
S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi

ECE Dept.

DSDV

VI Sem

2017-18

Department of Electronics & Communication Engg.

Course : Digital System Design using Verilog.         Sem.: 6th (2017-18)

Course Coordinator: 

Prof. D. M. Kumbhar



Digital System Design

Using Verilog

Module 1

Introduction and Methodology

Portions of this work are from the book, Digital Design: An Embedded 

Systems Approach Using Verilog, by Peter J. Ashenden, published by Morgan 

Kaufmann Publishers, Copyright 2007 Elsevier Inc. All rights reserved.



Digital Design

Digital: circuits that use two voltage levels to represent 

information

Logic: use truth values and logic to analyze circuits

Design: meeting functional requirements while satisfying 

constraints

History : Mechanical – electromechanical – analog

Use

Disadvantages : accuracy, speed, maintenance.  

Early circuits - digital circuits. 

Constraints: performance, size, power, cost, etc.



Design using Abstraction

• Circuits contain millions of transistors

– How can we manage this complexity?

• Abstraction

– Focus on aspects relevant aspects, 
ignoring other aspects

– Don’t break assumptions that allow aspect 
to be ignored!

• Examples:

– Transistors are on or off

– Voltages are low or high



Digital Systems

• Electronic circuits that use discrete 

representations of information

– Discrete in space and time



Embedded Systems

• Most real-world digital systems include 

embedded computers

– Processor cores, memory, I/O

• Different functional requirements can be 

implemented

– by the embedded software

– by special-purpose attached circuits

• Trade-off among cost, performance, 

power, etc.



Binary Representation

• Basic representation for simplest 

form of information, with only two 

states

– a switch: open or closed

– a light: on or off

– a microphone: active or muted

– a logical proposition: false or true

– a binary (base 2) digit, or bit: 0 or 1



Binary Representation: Example

switch_pressed

+V

• Signal represents the state of the switch

– high-voltage => pressed,

low-voltage => not pressed

• Equally, it represents state of the lamp

– lamp_lit = switch_pressed



Basic Gate Components

• Primitive components for logic design

AND gate OR gate

inverter multiplexer

0

1



Combinational Circuits

• Circuit whose output values depend 

purely on current input values

>30°C

low level

buzzer

>25°C

>30°C

low level

>25°C

0

1

vat 0

vat 1 select vat 1

select vat 0

+V



Sequential Circuits

• Circuit whose output values depend on 

current and previous input values

– Include some form of storage of values

• Nearly all digital systems are sequential

– Mixture of gates and storage components

– Combinational parts transform inputs and 

stored values



Flipflops and Clocks

• Edge-triggered D-flipflop

– stores one bit of information at a time

D Q

clk

 Timing diagram

 Graph of signal values versus time



Real-World Circuits

• Assumptions behind digital abstraction

– ideal circuits, only two voltages, 

instantaneous transitions, no delay

• Greatly simplify functional design

• Constraints arise from real components 

and real-world physics

• Meeting constraints ensures circuits are 

―ideal enough‖ to support abstractions



Integrated Circuits (ICs)

• Circuits formed on surface of silicon wafer

– Minimum feature size reduced in each 

technology generation

– Currently 90nm, 65nm

– Moore’s Law: increasing transistor count

– CMOS: complementary MOSFET circuits

outputinput

+V



Logic Levels

• Actual voltages for ―low‖ and ―high‖

– Example: 1.4V threshold for inputs



Logic Levels

• TTL logic levels with noise margins

VOL: output low voltage VIL: input low voltage

VOH: output high voltage VIH: input high voltage



Static Load and Fanout

Digital Design — Chapter 1 — Introduction and Methodology 17

Static Load and Fanout

• Current flowing into or out of an output

 High: SW1 closed, SW0 open

 Voltage drop across R1

 Too much current: VO < VOH

 Low: SW0 closed, SW1 open

 Voltage drop across R0

 Too much current: VO > VOL

 Fanout: number of inputs 

connected to an output

 determines static load



Static Load and Fanout

18

Static Load and Fanout

• Current flowing into or out of an output

 High: SW1 closed, SW0 open

 Voltage drop across R1

 Too much current: VO < VOH

 Low: SW0 closed, SW1 open

 Voltage drop across R0

 Too much current: VO > VOL

 Fanout: number of inputs 

connected to an output

 determines static load



19

Capacitive Load and Prop Delay

• Inputs and wires act as capacitors

 tr: rise time

 tf: fall time

 tpd: propagation delay
 delay from input transition 

to output transition 

 tpd= max(tpd01, tpd10 )



20

Other Constraints

• Wire delay: delay for transition to 

traverse interconnecting wire

• Flipflop timing

– delay from clk edge to Q output

– D stable before and after clk edge

• Power

– current through resistance => heat

– must be dissipated, or circuit cooks!

– Static & dynamic power consumption 



21

Area and Packaging

• Circuits implemented on silicon chips

– Larger circuit area => greater cost

• Chips in packages with connecting 

wires

– More wires => greater cost

– Package dissipates heat

• Packages interconnected on

a printed circuit board (PCB)

– Size, shape, cooling, etc,

constrained by final product



22

Models

• Model: represents interested aspects omits other 
(abstraction of an object) Ex. House, train, plane.

• Electronic model: Prototype circuit               

Abstract expression in some modeling language

• Abstract representations of aspects of a 
system being designed
– Allow us to analyze the system before building it

• Example: Ohm’s Law
– V = I × R

– Represents electrical aspects of a resistor

– Expressed as a mathematical equation

– Ignores thermal, mechanical, materials aspects



23

Models

• Model: represents interested aspects omits other 
(abstraction of an object) Ex. House, train, plane.

• Electronic model: Prototype circuit               

Abstract expression in some modeling language

• Abstract representations of aspects of a 
system being designed
– Allow us to analyze the system before building it

• Example: Ohm’s Law
– V = I × R

– Represents electrical aspects of a resistor

– Expressed as a mathematical equation

– Ignores thermal, mechanical, materials aspects



24

Module Ports

• Describe input and outputs of a circuit

>30°C

low level

buzzer

>25°C

>30°C

low level

>25°C

0

1

above_25_0

below_25_0

temp_bad_0

below_25_1

above_30_0

inv_0

or_0a

or_1a

or_0b

select_mux

or_1b
inv_1

wake_up_0

wake_up_1

low_level_0

above_25_1

above_30_1

low_level_1

select_vat_1

buzzer

temp_bad_1

+V



25

Structural Module Definition

module vat_buzzer_struct
( output buzzer,

input above_25_0, above_30_0, low_level_0,
input above_25_1, above_30_1, low_level_1,
input select_vat_1 );

wire below_25_0, temp_bad_0, wake_up_0;
wire below_25_1, temp_bad_1, wake_up_1;

// components for vat 0
not inv_0 (below_25_0, above_25_0);
or or_0a (temp_bad_0, above_30_0, below_25_0);
or or_0b (wake_up_0, temp_bad_0, low_level_0);

// components for vat 1
not inv_1 (below_25_1, above_25_1);
or or_1a (temp_bad_1, above_30_1, below_25_1);
or or_1b (wake_up_1, temp_bad_1, low_level_1);

mux2 select_mux (buzzer, select_vat_1, wake_up_0, wake_up_1);

endmodule



26

Behavioral Module Definition

module vat_buzzer_struct
( output buzzer,

input above_25_0, above_30_0, low_level_0,
input above_25_1, above_30_1, low_level_1,
input select_vat_1 );

assign buzzer =
select_vat_1 ? low_level_1 | (above_30_1 | ~above_25_1)

: low_level_0 | (above_30_0 | ~above_25_0);

endmodule



27

Design Methodology
• Design: complex, large no of undertakings & requirements. 

Systematic approach of working out how to construct circuits that 
meets given requirements.

• Simple systems can be design by one person using 
ad hoc methods

• Real-world systems are design by teams
– Require a systematic design methodology

– Design methodology: systematic process of design, 
verification and preparation for manufacture a product.

• Specifies
– Tasks to be undertaken

– Information needed and produced

– Relationships between tasks

• dependencies, sequences

– EDA tools used



Design Methodology

• A mature design methodology:    
schedule & budget, no of errors detected and 

missed, data from previous projects to 

improve new one

• Advantages:

– Design process more reliable and 
predictable

– Reducing risk and cost

– Reducing scale

28



29

A Simple Design Methodology

Requirements

and

Constraints

Design

Functional

Verification

OK?

N

Synthesize

Post-synthesis

Verification

OK?

N

Y

Physical

Implementation

Physical

Verification

OK?

N

Y

Manufacture

Test

Y



30

Hierarchical Design

• Circuits are too complex for us to design all 
the detail at once

• Design subsystems for simple functions

• Compose subsystems to form the system
– Treating sub circuits as ―black box‖ components

– Ex. Display 

– Reuse-present, previous or third party project

– Save – design effort & cost.

– Verify independently, then verify the composition

• Top-down/bottom-up design



31

Hierarchical Design

Design

Functional

Verification

OK?

N

Y

Unit

Design

Unit

Verification

OK?
N

Y

Architecture

Design

Integration

Verification

OK?
N

Y



32

Synthesis

• We usually design using register-transfer-

level (RTL) Verilog

– Higher level of abstraction than gates

• Synthesis tool translates to a circuit of gates 

that performs the same function

• Specify to the tool

– the target implementation fabric

– Library – properties, timing, area, power

– constraints on timing, area, etc.

• Post-synthesis verification

– synthesized circuit meets constraints



33

Physical Implementation

• Implementation fabrics

– Application-specific ICs (ASICs)

– Field-programmable gate arrays (FPGAs)

• Floor-planning: arranging the subsystems

• Placement: arranging the gates within 

subsystems

• Routing: joining the gates with wires

• Physical verification

– physical circuit still meets constraints

– use better estimates of delays



34

Embedded system Design

Codesign Methodology

OK?
N

Partitioning

Hardware

Design and

Verification

Software

Requirements

and Constraints

Software

Design and

Verification

OK?
N

Manufacture

and Test

Requirements

and

Constraints

Hardware

Requirements

and Constraints



35

Combinational Circuits

• Circuits whose outputs depend only on 

current input values

– no storage of past input values

– no state

• Can be analyzed using laws of logic

– Boolean algebra, similar to propositional 

calculus



36

Combinational Components

• We can build complex combination 

components from gates

– Decoders, encoders

– Multiplexers

– …

• Use them as subcomponents of larger 

systems

– Abstraction and reuse



37

Decoders

• A decoder derives control signals 

from a binary coded signal

– One per code word

– Control signal is 1 when input has the 

corresponding code word; 0 otherwise

• For an n-bit code input

– Decoder has 2n outputs

• Example: (a3, a2, a1, a1)

– Output for (1, 0, 1, 1): 012311 aaaay 

a0

a1

a2

y0

y1

y2

y3

y4

… …

y15

a3



38

Decoder Example

Color Codeword (c2, c1, c0)

black 0, 0, 1

cyan 0, 1, 0

magenta 0, 1, 1

yellow 1, 0, 0

red 1, 0, 1

blue 1, 1, 0



39

Decoder Example

module ink_jet_decoder
( output black, cyan, magenta, yellow,

light_cyan, light_magenta,
input color2, color1, color0 );

assign black         = ~color2 & ~color1 &  color0;
assign cyan          = ~color2 &  color1 & ~color0;
assign magenta       = ~color2 &  color1 &  color0;
assign yellow        =  color2 & ~color1 & ~color0;
assign light_cyan    =  color2 & ~color1 &  color0;
assign light_magenta =  color2 &  color1 & ~color0;

endmodule



40

Encoders

• An encoder encodes which 

of several inputs is 1

– Assuming (for now) at most 

one input is 1 at a time

• What if no input is 1?

– Separate output to indicate 

this condition

a0

a1

a2

y0

y1

y2

y3

… …

valid

a3

a4

a15



41

Encoder Example

• Burglar alarm: encode 

which zone is active

Zone Codeword

Zone 1 0, 0, 0

Zone 2 0, 0, 1

Zone 3 0, 1, 0

Zone 4 0, 1, 1

Zone 5 1, 0, 0

Zone 6 1, 0, 1

Zone 7 1, 1, 0

Zone 8 1, 1, 1



42

Encoder Example

module alarm_eqn ( output [2:0] intruder_zone,
output valid,
input [1:8] zone );

assign intruder_zone[2] = zone[5] | zone[6] |
zone[7] | zone[8];

assign intruder_zone[1] = zone[3] | zone[4] |
zone[7] | zone[8];

assign intruder_zone[0] = zone[2] | zone[4] |
zone[6] | zone[8];

assign valid = zone[1] | zone[2] | zone[3] | zone[4] |
zone[5] | zone[6] | zone[7] | zone[8];

endmodule



43

Priority Encoders

• If more than one input can be 1

– Encode input that is 1 with highest priority

zone intruder_zone valid

(1) (2) (3) (4) (5) (6) (7) (8) (2) (1) (0)

1 – – – – – – – 0 0 0 1

0 1 – – – – – – 0 0 1 1

0 0 1 – – – – – 0 1 0 1

0 0 0 1 – – – – 0 1 1 1

0 0 0 0 1 – – – 1 0 0 1

0 0 0 0 0 1 – – 1 0 1 1

0 0 0 0 0 0 1 – 1 1 0 1

0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 – – – 0



44

Priority Encoder Example

module alarm_priority_1 ( output [2:0] intruder_zone,
output valid,
input [1:8] zone );

assign intruder_zone = zone[1] ? 3'b000 :
zone[2] ? 3'b001 :
zone[3] ? 3'b010 :
zone[4] ? 3'b011 :
zone[5] ? 3'b100 :
zone[6] ? 3'b101 :
zone[7] ? 3'b110 :
zone[8] ? 3'b111 :
3'b000;

assign valid = zone[1] | zone[2] | zone[3] | zone[4] |
zone[5] | zone[6] | zone[7] | zone[8];

endmodule



45

BCD Code

• Binary coded decimal

– 4-bit code for decimal digits

0: 0000 1: 0001 2: 0010 3: 0011 4: 0100

5: 0101 6: 0110 7: 0111 8: 1000 9: 1001



46

Seven-Segment Decoder

• Decodes BCD to drive a 7-segment 

LED or LCD display digit

– Segments: (g, f, e, d, c, b, a)

a

b

cde

f g 0111111 0000110 1011011 1001111 1100110

1101101 1111101 0000111 1111111 1101111



Digital Design — Chapter 2 — Combinational Basics 47

Seven-Segment Decoder

module seven_seg_decoder ( output [7:1] seg,
input [3:0] bcd, input blank );

reg [7:1] seg_tmp;

always @*
case (bcd)
4'b0000: seg_tmp = 7'b0111111;   // 0
4'b0001: seg_tmp = 7'b0000110;   // 1
4'b0010: seg_tmp = 7'b1011011;   // 2
4'b0011: seg_tmp = 7'b1001111;   // 3
4'b0100: seg_tmp = 7'b1100110;   // 4
4'b0101: seg_tmp = 7'b1101101;   // 5
4'b0110: seg_tmp = 7'b1111101;   // 6
4'b0111: seg_tmp = 7'b0000111;   // 7
4'b1000: seg_tmp = 7'b1111111;   // 8
4'b1001: seg_tmp = 7'b1101111;   // 9
default: seg_tmp = 7'b1000000;   // "-" for invalid code

endcase

assign seg = blank ? 7'b0000000 : seg_tmp;

endmodule



48

Multiplexers

• Chooses between data inputs based on 

the select input

2-to-1 mux

sel z

0 a0

1 a1

4-to-1 mux

sel z

00 a0

01 a1

10 a2

11 a3

two select 

bits

 N-to-1 multiplexer 

needs log2 N

select bits

0

1

0

1

2

3

2



49

Multiplexer Example

module multiplexer_4_to_1 ( output reg       z,
input [3:0] a,
input sel );

always @*
case (sel)
2'b00: z = a[0];
2'b01: z = a[1];
2'b10: z = a[2];
2'b11: z = a[3];

endcase

endmodule



50

Multi-bit Multiplexers

• To select between N

m-bit codeword inputs

– Connect m N-input 

multiplexers in parallel

– 3-bit 2 codewords requires 

3, 2 input multiplexers

• Abstraction

– Treat this as a component

0

1

0

1

0

1

0

1

a0(0)

a1(0)
z(0)

a0 3

3

3

a1
z

a0(1)

a1(1)
z(1)

a0(2)

a1(2)

sel

sel

z(2)



51

Multi-bit Mux Example

module multiplexer_3bit_2_to_1 ( output [2:0] z,
input [2:0] a0, a1,
input sel );

assign z = sel ? a1 : a0;

endmodule



52

Active-Low Logic

• We’ve been using active-high logic

– 0 (low voltage): falsehood of a condition

– 1 (high voltage): truth of a condition

• Active-low logic logic

– 0 (low voltage): truth of a condition

– 1 (high voltage): falsehood of a condition

– reverses the representation, not negative voltage!

• In circuit schematics, label active-low signals with 

overbar notation

– eg, lamp_lit: low when lit, high when not lit



53

Active-Low Example

• Night-light circuit, lamp connected to 

power supply

Match bubbles with 

active-low signals 

to preserve logic 

sense

Overbar indicates 

active-low

lamp_enabled

dark

lamp_lit

sensor

+V +V



54

Implied Negation

• Negation implied by connecting

– An active-low signal to an active-high input/output

– An active-high signal to an active-low input/output

Negation implied

lamp_enabled

light

lamp_lit

sensor

+V



55

Active-Low Signals and Gates

 DeMorgan’s laws suggest alternate views 

for gates

 They’re the same electrical circuit!

 Use the view that best represents the logical 

function intended

 Match the bubbles, unless implied negation is 

intended



56

Active-Low Logic in Verilog

• Can’t draw an overbar in Verilog

– Use _N suffix on signal or port name

• 1'b0 and 1'b1 in Verilog mean low and high

• For active-low logic

– 1'b0 means the condition is true

– 1'b1 means the condition is false

• Example

– assign lamp_lit_N = 1'b0;

– turns the lamp on



57

Combinational Verification

• Design Methodology – requirements & constraints 

• Combination circuits: outputs are a function of inputs

– Functional verification: making sure it's the right function!

– Testbench model 

– DUV /DUT

Design Under

Verification

(DUV)
Apply

Test Cases Checker

Verification Testbench



58

Verification Example

• Verify operation of traffic-light controller

• Property to check

– enable  lights_out == lights_in

– !enable  all lights are inactive

• Represent this as an assertion in the 

checker



59

Testbench Module

`timescale 1ms/1ms

module light_testbench;

wire [1:3] lights_out;
reg [1:3] lights_in;
reg enable;

light_controller_and_enable duv ( .lights_out(lights_out),
.lights_in(lights_in),
.enable(enable) );



60

Applying Test Cases

initial begin
enable = 0; lights_in = 3'b000;

#1000 enable = 0; lights_in = 3'b001;
#1000 enable = 0; lights_in = 3'b010;
#1000 enable = 0; lights_in = 3'b100;
#1000 enable = 1; lights_in = 3'b001;
#1000 enable = 1; lights_in = 3'b010;
#1000 enable = 1; lights_in = 3'b100;
#1000 enable = 1; lights_in = 3'b000;
#1000 enable = 1; lights_in = 3'b111;
#1000 $finish;

end



61

Checking Assertions

always @(enable or lights_in) begin
#10
if (!( ( enable && lights_out == lights_in) ||

(!enable && lights_out == 3'b000) ))
$display("Error in light controller output");

end

endmodule



62

Functional Coverage

• Did we test all possible input cases?

• For large designs, exhaustive testing is 

not tractable

– N inputs: number of cases = 2N

• Functional coverage

– Proportion of test cases covered by a 

testbench

– It can be hard to decide how much testing 

is enough



63

Sequential Basics

• Sequential circuits

– Outputs depend on current inputs and 

previous inputs

– Store state: an abstraction of the history of 

inputs

• Usually governed by a periodic clock 

signal

• Flip flop, registers, counters



64

Datapaths and Control

• Digital systems perform sequences of operations on 
encoded data

• Datapath
– Combinational circuits for operations

– Registers for storing intermediate results

• Control section: control sequencing
– Generates control signals

• Selecting operands

• Selecting operations to perform

• Enabling registers at the right times

• Activate signal at right order & right time

– Uses status signals from datapath

• Challenging task: requirements & constraints

– Functional requirements – alternatives for implementation 

– Tradeoff – area, performance.



65

Example: Complex Multiplier

• Cartesian form, fixed-point

– operands: 4 pre-, 12 post-binary-point bits

– result: 8 pre-, 24 post-binary-point bits

• Subject to tight area constraints

ir jaaa  ir jbbb 

)()( riiriirrir babajbabajppabp 

 4 multiplies, 1 add, 1 subtract

 Perform sequentially using 1 multiplier, 1 

adder/subtracter



66

Complex Multiplier Datapath

0

1

0

1

D

CE

Q

clk

D

CE

Q

clk

× ±

D

CE

Q

clk

D

CE

Q

clk

p_r

p_i

a_r

a_i

b_r

b_i

a_sel

b_sel

pp1_ce

pp2_ce

sub

p_r_ce

p_i_ce

clk



67

Complex Multiplier in Verilog

module multiplier
( output reg signed [7:-24] p_r, p_i,

input signed [3:-12] a_r, a_i, b_r, b_i,
input clk, reset, input_rdy );

reg a_sel, b_sel, pp1_ce, pp2_ce, sub, p_r_ce, p_i_ce;

wire signed [3:-12] a_operand, b_operand;
wire signed [7:-24] pp, sum
reg signed [7:-24] pp1, pp2;

...



68

Complex Multiplier in Verilog

assign a_operand = ~a_sel ? a_r : a_i;
assign b_operand = ~b_sel ? b_r : b_i;

assign pp = {{4{a_operand[3]}}, a_operand, 12'b0} *
{{4{b_operand[3]}}, b_operand, 12'b0};

always @(posedge clk)  // Partial product 1 register
if (pp1_ce) pp1 <= pp;

always @(posedge clk)  // Partial product 2 register
if (pp2_ce) pp2 <= pp;

assign sum = ~sub ? pp1 + pp2 : pp1 - pp2;

always @(posedge clk)  // Product real-part register
if (p_r_ce) p_r <= sum;

always @(posedge clk)  // Product imaginary-part register
if (p_i_ce) p_i <= sum;

...

endmodule



69

Multiplier Control Sequence

• Avoid resource conflict

• First attempt

1. a_r * b_r → pp1_reg

2. a_i * b_i → pp2_reg

3. pp1 – pp2  → p_r_reg

4. a_r * b_i → pp1_reg

5. a_i * b_r → pp2_reg

6. pp1 + pp2  → p_i_reg

• Takes 6 clock cycles



70

Multiplier Control Sequence

• Merge steps where no resource conflict

• Revised attempt

1. a_r * b_r → pp1_reg

2. a_i * b_i → pp2_reg

3. pp1 – pp2  → p_r_reg

a_r * b_i → pp1_reg

4. a_i * b_r → pp2_reg

5. pp1 + pp2  → p_i_reg

• Takes 5 clock cycles



71

Multiplier Control Signals

Step a_sel b_sel pp1_ce pp2_ce sub p_r_ce p_i_ce

1 0 0 1 0 – 0 0

2 1 1 0 1 – 0 0

3 0 1 1 0 1 1 0

4 1 0 0 1 – 0 0

5 – – 0 0 0 0 1



72

Finite-State Machines

• Used the implement control sequencing

– Based on mathematical automaton theory

• A FSM is defined by

– set of inputs: Σ

– set of outputs: Γ

– set of states: S

– initial state: s0  S

– transition function: δ: S × Σ → S

– output function: ω: S × Σ → Γ or ω: S → Γ



73

FSM in Hardware

• Mealy FSM: ω: S × Σ → Γ

• Moore FSM: ω: S → Γ

Mealy FSM 

only



74

FSM Example: Multiplier Control

• One state per step

• Separate idle state? 

– Wait for input_rdy = 1

– Then proceed to steps 1, 2, ...

– But this wastes a cycle!

• Use step 1 as idle state

– Repeat step 1 if input_rdy ≠ 1

– Proceed to step 2 otherwise

• Output function

– Defined by table on slide 43

– Moore or Mealy?

current_
state

input_
rdy

next_
state

step1 0 step1

step1 1 step2

step2 – step3

step3 – step4

step4 – step5

step5 – step1

Transition function



75

State Encoding

• Encoded in binary

– N states: use at least log2N bits

• Encoded value used in circuits for transition 

and output function

– encoding affects circuit complexity

• Optimal encoding is hard to find

– CAD tools can do this well

• One-hot works well in FPGAs

• Often use 000...0 for idle state

– reset state register to idle



76

FSMs in Verilog

• Use parameters for state values

– Synthesis tool can choose an alternative 

encoding

parameter [2:0] step1 = 3'b000, step2 = 3'b001,
step3 = 3'b010, step4 = 3'b011,
step5 = 3'b100;

reg [2:0] current_state, next_state ;

...



77

Multiplier Control in Verilog

always @(posedge clk or posedge reset)  // State register
if (reset) current_state <= step1;
else current_state <= next_state;

always @*  // Next-state logic
case (current_state)
step1: if (!input_rdy) next_state = step1;

else next_state = step2;
step2:                 next_state = step3;
step3:                 next_state = step4;
step4:                 next_state = step5;
step5:                 next_state = step1;

endcase



78

Multiplier Control in Verilog

always @* begin // Output_logic
a_sel = 1'b0; b_sel = 1'b0;  pp1_ce = 1'b0; pp2_ce = 1'b0;
sub = 1'b0;   p_r_ce = 1'b0; p_i_ce = 1'b0;
case (current_state)
step1: begin

pp1_ce = 1'b1;
end

step2: begin
a_sel = 1'b1; b_sel = 1'b1; pp2_ce = 1'b1;

end
step3: begin

b_sel = 1'b1; pp1_ce = 1'b1;
sub = 1'b1;   p_r_ce = 1'b1;

end
step4: begin

a_sel = 1'b1; pp2_ce = 1'b1;
end

step5: begin
p_i_ce = 1'b1;

end
endcase

end



79

State Transition Diagrams

• Bubbles to represent states

• Arcs to represent transitions

 Example

 S = {s1, s2, s3}

 Inputs (a1, a2):

Σ = {(0,0), (0,1), (1,0), (1,1)}

 δ defined by diagram

s1 s2

s3

0, 0

0, 0

0, 1

1, 0

0, 1

1, 0

1, 1

1, 1



80

State Transition Diagrams

• Annotate diagram to 

define output 

function

– Annotate states for 

Moore-style outputs

– Annotate arcs for 

Mealy-style outputs

• Example

– x1, x2: Moore-style

– y1, y2, y3: Mealy-style

s1 s2

s3

0, 0 / 0, 0, 0

1, 0 0, 0

0, 1

0, 0 / 0, 0, 0

0, 1 / 0, 1, 1

/ 0, 1, 1

1, 0 / 1, 0, 0

0, 1 / 0, 1, 1

1, 0 / 1, 0, 0

1, 1 / 1, 1, 1

1, 1 / 1, 1, 1



81

Multiplier Control Diagram

• Input: input_rdy

• Outputs

– a_sel, b_sel, pp1_ce, pp2_ce, sub, p_r_ce, p_i_ce

step1

0, 0, 1, 0, –, 0, 0
0

1 step2

1, 1, 0, 1, –, 0, 0

step4

1, 0, 0, 1, –, 0, 0

step5

–, –, 0, 0, 0, 0, 1

step3

0, 1, 1, 0, 1, 1, 0



82

Bubble Diagrams or Verilog?

• Many CAD tools provide editors for 

bubble diagrams

– Automatically generate Verilog for 

simulation and synthesis

• Diagrams are visually appealing

– but can become unwieldy for complex 

FSMs

• Your choice...

– or your manager's!



83

Register Transfer Level

• RTL — a level of abstraction

– data stored in registers

– transferred via circuits that operate on data

control section

outputs
inputs



84

Clocked Synchronous Timing

• Registers driven by a common clock

– Combinational circuits operate during clock 

cycles (between rising clock edges)

tco + tpd + tsu < tc

Q1 D2t
pdt

co
t
su



85

Control Path Timing

tco + tpd-s + tpd-o + tpd-c + tsu < tc

tco + tpd-s + tpd-ns + tsu < tc

Ignore tpd-s for a Moore FSM

t
pd-s

t
pd-c

t
pd-o

t
pd-ns

t
co

t
su

t
su



86

Timing Constraints

• Inequalities must hold for all paths

• If tco and tsu the same for all paths

– Combinational delays make the difference

• Critical path

– The combinational path between registers with the 

longest delay

– Determines minimum clock period for the entire 

system

• Focus on it to improve performance

– Reducing delay may make another path critical



87

Interpretation of Constraints

1. Clock period depends on delays

– System can operate at any frequency up 
to a maximum

– OK for systems where high performance 
is not the main requirement

2. Delays must fit within a target clock 
period

– Optimize critical paths to reduce delays if 
necessary

– May require revising RTL organization



88

Clock Skew

• Need to ensure clock edges arrive at all 

registers at the same time

– Use CAD tools to insert clock buffers and 

route clock signal paths

Q1 D2



89

Off-Chip Connections

• Delays going off-chip and inter-chip

– Input and output pad delays, wire delays

• Same timing rules apply

– Use input and output registers to avoid 

adding external delay to critical path



90

Asynchronous Inputs

• External inputs can change at any time

– Might violate setup/hold time constraints

• Can induce metastable state in a flipflop

 Unbounded time to recover

 May violate setup/hold time 

of subsequent flipflop
21

2

ffk

e
MTBF

f

tk



02k

0 1 0 1



91

Synchronizers

• If input changes outside setup/hold window

– Change is simply delayed by one cycle

• If input changes during setup/hold window

– First flipflop has a whole cycle to resolve 

metastability

• See data sheets for metastability parameters



92

Switch Inputs and Debouncing

• Switches and push-buttons suffer from 

contact bounce

– Takes up to 10ms to settle

• Need to debounce to avoid false triggering

 Requires two inputs 

and two resistors

 Must use a break-

before-make double-

throw switch
Q

R

S

+V



93

Switch Inputs and Debouncing

• Alternative
– Use a single-throw switch

– Sample input at intervals longer than bounce time

– Look for two successive samples with the same 
value

 Assumption

 Extra circuitry inside the chip 

is cheaper than extra 

components and connections 

outside




