
S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi

ECE Dept.

DSDV

VI Sem

2017-18

Department of Electronics & Communication Engg.

Course : Digital System Design using Verilog. Sem.: 6th (2017-18)

Course Coordinator:

Prof. D. M. Kumbhar

Digital System Design

Using Verilog

Portions of this work are from the book, Digital Design: An Embedded

Systems Approach Using Verilog, by Peter J. Ashenden, published by Morgan

Kaufmann Publishers, Copyright 2007 Elsevier Inc. All rights reserved.

Module 4

I/O Interfacing

3

I/O Devices and Transducers

• Transducers convert between real-world

effects and digital representation

– Input transducers: sensors

• May require analog-to-digital converter (ADC)

– Output transducers: actuators

• May require digital-to-analog converter (DAC)

• Human-interface devices

– Buttons, switches, knobs, keypads, mouse

– Indicators, displays, speakers

4

Kaypads & Keyboards

• Recall switches and debouncing

• Keypad: array of push-button switches

321

654

987

#0*

c1 c2 c3

r1

r2

r3

r4

+V

1 2 3

4 5 6

7 8 9

* 0 #

input
register

o
u

tp
u

t
re

g
is

te
r

5

Knobs & Position Encoders

• In analog circuits, use a variable resistor

• In digital circuits, could use pushbuttons

– E.g., volume up/down

– Not as easy to use as knobs or sliders

• Can use a position encoder attached to

a knob

– Recall Gray code encoder

6

Incremental Encoder

• If absolute position is not important,

incremental encoder is simpler

A

B

A B

A

B

counterclockwise

clockwise

7

Analog Inputs

• Physical effect produces an analog voltage or

current

• Microphone

– In phones, cameras, voice recorders, …

• Accelerometer

– In airbag controllers

• Fluid-flow sensors

– In industrial machines, coffee machines, …

• Gas detectors

– In safety equipment

8

Analog-to-Digital Converters

• Basic element:

analog comparator

• Flash ADC

– For n o/p 2n-1

comparators

– Simple, fast, but uses

many comparators

• Resolution

– Number of output bits

9

Successive Approximation

ADC

• Initial approximation: 01111111
– Comparator output gives d7

• 1 if Vin is higher than 01111111, 0 otherwise

• Next approximation: d70111111
– Comparator output gives d6

• Next approximation: d7d6011111, etc

+

–

DACSAR

Dout

done

Vin

Vf

start

clk

(analog)

(analog)

(analog)

10

LED Indicators

• Single LED shows 1-bit state

– On/off, busy/ready, error/ok, …

output

driver

+V
 Brightness depends on

current

 Determined by resistor

 I = (+V – VLED – VOL) / R

11

7-Segment LED Displays

• Each digit has common anodes or
common cathodes

– Scan: turn on one digit at a time

a
b
c
d
e
f
g

dp

common
anode

A3

A2

A1

A0

a

b

c

d

e

f

g

dp

+V

12

Example: Multiplexed Display

• Four BDC inputs, 10MHz clock

– Turn on decimal point of leftmost digit only

– 50Hz scan cycle (200Hz scan clock)

module display_mux (output reg [3:0] anode_n,
output [7:0] segment_n,
input [3:0] bcd0, bcd1, bcd2, bcd3,
input clk, reset);

parameter clk_freq = 10000000;
parameter scan_clk_freq = 200;
parameter clk_divisor = clk_freq / scan_clk_freq;

reg scan_clk;
reg [1:0] digit_sel;
reg [3:0] bcd;
reg [7:0] segment;

integer count;

13

Example: Multiplexed Display

// Divide master clock to get scan clock
always @(posedge clk)

if (reset) begin
count = 0;
scan_clk <= 1'b0;

end
else if (count == clk_divisor - 1) begin
count = 0;
scan_clk <= 1'b1;

end
else begin
count = count + 1;
scan_clk <= 1'b0;

end

// increment digit counter once per scan clock cycle
always @(posedge clk)

if (reset) digit_sel <= 2'b00;
else if (scan_clk) digit_sel <= digit_sel + 1;

14

Example: Multiplexed Display

// multiplexer to select a BCD digit
always @*

case (digit_sel)
2'b00: bcd = bcd0;
2'b01: bcd = bcd1;
2'b10: bcd = bcd2;
2'b11: bcd = bcd3;

endcase

// activate selected digit's anode
always @*

case (digit_sel)
2'b00: anode_n = 4'b1110;
2'b01: anode_n = 4'b1101;
2'b10: anode_n = 4'b1011;
2'b11: anode_n = 4'b0111;

endcase

15

Example: Multiplexed Display

// 7-segment decoder for selected digit
always @*

case (bcd)
4'b0000: segment[6:0] = 7'b0111111; // 0
4'b0001: segment[6:0] = 7'b0000110; // 1
4'b0010: segment[6:0] = 7'b1011011; // 2
4'b0011: segment[6:0] = 7'b1001111; // 3
4'b0100: segment[6:0] = 7'b1100110; // 4
4'b0101: segment[6:0] = 7'b1101101; // 5
4'b0110: segment[6:0] = 7'b1111101; // 6
4'b0111: segment[6:0] = 7'b0000111; // 7
4'b1000: segment[6:0] = 7'b1111111; // 8
4'b1001: segment[6:0] = 7'b1101111; // 9
default: segment[6:0] = 7'b1000000; // "-"

endcase

16

Example: Multiplexed Display

// decimal point is only active for digit 3
always @* segment[7] = digit_sel == 2'b11;

// segment outputs are negative logic
assign segment_n = ~segment;

endmodule

17

Liquid Crystal Displays (LCDs)

• Advantages
– Low power

– Readable in bright ambient light conditions

– Custom segment shapes

• Disadvantages
– Require backlight for dark conditions

– Not as robust as LEDs

• LCD panels
– Rectangular array of pixels

– Can be used for alphanumeric/graphical display

– Controlled by a small microcontroller

18

Actuators & Valves

• Actuators cause a mechanical effect

• Solenoid: current in coil moves armature

– Can attach rods, levers, etc

to translate the movement

• Solenoid valve

– Armature controls fluid

or gas valve

• Relay

– Armature controls

electrical contacts

19

Motors

• Can provide angular position or speed

– Use gears, screws, etc to convert to linear

position or speed

• Stepper motors

– Rotate in discrete steps

N

S

NS N S

N

S

NS

N

S

N

S

N S

20

Motors

• Servo-motors

– DC motor, speed controlled by varying the
drive voltage

– Use feedback to control the speed or to
drive to a desired position

– Requires a position sensor or tachometer

• Servo-controller

– A digital circuit or an embedded processor

– Compensates for non-ideal mechanical
effects

21

Digital-to-Analog Converters

• R-string DAC

– Voltage divider

and analog

multiplexer

– Requires 2n

precision

resistors

22

Digital-to-Analog Converters

• R-2R ladder

DAC

– Sums binary-

weighted

currents

– Requires 2n

matched

resistors

Vf 2R

R

2R

R

R

2R

2R

2R

2R

Vout

a(3)

a(2)

a(1)

a(0)

+

–

23

I/O Controllers

• An embedded processor needs to
access input/output data

• I/O controller

– Circuit that connects I/O device to a
processor

• Includes control circuits

– Input registers: for reading data

– Output registers: for writing data

• I/O ports

– Registers accessible to embedded
software

24

Simple I/O Controller

• Just contains input and/or output
registers

– Select among them using a port address

module gumnut (input clk_i,
input rst_i,
...
output port_cyc_o,
output port_stb_o,
output port_we_o,
input port_ack_i,
output [7:0] port_adr_o,
output [7:0] port_dat_o,
input [7:0] port_dat_i,
...);

endmodule

25

Example: Keypad Controller

• Output register for row drivers

• Input register for column sensing

port_dat_i

port_ack_i

port_adr_o

port_we_o

port_cyc_o

Gumnut

port_dat_o

port_stb_o stb_i

dat_i

cyc_i

we_i

Keypad Controller

dat_o

keypad_row

keypad_col

ack_o=
keypad_port_

addr

1 2 3

4 5 6

7 8 9

* 0 #

26

Example: Keypad Controller

module keypad_controller (input clk_i,
input cyc_i,
input stb_i,
input we_i,
output ack_o,
input [7:0] dat_i,
output reg [7:0] dat_o,
output reg [3:0] keypad_row,
input [2:0] keypad_col);

reg [2:0] col_synch;

always @(posedge clk_i) // Row register
if (cyc_i && stb_i && we_i) keypad_row <= dat_i[3:0];

always @(posedge clk_i) begin // Column synchronizer
dat_o <= {5'b0, col_synch};
col_synch <= keypad_col;

end

assign ack_o = cyc_i && stb_i;

endmodule

27

Control/Status Registers

• Control register

– Contains bits that govern operation of the

I/O device

– Written by processor

• Status register

– Contains bits that reflect status of device

– Read by processor

• Either or both may be needed in an

input or output controller

28

Example: ADC Controller

• Successive approximation ADC

– 1 × analog input with sample/hold

– 4 × analog reference voltages

• Control register

– Selects reference voltage

– Hold input voltage & start ADC

• Status register

– Is conversion done?

• Input data register

– Converted data

29

Example: ADC Controller

30

Autonomous I/O Controllers

• Independently sequence operation of a

device

– Processor initiates actions

– Controller notifies processor of events,

such as data availability, error condition, …

• Processor can perform other operations

concurrently

• Device operation not limited by

processor performance or load

31

Example: LCD Module

• Rectangular array of pixels

– Row and column connections

– Controller scans rows, activates columns

• Image or character data stored in a

small memory in the controller

– Updated by an attached processor

32

Direct Memory Access (DMA)

• For high-speed input or output

– Processor writes starting address to a

control register

– Controller transfers data to/from memory

autonomously

– Notifies processor on completion/error

• Reduces load on processor

• Common with accelerators

33

Parallel Buses

• Interconnect components in a system

– Transfer bits of data in parallel

• Conceptual structure

– All inputs and

output connected

• In practice

– Can’t tie

multiple outputs

together

data

source

data

destination

data

source

data

destination

data

destination

34

Multiplexed Buses

• Use multiplexer(s)

to select among

data sources

– Can partition to

aid placement on chip

data

source

data

destination

data

source

data

destination

data

destination

0

1

35

Example: Wishbone Bus

• Non-proprietary bus spec

– OpenCores Organization

• Gumnut uses simple form of Wishbone

– One bus for each of instruction memory,

data memory, and I/O ports

– ―…_o‖ denotes output

– ―…_i‖ denotes input

36

Example: Wishbone Bus

port_dat_i

port_ack_i

port_adr_o

port_we_o

port_cyc_o

Gumnut

port_dat_o

port_stb_o

adr_i(0)

dat_i

cyc_i

we_i

ADC Controller

dat_o

ack_o

stb_i

adr_i(0)

dat_i

cyc_i

we_i

ADC Controller

dat_o

ack_o

stb_i

stb_i

dat_i

cyc_i

we_i

Keypad Controller

dat_o

ack_o

0

1

0

1

0

1

0

1

= 0...1

= 2...3

= 4

0

0

37

Tristate Buses

• Use tristate drivers for data sources

– Can ―turn-off‖ (Hi-Z) when not supplying data

• Simplified bus wiring

38

Tristate Bus Issues

• Floating bus can cause spurious switching

– Use pull-up resistors or weak keepers

• Need to avoid driver contention

– Dead cycle between

turn-off and turn-on

– Or delayed enable
weak
drive

d_busd

en

 Not all CAD tools and implementation

fabrics support tristate buses

39

Tristate Drivers in Verilog

• Assign Z to an output to turn driver off

• Example: single-bit driver

– assign d_out = d_en ? d_in
: 1'bZ;

• Example: multi-bit driver

– assign bus_o = dat_en ? dat
: 8'bZ;

• Any other driver contributing 0 or 1

overrides Z value

40

Example: SN74x16541

module sn74x16541 (output tri [7:0] y1, y2,
input [7:0] a1, a2,
input en1_1,

en1_2,
en2_1,
en2_2);

assign y1 = (~en1_1 & ~en1_2) ? a1 : 8'bz;

assign y2 = (~en2_1 & ~en2_2) ? a2 : 8'bz;

endmodule

Same as wire,

but indicates

tristate driver

41

Unknown Values in Verilog

• What if two drivers are turned on?

– One driving 0, the other driving 1

– Resolved value is X — unknown

– Can test for X during simulation
• Use === and !== operators

• C.f. == and !=, which are logical equivalence
and inequivalence tests

• Z and X are not electrical logic levels

– Notations for simulation and synthesis

– Real logic levels are only 0 or 1

42

Open-Drain Buses

• Bus is 0 if any driver pulls it low

• If all drivers are off, bus is pulled high

– Wired-AND

• Can also use

open-collector drivers

43

Open-Drain Drivers in Verilog

• Assign 0 or 1 to model driver

• Model pull-up on open-drain bus using

wand net

– wand bus_sig;

– Resolved value is logical AND of driver

values

44

Bus Protocols

• Specification of signals, timing, and
sequencing of bus operations

– Allows independent design of components

– Ensures interoperability

• Standard bus protocols

– PCI, VXI, …
• For connecting boards in a system

– AMBA (ARM), CoreConnect (IBM),
Wishbone (Open Cores)

• For connecting blocks within a chip

45

Example: Gumnut Wishbone

• Minimal 8-bit subset used for I/O ports

• Signals

– port_cyc_o: ―cycle‖ control for sequence of port

operations

– port_stb_o: ―strobe‖ control for an operation

– port_we_o: write enable

– port_ack_i: acknowledge from addressed port

– port_adr_o: 8-bit port address

– port_dat_o: 8-bit data output from Gumnut

– port_dat_i: 8-bit data input to Gumnut

46

Gumnut Wishbone Write

clk

port_adr_o

port_cyc_o

port_dat_o

port_ack_i

port_stb_o

port_we_o

No wait cycles One wait cycle

47

clk

port_adr_o

port_cyc_o

port_dat_i

port_ack_i

port_stb_o

port_we_o

Gumnut Wishbone Read

No wait cycles One wait cycle

48

Serial Transmission

• Bits transmitted one after another on a single
wire
– Can afford to optimize the wire for speed

• C.f. parallel transmission, one wire per bit
– Requires more wires

• Cost per wire, greater area for wiring, complexity of place
& route

– Requires more pins
• Cost of larger package

– Other effects
• Crosstalk, skew, delay due to increased area

• Serializer/deserializer (serdes)
– Converts between parallel and serial form

49

Example: 64-bit Serdes

64-bit

shift reg

D_in

D

CE

load_en

Q0

clk

64-bit

shift reg

D_in

CE

Q

clk

start

reset

tx_D

serial_D
rx_D

rx_rdy

clk

clk

start

reset

rx_ce

rx_rdy

receiver

control

+V

 Bit order is

arbitrary,

provided both

ends agree

 Often

specified by

standards

50

NRZ Transmission

• Non-Return to Zero

– Just set signal to high or low for each bit time

– No indication of boundary between bit times

– Need to synchronize transmitter and receiver

separately

• E.g., by a common clock and control signals, as in

previous example

51

Start/Stop Bit Synchronization

• Hold signal high when there is no data

• To transmit

– Drive signal low for one bit time (start bit)

– Then drive successive data bits

– Then drive signal high for one bit time (stop

bit)

52

UARTs

• Universal Asynchronous

Receiver/Transmitter

– Common I/O controller for serial

transmission using NRZ with start/stop bits

– Relies on Tx and Rx clocks being

approximately the same frequency

53

Manchester Encoding

• Combine Tx clock with Tx data

– Ensures regular edges in the serial signal

• Example: Manchester encoding

– Transition in the middle of each bit time
• 0: low-to-high transition

• 1: high-to-low transition

• May need a transition at the start of a bit time

54

Clock Recovery

• Transmitter sends preamble before data
– A sequence of encoded 1 bits

– Serial signal then matches Tx clock

• Receiver uses a phase-locked loop (PLL) to
match Rx clock to Tx clock

55

Serial Interface Standards

• Connection of I/O devices to computers

• Connection of computers in networks

• Use of standards reduces design effort

– Reuse off-the-shelf components or IP

• RS-232: NRZ, start/stop bits

– Originally for modems, now widely used for

low-bandwidth I/O

56

Serial Interface Standards

• I2C: Inter-Integrated Circuit bus
– 2 wires (NRZ data, clock), open drain

– Simple protocol, low cost, 10kb/s–3.4Mb/s

• USB: Universal Serial Bus
– For connecting I/O devices to computers

– Differential signaling on 2 wires

– 1.5Mb/s, 12Mb/s, 480Mb/s, …, complex protocl

– IP blocks available

• FireWire: IEEE Std 1394
– 2 differential pairs (data, synch)

– 400Mb/s, 3.2Gb/s, complex protocol

57

I2C Example: Temperature Sensor

• Gumnut, Analog Devices AD7414

– I2C controller IP from OpenCores

respository

58

I/O Software

• Use input and output instructions to

access I/O controller registers

• I/O devices interact with the physical

world

– Software must respond to events when

they occur

– It must be able schedule activity at specific

times or at regular intervals

– Real-time behavior

59

Polling

• Software repeatedly reads I/O status to see if
an event has occurred
– If so, it performs the required action

• Multiple controllers
– Software executes a polling loop, checking

controllers in turn

• Advantage: simple I/O controllers

• Disadvantages
– Processor is continually busy, consuming power

– Delay in dealing with an event if processor is busy
with another event

60

Polling Example

• Safety monitor in factory automation

– Gumnut core

– 16 alarm inputs
• One per bit in registers at addresses 16 & 17

• 0  ok, 1  abnormal condition

– Temp sensor ADC at address 20
• 8-bit binary code for °C

• Above 50°C is abnormal

– Alarm output at address 40
• 0  ok, 1  ring alarm bell

61

Polling Example

alarm_in_1: equ 16 ; address of alarm_in_1 input register
alarm_in_2: equ 17 ; address of alarm_in_2 input register
temp_in: equ 20 ; address of temp_in input register
alarm_out: equ 40 ; address of alarm_out output register
max_temp: equ 50 ; maximum permissible temperature

poll_loop: inp r1, alarm_in_1
sub r0, r1, 0
bnz set_alarm ; one or more alarm_in_1 bits set
inp r1, alarm_in_2
sub r0, r1, 0
bnz set_alarm ; one or more alarm_in_2 bits set
inp r1, temp_in
sub r0, r1, max_temp
bnc set_alarm ; temp_in > max_temp
out r0, alarm_out ; clear alarm_out
jmp poll_loop

set_alarm: add r1, r0, 1
out r1, alarm_out ; set alarm_out bit 1 to 1
jmp poll_loop

62

Interrupts

• I/O controller notifies processor when an

event occurs

– Processor interrupts what it was doing

– Executes interrupt service routine

• A.k.a. interrupt handler

– Then resumes interrupted task

– May enter low-power standby

• Some systems prioritize interrupt requests

– Allow higher priority events to interrupt service of

lower priority events

63

Interrupt Mechanisms

• Interrupt request signal

• Means of disabling/enabling interrupts
– So processor can execute critical regions

• Save processor state on an interrupt
– So interrupted task can be resumed

• On interrupt, disable further interrupts
– Until processor has saved state

• Find the handler code for the event
– Vector: address of handler, or index into table of

handler addresses

• Instruction to return from handler
– Restoring saved state

64

Gumnut Interrupt Mechanisms

• int_req signal

• disi and enai instructions

• On interrupt, PC, Z, and C saved in special

registers

• On interrupt, further interrupts are disabled

• Handler code starts at address 1

– Gumnut sets PC to 1

• reti instruction

– Restores PC, Z, and C from special registers, re-

enables interrupts

65

Interrupt Acknowledgment

• Process may not respond immediately

– But must tell controller when it does

– Controller then deactivates request

• To avoid multiple interrupts for one event

• Processor acknowledges the request

– E.g., int_ack signal on Gumnut

– Alternative: reading a status register

66

Example: Sensor Controller

• 8-bit input from sensor

– Interrupt request on change of value

D

reset

Q

clk

D

reset

Q

clk

D

reset

Q

clk

≠

dat_o

int_req

ack_o

clk_i

rst_i

int_ack

cyc_i

stb_i

sensor_in

67

Example: Sensor Handler

data
saved_r1: bss 1

text
sensor_data: equ 0 ; address of sensor data

; input register

org 1
stm r1, saved_r1
inp r1, sensor_data
... ; process the data
ldm r1, saved_r1
reti

68

Timers

• Real-time clock (RTC)

– Generates periodic interrupts

– Uses a counter to divide system clock

– Control register for divisor

• Interrupt handler can perform periodic

tasks

– E.g., activate next digit of a scanned

display

69

Example: RTC for Gumnut

• 10µs timebase, divided by a down

counter

– Initial count loaded from a register

– Interrupt triggered on count value = 0

start_count

E– – – – – – –

count_value

I0

0

1 0 0 0 0 0 0

Output Registers Input RegistersOffset

Interrupt

Enable

Interrupt

Triggered

70

Real-Time Executives

• Control program

– A.k.a. real-time operating system (RTOS)

– Timing based on a real-time clock

– Schedules execution of tasks
• In response to interrupts and timer events

• Can also manage other resources

– Memory allocation

– Storage (file system)

– Use of I/O controllers

– Use of accellerators

71

Example: Gumnut Executive

• RTC based at address 16

• Calls task_2ms every 2ms

;;; ---
;;; Program reset: jump to main program

text
org 0
jmp main

;;; ---
;;; Port addresses

rtc_start_count: equ 16 ; data output register
rtc_count_value: equ 16 ; data input register
rtc_int_enable: equ 17 ; control output register
rtc_int_status: equ 17 ; status input register

72

Example: Gumnut Executive

;;; ---
;;; init_interrupts: Initialize 2ms periodic interrupt, etc.

data
rtc_divisor: equ 199 ; divide 100kHz down

; to 500Hz
rtc_int_flag: bss 1

text
init_interrupts: add r1, r0, rtc_divisor

out r1, rtc_start_count
add r1, r0, 1
out r1, rtc_int_enable
stm r0, rtc_int_flag
... ; other initializations
ret

73

Example: Gumnut Executive

;;; ---
;;; Interrupt handler

data
int_r1: bss 1 ; save location for

; handler registers

text
org 1

int_handler: stm r1, int_r1 ; save registers
check_rtc: inp r1, rtc_status ; check for

; RTC interrupt
sub r0, r1, 0
bz check_next
add r1, r0, 1
stm r1, rtc_int_flag ; tell main

; program
check_next: ...

int_end: ldm r1, int_r1 ; restore registers
reti

74

Example: Gumnut Executive

;;; ---
;;; main program

text
main: jsb init_interrupts

enai
main_loop: stby

ldm r1, rtc_int_flag
sub r0, r1, 1
bnz main_next
jsb task_2ms
stm r0, rtc_int_flag

main_next: ...
jmp main_loop

• Note: task_2ms not called as part of interrupt
handler
– Would slow down response to other interrupts

75

Summary

• Transducers: sensors and actuators

– Analog-to-digital and digital-to-analog
coverters

• Input and output devices

• Controllers

– Input, output, control, and status registers

– Autonomous controllers

• Buses: multiplexed, tristate, open-drain

– Bus protocols: signals, timing, operations

76

Summary

• Serial transmission

– NRZ, embedded clock

• Real-time software

– Reacting to I/O and timer events

– Polling, interrupts

• Real-time executives

