SJP N Trust's
ECE Dept.

Hirasugar Institute of Technology, Nidasoshi. “yspy

— — — H YO\ - T ,—:,leSem
Approved by AICTE, Recognized by Govt. of Karnatakaand Affiliated to VTU Belagavi 2017-18

Department of Electronics & Communication Engg.

Course : Digital System Design using Verilog. Sem.: 6t (2017-18)

Course Coordinator:
Prof. D. M. Kumbhar

Digital System Design
Using Verilog

Module 1
Introduction and Methodology

Portions of this work are from the book, Digital Design: An Embedded
Systems Approach Using Verilog, by Peter J. Ashenden, published by Morgan
Kaufmann Publishers, Copyright 2007 Elsevier Inc. All rights reserved.

Digital Design

Digital: circuits that use two voltage levels to represent
Information

Logic: use truth values and logic to analyze circuits
Design: meeting functional requirements while satisfying
constraints

History : Mechanical — electromechanical — analog

Use

Disadvantages : accuracy, speed, maintenance.

Early circuits - digital circuits.

Constraints: performance, size, power, cost, etc.

Design using Abstraction

e Circuits contain millions of transistors
— How can we manage this complexity?

 Abstraction

— Focus on aspects relevant aspects,
ignoring other aspects

— Don’t break assumptions that allow aspect
to be ignored!

« Examples:
— Transistors are on or off
— Voltages are low or high

Digital Systems

* Electronic circuits that use discrete
representations of information

— Discrete in space and time

Embedded Systems

* Most real-world digital systems include
embedded computers

— Processor cores, memory, 1/O
 Different functional requirements can be
Implemented

— by the embedded software
— by special-purpose attached circuits

* Trade-off among cost, performance,
power, etc.

Binary Representation

» Basic representation for simplest
form of information, with only two
states

—a switch: open or closed

—a light: on or off

—a microphone: active or muted

—a logical proposition: false or true
—a binary (base 2) digit, or bit: O or 1

Binary Representation: Example

+V

o switch_pressed
«——0
oL c i)

% AV

« Signal represents the state of the switch

— high-voltage => pressed,
ow-voltage => not pressed

« Equally, it represents state of the lamp
— lamp_lit = switch_pressed

Basic Gate Components

* Primitive components for logic design

lZpeaiio-

AND gate OR gate

o :}

Inverter multiplexer

Combinational Circuits

 Circuit whose output values depend
purely on current input values

|

vat 0

vat 1

>30°C

>25°C

low level

>30°C

0
:Di buzzer

>25°C

low level

+V

l select vat 1
L o—>

;Lselect vat 0

Sequential Circuits

 Circuit whose output values depend on
current and previous input values

— Include some form of storage of values

* Nearly all digital systems are sequential
— Mixture of gates and storage components

— Combinational parts transform inputs and
stored values

Flipflops and Clocks

* Edge-triggered D-flipflop

— stores one bit of iInformation at a time

rising edge falling edge
dk .| [/
TP e A= \ \ !
Do]| | | |
1 b
Q, |
|

Timing diagram
= Graph of signal values versus time

Real-World Circuits

Assumptions behind digital abstraction

— Ideal circuits, only two voltages,
Instantaneous transitions, no delay

Greatly simplify functional design

Constraints arise from real components
and real-world physics

Meeting constraints ensures circuits are
“Ideal enough” to support abstractions

Integrated Circuits (ICs)

 Circuits formed on surface of silicon wafer

— Minimum feature size reduced in each
technology generation

— Currently 90nm, 65nm
— Moore’s Law: increasing transistor count
— CMOS: complementary MOSFET circuits

+V

|
output

s
J

Logic Levels

» Actual voltages for “low” and “high”
— Example: 1.4V threshold for inputs

_— receiver threshold
15vp
1.0V | "~ nominal 1.4V threshold
0.5V
g A
25V | i signal with added noise
i
20vE— — ﬁ& M Jogic high threshold
1.5V | driven signal

1.0V [

— W —— - logic low threshold
0.5V] Iml ﬂ"‘ “

h .
>

Logic Levels

 TTL logic levels with noise margins

A ___— signal with added noise

25V ¢ _% A I_AV‘WI'

~ Von ¢ .
} noise margin
2.0V 15 7= AV
1.5V driven signal
1.0V |
1 T ~ Vi } . .
0.5V [M | ’ ____, e " g noise margin
OL
- - t— >

Vg, : output low voltage V. : input low voltage
V4. output high voltage V,,: input high voltage

Static Load and Fanout

* Current flowing into or out of an output

High: SW1 closed, SWO0 open

= \Voltage drop across R1
= Too much current: Vo < Vg,

Low: SWO closed, SW1 open
= \Voltage drop across RO

= Too much current: Vo > V5,
Fanout: number of inputs
connected to an output

= determines static load

hapterl=—dntroduction-and Methodology =~ . 17

Static Load and Fanout

* Current flowing into or out of an output
High: SW1 closed, SWO0 open

= \Voltage drop across R1
% R1 = Too much current: V4 < Vg,
______ SW1 Low: SWO closed, SW1 open
output = Voltage drop across RO
“““ SWO = Too much current: Vg > Vg,
RO Fanout: number of inputs

connected to an output

= determines static load
18

Capacitive Load and Prop Delay

 Inputs and wires act as capacitors

™. oulput
+V N\
\
RI| input ___
—————— SW1 I /-
{
______ l SWO i | _L DO______ . .
G tr: rise time
| | it .
I tf: fall time
/ ~_ .
L tpd: propagation delay

= delay from input transition
to output transition

s tpd= max(tpdo1, tpdio) A

Other Constraints

* Wire delay: delay for transition to
traverse interconnecting wire

* Flipflop timing

— delay from clk edge to Q output

— D stable before and after clk edge
 Power

— current through resistance => heat
— must be dissipated, or circuit cooks!
— Static & dynamic power consumption

20

Area and Packaging

 Circuits implemented on silicon chips
— Larger circuit area => greater cost

» Chips In packages with connecting
wires
— More wires => greater cost
— Package dissipates heat

* Packages interconnected on
a printed circuit board (PCB)

— Size, shape, cooling, etc,
constrained by final product i

Models

Model: represents interested aspects omits other
(abstraction of an object) Ex. House, train, plane.

Electronic model: Prototype circuit
Abstract expression in some modeling language
Abstract representations of aspects of a

system being designed
— Allow us to analyze the system before building it

Example: Ohm’s Law

- V=IxR

— Represents electrical aspects of a resistor

— EXxpressed as a mathematical equation

— Ignores thermal, mechanical, materials aspects

22

Models

Model: represents interested aspects omits other
(abstraction of an object) Ex. House, train, plane.

Electronic model: Prototype circuit
Abstract expression in some modeling language
Abstract representations of aspects of a

system being designed
— Allow us to analyze the system before building it

Example: Ohm’s Law

- V=IxR

— Represents electrical aspects of a resistor

— EXxpressed as a mathematical equation

— Ignores thermal, mechanical, materials aspects

23

Module Ports

* Describe input and outputs of a circuit

. bove_30_
>30°C OOV temp_bad_0
_0
/ inv_0 = a\ or_0Ob
S25°C above_25/0 {>c
below_25_0
low_level |0
low level
. bove_30]1
>30°C v temp_bad_1
1
inv_1 SE a\ or_1b
S25°C above_25_1 {>c j
below_25_1
low_level\l
low level

"l

wake_up_0

select_mux

buzzer

wake_up_1

elect_vat_1

|
!

24

Structural Module Definition

module vat_buzzer_struct
(output buzzer,
input above_25_0, above_30_0, low_level_O,
input above_25_1, above_30_1, low_level_1,
input select_vat_1);

wire below_25_0, temp_bad_0, wake_up_0;
wire below_25_1, temp_bad_1, wake_up_1;

// components for vat O

nhot inv_0 (below_25_0, above_25_0);

or or_0Oa (temp_bad_0, above_30_0, below_25_0);
or or_Ob (wake_up_0, temp_bad_0, Tow_level_0);

// components for vat 1

not inv_1l (below_25_1, above_25_1);

or or_la (temp_bad_1, above_30_1, below_25_1);
or or_lb (wake_up_1, temp_bad_1, Tow_level_1);

mux2 select_mux (buzzer, select_vat_1, wake_up_0, wake_up_1);
endmodule

25

Behavioral Module Definition

module vat_buzzer_struct
(output buzzer,
input above_25_0, above_30_0, low_level_O,
input above_25_1, above_30_1, low_level_1,
input select_vat_1);

assign buzzer =
select_vat_1l ? Tow_level_1 | (above_30_1 | ~above_25_1)
: Tow_level_O0 | (above_30_0 | ~above_25_0);

endmodule

26

Design Methodology

Design: complex, large no of undertakings & requirements.
Systematic approach of working out how to construct circuits that
meets given requirements.

Simple systems can be design by one person using
ad hoc methods

Real-world systems are design by teams

— Require a systematic design methodology

— Design methodology: systematic process of design,

verification and preparation for manufacture a product.

Specifies

— Tasks to be undertaken

— Information needed and produced

— Relationships between tasks

» dependencies, sequences
— EDA tools used
27

Design Methodology

* A mature design methodology:

schedule & budget, no of errors detected and
missed, data from previous projects to
Improve new one

* Advantages:

— Design process more reliable and
oredictable

— Reducing risk and cost
— Reducing scale

28

A Simple Design Methodology

Requirements
and
Constraints

\/1/

\ 4

Design

A\ 4

Functional
Verification

\ 4

Synthesize

3 Physical

\ 4

Post-synthesis
Verification

Implementation

\ 4

Physical

Verification

Y

\ 4

Manufacture

Test

29

Hierarchical Design

Circuits are too complex for us to design all
the detail at once

Design subsystems for simple functions

Compose subsystems to form the system

— Treating sub circuits as “black box™ components
— EX. Display

— Reuse-present, previous or third party project

— Save — design effort & cost.

— Verify independently, then verify the compaosition

Top-down/bottom-up design

30

Hierarchical Design

o e]

Functional
Verification

Architecture
Design

Unit
Design

Unit
Verification

Y

Integration
Verification

31

Synthesis

We usually design using register-transfer-
level (RTL) Verilog

— Higher level of abstraction than gates
Synthesis tool translates to a circuit of gates
that performs the same function
Specify to the tool
— the target implementation fabric
— Library — properties, timing, area, power
— constraints on timing, area, etc.
Post-synthesis verification

— synthesized circuit meets constraints
32

Physical Implementation

Implementation fabrics

— Application-specific ICs (ASICS)

— Field-programmable gate arrays (FPGAS)
Floor-planning: arranging the subsystems

Placement: arranging the gates within
subsystems

Routing: joining the gates with wires
Physical verification

— physical circuit still meets constraints
— use better estimates of delays

33

Embedded system Design
Codesign Methodology

Requirements
and
Constraints

_/l/‘

» Partitioning [«

Hardware Software
Requirements Requirements
and Constraints and Constraints
Hardware Software
» Designand [«----- Designand |«
Verification Verification
N ‘ U ‘ N
\ 4
Manufacture

and Test

Combinational Circuits

 Circuits whose outputs depend only on
current input values

— no storage of past input values
— no state

« Can be analyzed using laws of logic

— Boolean algebra, similar to propositional
calculus

35

Combinational Components

* We can build complex combination
components from gates

— Decoders, encoders
— Multiplexers

« Use them as subcomponents of larger
systems

— Abstraction and reuse

36

yO0
yl
y2
y3

y15

Decoders

* A decoder derives control signals
from a binary coded signal

— One per code word

— Control signal is 1 when input has the
corresponding code word; 0 otherwise

* For an n-bit code Iinput
— Decoder has 2" outputs

- Example: (a,, a,, a,, a,)
— Output for (1,0, 1, 1): Y,, =a,-a,-a, -,

37

Decoder Example

Color Codeword (c,, ¢4, Cy)
black 0,01
cyan 0,1,0
magenta 0,1,1
yellow 1,0,0
red 1,0, 1
blue 1,1,0

38

Decoder Example

module ink_jet_decoder
(output black, cyan, magenta, yellow,
Tight_cyan, light_magenta,
input color2, colorl, color0O);

~color2 & ~colorl & colorO;
~color2 & colorl & ~colorO;
~color2 & colorl & colorO;
color2 & ~colorl & ~colorO;
color2 & ~colorl & color0O;
color2 & colorl & ~colorO;

assign black

assign cyan

assign magenta
assign yellow

assign light_cyan
assign light_magenta

endmodule

39

al yl
a2 y2
a3 y3
a4

Encoders

 An encoder encodes which
of several inputs is 1

— Assuming (for now) at most
one input is 1 at a time

 What if no inputis 1?

— Separate output to indicate
this condition

40

Encoder Example

* Burglar alarm: encode
which zone Is active

Zone Codeword
Zone 1 0,0,0
Zone 2 0,01
Zone 3 0,1,0
Zone 4 0,1,1
Zone 5 1,0,0
Zone 6 1,0,1
Zone 7 1,1,0
Zone 8 1,1,1

41

Encoder Example

module alarm_eqn (output [2:0] intruder_zone,

assign
assign

assign
assign

endmodule

output
input

intruder_zone[2]

intruder_zone[1]

intruder_zone[0]

valid = zone[1]
zone[5]

valid,

[1:8] zone);
= zonhe[5] zonhe[6]
zonhe[7] zone[8]
= zone[3] zone[4]
zone[7] zone[8]
= zohe[2] zone[4]
zone|[6] zone[8]
| zone[2] | zone[3]
| zone[6] | zone[7]

| zone[4]
| zone[8];

42

Priority Encoders

* If more than one input can be 1

— Encode input that is 1 with highest priority

zone intruder_zone valid
(1) | (2 | B) | D | O) [®6) | ()] B | (2 (1) (0)
1 - - - - - - - 0 0 0 1
0 1 - - - - - - 0 0 1 1
0 0 1 - - - - - 0 1 0 1
0 0 0 1 - - - - 0 1 1 1
0 0 0 0 1 - - - 1 0 0 1
0 0 0 0 0 1 - - 1 0 1 1
0 0 0 0 0 0 1 - 1 1 0 1
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 - - - 0

IS
w

Priority Encoder Example

module alarm_priority_1 (output

[2:0] i1ntruder_zone,

output valid,
input [1:8] zone);
assign intruder_zone = zone[l] ? 3'b000 :
zone[2] ? 3'b001 :
zone[3] ? 3'b010 :
zone[4] ? 3'b011 :
zone[5] ? 3'b100 :
zone[6] ? 3'b101 :
zone[7] ? 3'b110 :
zone[8] ? 3'b11ll :
3'b000;
assign valid = zone[l] | zone[2] | zone[3] | zone[4]
zone[5] | zone[6] | zone[7] | zone[8];

endmodule

44

* Binary coded decimal

BCD Code

— 4-bit code for decimal digits

0: 0000

1: 0001

2: 0010

3: 0011

4: 0100

5: 0101

6: 0110

/: 0111

8: 1000

9: 1001

45

Seven-Segment Decoder

* Decodes BCD to drive a 7-segment
LED or LCD display digit

— Segments: (g, f, e, d, c, b, a)

a [I | = = 0
> o (I Ll I (I
f U g U b 0111111 0000110 1011011 1001111 1100110
E A A) A A

e c L L 4 [Ll
U:dﬁ o o o O O

1101101 1111101 0000111 1111111 1101111

46

Seven-Segment Decoder

module seven_seg_decoder (output [7:1] seg,

reg [7:1] seg_tmp;

always @*

case (bcd)
4'b0000:

4'b0001:
4'b0010:
4'b0011:
4'b0100:
4'b0101:
4'b0110:
4'b0111:
4'b1000:
4'b1001:
default:

endcase

seg_tmp
seg_tmp
seg_tmp
seg_tmp
seg_tmp
seg_tmp
seg_tmp
seg_tmp
seg_tmp
seg_tmp
seg_tmp

input [3:0] bcd, input blank);

7'b0111111; //
7'b0000110; //
7'b1011011; //
7'b1001111; //
7'b1100110; //
7'b1101101; //
7'b1111101; //
7'b0000111; //
7'b1111111; //
7'b1101111; //
7'b1000000; //

Ooo~NOoOYUVIhE WN RO

-" for invalid code

assign seg = blank ? 7'b0000000 : seg_tmp;

endmodule

47

Multiplexers

* Chooses between data inputs based on
the select input

4-t0-1 mux
2-t0-1 mux _ 5
Sl -
|, — >« | two select
bits
sel Z
sgl 2 00 3 N-to-1 multiplexer
d
- 01 | a needs [log, N
10 "
- . select bits
d3

48

Multiplexer Example

module multiplexer_4_to_1 (output reg
input
input

always @*
case (sel)
2'b00: z
2'b01: z
2'b10: z
2'bl1l: z

endcase

Iu)l IN)I Il_\l Iol

Lo Q)

endmodule

Z,
[3:0] a,
sel);

49

Multi-bit Multiplexers

 To select between N
m-bit codeword Inputs

— Connect m N-input
multiplexers in parallel

— 3-bit 2 codewords requires
3, 2 Input multiplexers

» Abstraction
— Treat this as a component

a0(0)

21(0) 0 z(0)
a0(1)
a1(1) 0 20)
Z?g; 5 2(2)
sel
a0

0 3 Z

50

Multi-bit Mux Example

module multiplexer_3bit_2_to_1 (output [2:0] z,
input [2:0] a0, al,
input sel);

assign z = sel ? al : aO0;
endmodule

51

Active-Low Logic

« We've been using active-high logic
— 0 (low voltage): falsehood of a condition
— 1 (high voltage): truth of a condition
« Active-low logic logic
— O (low voltage): truth of a condition
— 1 (high voltage): falsehood of a condition
— reverses the representation, not negative voltage!

 In circuit schematics, label active-low signals with
overbar notation

— eg, lamp_lit: low when lit, high when not lit

52

Active-Low Example

* Night-light circuit, lamp connected to
power supply

Overbar indicates
active-low

+V +V

l lamp_enabled

jc lamp_lit @
dark \

sensor Match bubbles with

active-low signals

to preserve logic
sense

53

Implied Negation

* Negation implied by connecting
— An active-low signal to an active-high input/output
— An active-high signal to an active-low input/output

+V

l

—0

lamp_e

nabled

!

sSensor

=

=\

e ThS

Negation implied

54

Active-Low Signals and Gates

DeMorgan’s laws suggest alternate views
for gates

= They're the same electrical circuit!

= Use the view that best represents the logical
function intended

= Match the bubbles, unless implied negation is
Intended

55

Active-Low Logic In Verilog

Can'’t draw an overbar in Verilog
— Use _N suffix on signal or port name

1'b0 and 1'b1 in Verilog mean low and high

For active-low logic

— 1'b0 means the condition is true
— 1'b1 means the condition is false
Example

—assign lamp_1it_N = 1'bO;
— turns the lamp on

56

Combinational Verification

« Design Methodology — requirements & constraints

« Combination circuits: outputs are a function of inputs
— Functional verification: making sure it's the right function!
— Testbench model
— DUV /DUT

Verification Testbench

Apply >
Test Cases | Checker

57

Verification Example

* Verify operation of traffic-light controller
* Property to check

— enable = lights_out == lights_in

— lenable = all lights are inactive

* Represent this as an assertion in the
checker

58

Testbench Module

“timescale 1ms/1ms
module Tight_testbench;

wire [1:3] Tights_out;
reg [1:3] lights_1in;
reg enable;

Tight_controller_and_enable duv (.lights_out(lights_out),

.11ghts_in(lights_in),
.enable(enable));

59

Applying Test Cases

initial begin
enable
#1000 enable
#1000 enable
#1000 enable
#1000 enable
#1000 enable
#1000 enable
#1000 enable
#1000 enable
#1000 $finish;
end

RRPRRRROOOO

Tights_1n
Tights_1n
lights_1n
lights_1n
Tights_1n
Tights_1n
T1ghts_1n
Tights_1in
Tights_1n

3'b000;
3'b001;
3'b010;
3'b100;
3'b001;
3'b010;
3'b100;
3'b000;
3'b111;

60

Checking Assertions

always @(enable or 1lights_in) begin
#10
if (!((enable && 1lights_out == lights_in) ||
(lenable && lights_out == 3'b000)))
$display("Error in light controller output™);
end

endmodule

61

Functional Coverage

* Did we test all possible input cases?

* For large designs, exhaustive testing Is
not tractable
— N inputs: number of cases = 2N

* Functional coverage

— Proportion of test cases covered by a
testbench

— It can be hard to decide how much testing
IS enough

62

Seqguential Basics

« Sequential circuits

— Outputs depend on current inputs and
previous inputs

— Store state: an abstraction of the history of
Inputs

» Usually governed by a periodic clock
signal

* Flip flop, registers, counters

63

Datapaths and Control

Digital systems perform sequences of operations on
encoded data

Datapath
— Combinational circuits for operations
— Registers for storing intermediate results

Control section: control sequencing

— Generates control signals
« Selecting operands
» Selecting operations to perform
« Enabling registers at the right times
 Activate signal at right order & right time

— Uses status signals from datapath
Challenging task: requirements & constraints

— Functional requirements — alternatives for implementation

— Tradeoff — area, performance.
64

Example: Complex Multiplier

« Cartesian form, fixed-point
— operands: 4 pre-, 12 post-binary-point bits
— result: 8 pre-, 24 post-binary-point bits
* Subject to tight area constraints
a=a + Ja b=Db + Jb
p=ab=p, + Jp. =(ab —ab)+ j(ab +ab)

4 multiplies, 1 add, 1 subtract

= Perform sequentially using 1 multiplier, 1

adder/subtracter
65

a_r

a_i
a_sel
b_r

b_i

b_sel

ppl_ce
pp2_ce

sub
p_r_ce
p_i_ce
clk

Complex Multiplier Datapath

1

CE
> clk

=iy

CE

> clk

H

CE
> clk

CE

> clk

66

Complex Multiplier in Verilog

module multiplier
(output reg signed [7:-24] p_r, p_i,
input signed [3:-12] a_r, a_i, b_r, b_i,
input clk, reset, input_rdy);

reg a_sel, b_sel, ppl_ce, pp2_ce, sub, p_r_ce, p_i_ce;

wire signed [3:-12] a_operand, b_operand;
wire signed [7:-24] pp, sum
reg signed [7:-24] ppl, pp2;

67

Complex Multiplier in Verilog

assign a_operand = ~a_sel ? a_r : a_i;
assign b_operand = ~b_sel ? b_r : b_1i;

assign pp = {{4{a_operand[3]}}, a_operand, 12'b0} *
{{4{b_operand[3]}}, b_operand, 12'b0};
always @(posedge clk) // Partial product 1 register
if (ppl_ce) ppl <= pp;

always @(posedge clk) // Partial product 2 register
if (pp2_ce) pp2 <= pp;

assign sum = ~sub ? ppl + pp2 : ppl - pp2;

always @(posedge clk) // Product real-part register
if (p_r_ce) p_r <= sum;

always @(posedge clk) // Product imaginary-part register
if (p_i_ce) p_i <= sum;

endmodule

68

Multiplier Control Sequence

e Avoid resource conflict

* First attempt
1. a r*b r— ppl _reg
2. ali*b 1— pp2 reg
3. ppl—pp2 — p r reg
4. a r*b i — ppl_reg
5. ail*b r— pp2 reg
6. ppl +pp2 — p I reg

. Takes 6 clock cycles

69

Multiplier Control Sequence

* Merge steps where no resource conflict

* Revised attempt
1. a r*b r— ppl reg
2. ai*b 1— pp2 reg

3. ppl—pp2 — p r reg
ar*b i— ppl reg

4. a 1*b r— pp2 reg
5. ppl+pp2 — p_ 1 reg
. Takes 5 clock cycles

70

Multiplier Control Signals

Step a_sel b_sel | ppl_ce|pp2 ce| sub p_r ce | p_i_ce
1 0 0 1 0 - 0 0
2 1 1 0 1 — 0 0
3 0 1 1 0 1 1 0
4 1 0 0 1 = 0 0
5 = = 0 0 0 0 1

71

Finite-State Machines

« Used the implement control sequencing
— Based on mathematical automaton theory

A FSM is defined by

— set of inputs: X

— set of outputs: I

— set of states: S

— Initial state: s, € S

— transition function: 0: S x 2 — S

—output function: w: Sx2 -l orw:S—1T

72

FSM in Hardware

L

reset

clk —

ck

current_state

|

next J
state

logic

inputs

\

output

o

logic outputs

Mealy FSM
only

e Mealy FSM: w: Sx 2 — T
e Moore FSM: w: S —» I

/3

FSM Example: Multiplier Control

One state per step

Separate idle state?
— Wait for input_rdy =1

— Then proceed to steps 1, 2, ...

— But this wastes a cycle!
Use step 1 as idle state
— Repeat step 1 if input_rdy # 1
— Proceed to step 2 otherwise
Output function

— Defined by table on slide 43
— Moore or Mealy?

Transition function

current_| input_ | next_
state rdy state
stepl 0 stepl
stepl 1 step2
step2 — step3
step3 = step4
step4 — step5
stepS — stepl

74

State Encoding

Encoded in binary
— N states: use at least [log,N | bits

Encoded value used In circuits for transition
and output function

— encoding affects circuit complexity

Optimal encoding Is hard to find
— CAD tools can do this well

One-hot works well In FPGASs

Often use 000...0 for idle state
— reset state register to idle

75

FSMs in Verilog

« Use parameters for state values

— Synthesis tool can choose an alternative
encoding

3'b001,
3'b011,

parameter [2:0] stepl
step3
step5

3'b000, step?2
3'b010, step4
3'b100;

reg [2:0] current_state, next_state ;

/6

Multiplier Control in Verilog

always @(posedge clk or posedge reset) // State register
if (reset) current_state <= stepl;
else current_state <= next_state;

always @* // Next-state logic
case (current_state)
stepl: if (!input_rdy) next_state = stepl;

else next_state = step2;
step?: next_state = step3;
step3: next_state = step4;
step4: next_state = step5;
step5: next_state = stepl;

endcase

77

Multiplier Control in Verilog

always @* begin // output_logic
a_sel = 1'b0; b_sel = 1'b0; ppl_ce
sub = 1'b0; p_r_ce = 1'b0; p_i_ce
case (current_state)
stepl: begin
ppl_ce = 1'b1;
end
step2: begin
a_sel
end
step3: begin

1'b0; pp2_ce = 1'b0;
1'b0;

1'bl; b_sel = 1'bl; pp2_ce = 1'bl;

b_sel = 1'bl; ppl_ce = 1'bl;
sub = 1'b1; p_r_ce = 1'bl;
end
step4: begin
a_sel = 1'bl; pp2_ce = 1'b1;
end

step5: begin
p_i_ce = 1'b1;
end
endcase
end

/8

State Transition Diagrams

* Bubbles to represent states
* Arcs to represent transitions

Example
= S={sl, s2,s3}

= Inputs (al, a2):
2 ={(0,0), (0,1), (1,0), (1,1)}

= 0 defined by diagram

79

State Transition Diagrams

« Annotate diagram to
define output

. 0,1/0,1,1
function '
0,0/0,0,0 sl 1,0/1,0,0

— Annotate states for
Moore-style outputs

— Annotate arcs for
Mealy-style outputs

* Example
— X4, X,: Moore-style
— V1, Yo, Y3 Mealy-style

1,1/1,1,1 10,11

0,1/0,1,1

1,1/1,1,1
1,0/1,0,0

80

Multiplier Control Diagram

* |nput: input_rdy
* Outputs
— a_sel, b_sel, ppl _ce, pp2 ce,sub,p r ce, p I ce

C[stepl \ 1 f step2]
0 0,0,1,0, ,o,y ’Q,LO,], -, 0,0

step5 step4 step3
--0,0,0,0,1 1,0,0,1,-,0,0 0,1,1,0,1,1,0

81

Bubble Diagrams or Verilog?

 Many CAD tools provide editors for
bubble diagrams

— Automatically generate Verilog for
simulation and synthesis

» Diagrams are visually appealing

— but can become unwieldy for complex
FSMs

 Your choice...
— Or your manager's!

82

Register Transfer Level

« RTL — a level of abstraction
— data stored in registers
— transferred via circuits that operate on data

| —> outputs
inputs P
A A A

control section

83

Clocked Synchronous Timing

* Registers driven by a common clock

— Combinational circuits operate during clock
cycles (between rising clock edges)

1 |t D2 clk | t
= t} 9 £ >>tu > psd :
. ; Q[X —X
| |
: tpd \ts]ack |tsu i
\ |
o t 1:pd i, <t D2| | X |

84

Control Path Timing

tco X tpd-s i tpd-o T tpd-c T tsu < tc

ORIt L, <1

pd-ns

for a Moore FSM

Ignore t,,

85

Timing Constraints

Inequalities must hold for all paths

If t,, and t , the same for all paths
— Combinational delays make the difference

Critical path

— The combinational path between registers with the
longest delay

— Determines minimum clock period for the entire
system

Focus on it to improve performance
— Reducing delay may make another path critical

86

Interpretation of Constraints

Clock period depends on delays

— System can operate at any frequency up
to a maximum

— OK for systems where high performance
IS not the main requirement

Delays must fit within a target clock
period

— Optimize critical paths to reduce delays if
necessary

— May require revising RTL organization

87

Clock Skew

ckl |

Ql X
. Ql,D_DZ, = |
i K clk2 L
t,

|
| |
=
I
|

X

D2

h .
y

* Need to ensure clock edges arrive at all
registers at the same time

— Use CAD tools to insert clock buffers and
route clock signal paths

88

Off-Chip Connections

* Delays going off-chip and inter-chip
— Input and output pad delays, wire delays

« Same timing rules apply

— Use input and output registers to avoid
adding external delay to critical path

N Ql|][:>|Z ——IZ:E |]DZ -

89

Asynchronous Inputs

« External inputs can change at any time
— Might violate setup/hold time constraints

« Can induce metastable state in a flipflop

OﬂO//\/T oﬂ/ﬂ‘fl
kot

Unbounded time to recover MTBE e

= May violate setup/hold time kT, T,
of subsequent flipflop

k,>>0
90

Synchronizers

asynch_in —D

Q

D

> clk

r> clk
clk

Q

* If input changes outside setup/hold window
— Change is simply delayed by one cycle

* If input changes during setup/hold window
— First flipflop has a whole cycle to resolve

metastability

« See data sheets for metastablility parameters

91

Switch Inputs and Debouncing

« Switches and push-buttons suffer from
contact bounce
— Takes up to 10ms to settle

* Need to debounce to avoid false triggering

+V

Requires two Inputs
B and two resistors

| Must use a break-
0 » before-make double-
—> N throw switch

92

Switch Inputs and Debouncing

 Alternative
— Use a single-throw switch
— Sample input at intervals longer than bounce time

— Look for two successive samples with the same
value

Assumption
% [= Extra circuitry inside the chip
Ii IS cheaper than extra
components and connections
—== outside

93

