

module DFF (g, 4, clk, reset};
output g;

redg g; /7 Qutput port g holds value;
input d, clk, reset;

endmodul & ok TP ¥

Connecting Ports

dSuppose we have a module

module fulladdd (sum, c_out, a, b, c_in);

module Top;

//Declare connection variables
reg [3:0]A,B;

reg C_IN;

wire [3:0] SUM;

wire C_OUT;

//Instantiate fulladdd4, call it fa_ordered.
//Signals are connected to ports in order (by position)

fulladdd fa ordered(SUM, C _OQOUT, A, B, C_IN);

fulladdd falO{suM, , A, B, C_IN); // Output port c_out 1s uncmnnecte{

// Instantiate module fa_byname and connect signals to ports by name
fulladdd fa_byname(.sum(SUM), .bB(B), .c_in{(C_IN), .a(a),);

// Instantiate module fa byname and connect signals to ports by name
fulladdd fa byname(.c_out(C_OUT), .sum(SUM), .b(B), .c_in{C_IN),
.ald),);

Gate Level Modeling

A logic circuit can be designed by use of logic
gates.

1 Verilog supports basic logic gates as predefined
primitives. These primitives are instantiated like
modules except that they are predefined in Verilog
and do not need a module definition.

and or WOT
nand nor HINor

Gate gate_name(out,in1,in2...)

N — t 11— out
L
2 — od i —

and nand

wire QOUT, IN1, IN2;

// basic gate instantiations.
and al (oUT, IN1, INZ):

nand nal (OUT, IN1, IN2);

or orl(QUT, IN1, IN2);

nor norl {OUT, IN1, INZ);

xor x1{0UT, IN1, IN2):

xnor nxl {(0UT, IN1, IN2);

Buf/not gates

dBuflnot gates have one scalar input and
one or more scalar outputs.
// basic gate instantiations.

buf bl (OUT1, IN):
not nl (OUT1, IN});

J// More than two outputs
buf bl Zout (OUT1, OUT2, IN);

// gate instantiation without instance namea
not (OUTL1l, IN):; // legal gate instantiation

Bufif/notif

ctrl
out bufifl| p 1 X Z
0| z 0 L L
ctrl . 11! Z H H
in
bufifl X |z x @ x X
z A X X x
ctrl
notifdl p 1 x =z
011 z H H
: 110 =z L L < in out
in
X | X Z X X
ctrl
Z | x
z X X notifo

Instantiation of bufif gates

f/Instantiation
bufifl bl (out,

bufifl bl (out,

S /Instantiatcion
notifl nl {out,
notif0 nQ {out,

of bufif gates.
in, ctrl):
in, ctrl);

of notif gates
in, ctrl);
in, ctrl);

Design of 4:1 Multiplexer

- S sl T T - - TR N e S S SIS e T S T S . I S T S— S— —

Contd..

/] Module 4-to-1 multiplexer, Port list is taken exactly from

// the I/0 diagram,
module muxd_to_l f{out, 10, i1, i2, i3, sl, s0);

// Port declarations from the I/0 diagram
output out;

input i0, i1, i2, 13;

input sl, s0;

dd Internal wire declarations
wire sln, s0n;
wire wiO, wl, w2, vw3i;

S5 Sate instantiations

SO Create sln and s0n signals.
not (sln, =21);
not (s0n, =0);

S d—dinput and gates instantiated
and (w0, 10, =1ln, s0r1) ;

and (w1, il, =1, =0) ;:
and (v2,., 12, =1, =0n};
and {(yv3, 413, =1, =0);

Y o d—input or gate instanciated
or {out, w0, »1, w2, »i3);

erndmodule

Stimulus

// Define the stimulus module {(no ports)
module stimulus:

// Declare variables to be connected
// to inputs

reg INO, IN1, INzZ, IN3;

reg S1, S50;

// Declare output wire
wire QUTPUT:

// Instantiate the multiplexer
muxd to 1 mymux {QUTPUT, INO, IN1, INZ,

THE,

s1,

500 ;

/¢ Define the stimulus module

// SBtimulate the inputs

initi
begin

/4 set input lines
Oy

INO

al

= 1; IN1l =

INZ

#1 Sdisplay ("INO= %b,

$b\n",INO,IN1, IN2,IN3)

£/
s1

#1

i
51

1l

r
sl
#1

i/

=51

#1
end

endmo

choose INQ
= 0; 80 = 0;
Sdisplay ("5l

choose INL
= 0: 80 = 1;
Sdisplay("sl

choose INZ
= 1; 80 = 0;
sdisplay("sl

choose IN3

= 1; 50 = 1;
Sdisplay ('Sl

dule

i

&b,

%,

%b,

%b,

S0

S0

S0

S0

ino ports)

IN3 = 0;

th, INZ= %b,

b, OUTPUT

%o, OUTPUT

sh, OUTPUT

%bh, OoUTPUT

IN3=
b \n", 31,
%k \n", 51,

b \n", 51,

tb \n", 51,

S0,

50,

50,

S0,

OUTFUT) ;

OUTPUT) ;

QUTFUT) ;

QUTFUT) ;

C_

o

in

4 bit full adder

sum

'V}u— c_out
y A

sum= (a® b ® cin) cout = {a-b) +cin- (a®b)

Declaration:

{/ Define a l-bit full adder
module fulladdi(sum, c_ocut, a, b, c_in};

{/ I/0 port declarations
output sum, <_out;
input a, b, c_in;

// Internal nets
wire sl, cl, c2;

Code contd..

// Instantiate logic gate primitives

xor (81, a, b);
and (ecl, a, b);

¥xor {sum, =21, c_in);
and {(c2, sl, c_in);

or f{c_out, c2, cl);

cndmodul e

4 bit adder using 1 bit adder

a[0] bl0] al1] bl1] a[2] bl2] a[3] bl3]

S R E A s

+ full | ¢1 full | o full | - full ¢_out
C_In—p= adder——M adder——#= adder—® adder——#

fa0 | fal fa2 fa3

e —

ff Define a 4-bit full adder
| madule fulladdd (sum, c_ocut, a, b, c_in);

/f I/0 port declarations
output [3:0] sum;

output C_out;

input[3:0] a, b;

input c_in;

ff Internal nets
wire cl, o2, c3;

) Instantiate four l-bit full adders.

fulladd faO{sum[0], <l, al[0], b[0O], c_in);
fulladd fali{sum[l], c2, alll, bll]l, cl;;
fulladd faz(sumi2], <3, al[2]. bl2]., c2);
fulladd fa3{sum[2], c_out, al3], b[3]. c3);

endmodul e

Stimulus

/{ Define the stimulus {(top level module)
module stimulus:

// Bet up variables
reg [3:0] A, B;

reg C_IN;

wire [3:0] SUM;
wire C_OUT;

// Instantiate the 4-bit full adder. call it FAl_4
fulladdd Fal 4(5UM, C_OUT, A, B, C_IN);

Gate Delays:

dRise Delay: Delay associated with a o/p
transition to 1 from any value.

] 1, xore . l
f| 1 \
/ \

! \
! LY
L I

| rise t_fall

Fall Delay: Delay associated with o/p
transition to O from any value.

Turn off Delay: Delay associate with o/p
transition to Z from another value.

]

L
I
d
i
i

I________I.__—.__

=2

L

S |

B= 1'El; = 1"bhid;

1~bo;

T

C= 1"bl-;

1*"bBl;

IR=

1'Bl1;

A=

#id

i

I
o

1 "B

H=

= 1'bl;

1o &

e

E

]
14 15

OLTT XU |

|
2{1

10

Tima O

Dataflow Modeling

dIn complex designs the number of gates
IS very large

dCurrently, automated tools are used to
create a gate-level circuit from a dataflow
design description. This process Is called
logic synthesis

Continuous Assignment

//8yntax of assign statement in the simplest form

<continuous_assign=
::= assign <drive_strength>?<delay>? <list_of_assignments>;

// Continuous assign. out 15 a net. 1l and 12 are nets.
assign out = 11 & 12;

// Continuous assign for vector nets. addr is a 16-bit vector net
// addrl and addr? are 16-bit vector registers.
assign addr(15:0] = addrl_bits[15:0] ~ addr2_bits[15:0];

// Concatenation. Left-hand side is a concatenaticon of a scalar

// net and a vector net.
assign {c_out, sum[3:0]} = a[3:0] + b[3:0] + c_in;

Rules:

 The left hand side of an assignment must always
be a scalar or vector net

It cannot be a scalar or vector register.
 Continuous assignments are always active.

 The assignment expression is evaluated as soon
as one of the right-hand-side operands changes
and the value Is assigned to the left-hand-side net.

dThe operands on the right-hand side can
be registers or nets.

dDelay values can be specified for
assignments in terms of time units. Delay
values are used to control the time when
a net Is assigned the evaluated value

assign #10 out = inl & in2; // Delay in a continucus assign

| I I

| r r
inl | | i

1 |

| ' | } —
in2 | 1 | | O

| | ! |)
out Sooood] | l | -
ime 10 20 130 60 70 80 85

Operator Types

Operator Operator Operation Number of
Type Symbol Performed Operands
Arithmetic - multiply two
! divide two
+ add two
- subtract two
% modulus two
Logical ! logical negation one
Bk logical and two
I logical or two
' Relational > greater than two
< less than two
>= greater than or equal two
<= less than or equal two
Equality == equality two
! = inequality two
- case equality two
== case inequality two
Bitwise - bitwise negation one
& bitwise and two
| bitwise or two
» bitwise xor two
A Oor ~M two

bitwise xnor

| Operator Operator Operation Number of
Type Symbol Performed Operands
Shift > Right shift two
<< Left shift two
Concatenation { } Concatenation any number
Replication { {1} Replication any number
Conditional (X Conditional three
Reduction & redutti.ﬂn aru:i—) ﬂI'IE:_
~f reduction nand one
| reduction or one
~| reduction nor one
A reduction xor one
Ao O ~* reduction xnor one

Conditional Operator
Usage: condition_expr 7 true_expr : false_expr ;

//model functionality of a Z-to-1 mux
assign out = control 7 inl : 1in0;

4:1 Multiplexer Example

{/ Module 4-to-1 multiplexer using data flow. leogic egquation
// Compare to gate-level model
module muxd _to 1 (out, 10, 11, 12, 13, =1, =0);

// Port declarations from the I/0 diagram
cubtput out;

input 10, i1, i2, 1i3;

input =21, =0;

//Logic equation for out

assign out = (~s1 & ~s0 & 1i0) |
(~s1 & s0 & 11) |
(sl & ~s0 & 12) |
(sl & s0 & 13) :

endmodule

