
S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi

ECE Dept.

N&CS

VIII Sem

2018-19

Department of Electronics & Communication Engg.

Course: Network and Cyber Security - 15EC835. Sem.: 8th (2018-19)

Course Coordinator:

Prof. B. P. Khot

2

• Web Now Widely Used By Business,
Government, Individuals

• But Internet & Web Are Vulnerable

• Have A Variety Of Threats

– Integrity

– Confidentiality

– Denial of Service

– Authentication

• Need Added Security Mechanisms

Web Security

3

Web Security Consideration

• WWW is fundamentally a client/server application running
over the internet and TCP/IP

1. Web browser are very easy to use, web browser are relatively
easy to configure and manage, and web content is
increasingly easy to develop, but underlying software is
extraordinarily complex. This complex software may hide
many potential security flaws(weakness). That are vulnerable
to variety of attacks.

2. Web server can be used as a launching pad to the
corporation’s or agency’s computer. Once the web server is
subverted(misused), an attacker may be able to gain access to
data and systems connected to the server.

3. Casual and untrained users are common client for web-based
services. They are not aware of attacks

4

Integrity

• Threats (Damage)

1. Modification of user data.

2. Trojan horse program.

3. Modification of memory

4. Modification of message traffic.

• Consequences (Effects)

1. Loss of information.

2. Compromise of machine(effecting Confidential of machine).

3. Vulnerable to system.

• Countermeasures (Action Taken)

1. Cryptographic Check Sum

5

Confidentiality

• Threats (Damage)

1. Theft of information from server.

2. Theft of data from browser.

3. Information about network configuration.

4. Information about which client talks to server.

5. Eavesdropping on the net (secretly observing /listening to network)

• Consequences (Effects)

1. Loss of information.

2. Loss of privacy.

• Countermeasures (Action Taken)

1. Encryption, web proxies(hide IP and protects online privacy)

6

Denial of Service

• Threats (Damage)

1. Killing of user threads.

2. Flooding machine with bogus requests.

3. Filling up disk or memory.

4. Spreading vulnerability

• Consequences (Effects)

1. Disruptive(trouble making).

2. Annoying.

3. Preventing user from getting work done.

• Countermeasures (Action Taken)

1. Difficult to prevent.

7

Authentication

• Threats (Damage)

1. Impersonation of legitimate user.

2. Data forgery.

• Consequences (Effects)

1. Misrepresentation of user.

2. Belief that false information is valid.

• Countermeasures (Action Taken)

1. Cryptographic techniques.

8

• Most widely used security service

• Transport Layer Security Service(TLS)

• Originally Developed By Netscape

• SSL is a general purpose service provider, implemented as a

set of protocol that relay/depend on TCP.

• Subsequently Became Internet Standard Known As TLS

(Transport Layer Security)

• Uses TCP to provide a Reliable End-to-end Service

• SSL Has Two Layers Of Protocols

SSL (Secure Socket Layer)

9

SSL Architecture

10

SSL Architecture

• SSL Record protocol provides basic security services to

various higher layer protocol.

• HTTP provides transfer service for web client/server

interaction.

• Three higher layer protocol are defined as part of SSL

1. SSL Handshake protocol

2. SSL Change cipher spec protocol.

3. SSL Alert protocol

• These SSL specific protocols are used in the management

of SSL exchanges.

11

Two important SSL concept are

• SSL session

– an association between client & server

– created by the Handshake Protocol

– define a set of cryptographic parameters

– may be shared by multiple SSL connections

• SSL connection

– a transient, peer-to-peer, communications link

– associated with 1 SSL session

SSL Architecture

12

SSL Architecture

• A transport that provides a suitable type of
service

• For SSL such connections are peer-to-peer
relationships

• Connections are transient(short term)

• Every connection is associated with one
session

SSL
connection

• An association between a client and a server

• Created by the Handshake Protocol

• Define a set of cryptographic security
parameters which can be shared among
multiple connections

• Are used to avoid the expensive negotiation of
new security parameters for each connection

SSL
session

13

A session state is defined by the following parameters

Session

identifier

An arbitrary
byte

sequence
chosen by the

server to
identify an
active or

resumable
session state

Peer

certificate

An X509.v3
certificate of
the peer; this

element of the
state may be

null

Compression

method

The algorithm
used to

compress
data prior to
encryption

Cipher

spec

Specifies the
bulk data

encryption
algorithm and

a hash
algorithm

used for MAC
calculation;
also defines

cryptographic
attributes

such as the
hash_size

Master

secret

48-byte secret
shared

between the
client and the

server

Is

resumable

A flag
indicating

whether the
session can
be used to
initiate new
connections

14

• Byte sequences that are
chosen by the server and client
for each connection

Server
and client
random

• The secret key used in MAC
operations on data sent by the
server

Server
write MAC

secret

• The secret key used in MAC
operations on data sent by the
client

Client
write MAC

secret

• The secret encryption key for
data encrypted by the server
and decrypted by the client

Server
write key

• The symmetric encryption key
for data encrypted by the client
and decrypted by the server

Client
write key

• For a block cipher in CBC
mode , an initialization vector
(IV) used for each key.

• This field is first initialized by
the SSL Handshake Protocol

• The final ciphertext block
from each record is
preserved by IV

Initialization
vectors

• Each party maintains
separate sequence numbers
for transmitted and received
messages for each
connection

• When a party sends or
receives a change cipher
spec message, the
appropriate sequence
number is set to zero

• Sequence numbers may not
exceed 264 - 1

Sequence
numbers

A connection state is defined by the following parameters

15

SSL Record Protocol

The SSL Record
Protocol provides
two services for
SSL connections

Confidentiality

The Handshake
Protocol defines a

shared secret key that is
used for conventional

encryption of SSL
payloads(actual data)

Message integrity

The Handshake
Protocol also defines a

shared secret key that is
used to form a message

authentication code
(MAC)

SSL Record Protocol operation

16

SSL Record Protocol operation

17

1. The Record protocol takes an application message to be transmitted

2. fragments the data into manageable blocks

3. Compress the data

4. Applies a MAC / add the MAC

5. Encrypts

6. Adds a header, and transmits the resulting unit with TCP segment.

7. Received data are decrypted, verified decompressed, reassembled before being

delivered to higher level users

SSL Record format

18

Encrypted

SSL Record format

19

• SSL record protocol processing is to prepare a header consisting of the

following fields.

1. Content Type- 8 bits- The higher-layer protocol used to process the enclosed

fragment.

2. Major Version- 8 bits- Indicates major version of SSL in use. For SSLv3, the

 value is 3.

3. Minor Version- 8 bits- Indicates minor version in use. For SSLv3, the value is 0.

4. Compressed length -16 bits-

5. The length in bytes of the plaintext fragment (or compressed fragment if

compression is used). The maximum value is 214 + 2048.

20

• One of 3 SSL specific protocols which use the SSL Record

protocol

• It is the simplest

• It consist of a single message with single byte with value 1

• causes pending state to become into current state

• which updates the cipher suite(set of algorithms) used for

connection.

SSL Change Cipher Spec Protocol

21

SSL Alert Protocol

• The alert protocol is used to conveys SSL-related alerts to peer connections

• The first byte takes the value (1) warning or (2) fatal to convey the message of

severity. If the level is fatal, SSL immediately terminates the connection.

• warning or fatal

• The second byte contains a code that indicates the specific alert.

• specific alert

• Unexpected_message, bad_record_MAC, decompression_failure,

handshake_failure, illegal_parameter

• Close_notify, no_certificate, bad_certificate, unsupported _certificate,

certificate_revoked, certificate_expired, certificate_unknown

• Alert messages are compressed & encrypted like all SSL data

22

HTTPS

• HTTPS:

– It is the combination of HTTP and SSL to Implement secure

communication between web server and web client (browser)

– Its use depends on the web server supporting HTTPS communications.

– Ex: some search engine do not support HTTP, Google provides HTTPS

as an option.

– Principle difference seen by user of a web browser is that

URL(Uniform resource locator) addresses begins with https://

– A normal HTTP uses port 80 and HTTPS uses port 443

• When HTTPS is used following communication are encrypted:

– URL of requested document

– Contents of document

– Contents of browser forms

– Cookies(it allows server to store its own information)

– Contents of HTTP header

23

• HTTPS is documented in RFC 2818, HTTP over TLS. There is no

fundamental change in using HTTP over SSL or TLS

HTTPS Connection Initiation
• For HTTPS, the agent acting as the HTTP client (Web browser) and also

acts as TLS (Transport layer security) client

– Client initiates a connection to the server and sends TLS client_Hello

message to begin TLS Handshake.

– Once the handshake finishes client may begin HTTP request.

– Three levels of connection in HTTPS

• HTTP level

• TLS/SSL level

• TCP level

24

HTTPS Connection Closure

• A HTTP client or server can indicates the closing of a connection by

including: connection: close in HTTP record

– Closure of an HTTPs connection require close of TLS connection

• Use the TLS alert protocol to send close_notify alert;

• May close the connection without waiting for the peer to send its

closure alert

• HTTP client must be able to cope with a situation in which underly

TCP connection is terminated without a prior close_notify alert and

without a connection close indicator such a situation could be due

to a programming error.

25

SSL Handshake Protocol

• Most complex part of SSL

• allows server & client to:

– authenticate each other

– To negotiate encryption & MAC algorithms

– to negotiate cryptographic keys to be used

• Consists of a series of messages exchanged by server and client

• These exchanges can be viewed as four phases.

– Establish Security Capabilities

– Server Authentication and Key Exchange

– Client Authentication and Key Exchange

– Finish

26

SSL Handshake Protocol

27

SSL Handshake Protocol

28

SSL Handshake Protocol

Phase 1: establish security capabilities

– The client initiates a logical connection “client_hello”

• Parameters: version, random, session ID, cipher suite,

compression method

• Details of cipher suite: key exchange method

• “server hello”

29

SSL Handshake Protocol

Phase 1: establish security capabilities

 – The client initiates a logical connection “client_hello”

• Version: The highest SSL version understood by client

• Random: A client generate random structure with 32 bit time stamp and 28

bytes secure random number generated by generator

• Session ID: A variable length session identifier.

• Cipher suite: Combination of cryptographic algorithms supported by client

• Compression method: The compression method supported by client

• After sending client_hello message client wait for the “server hello”

30

SSL Handshake Protocol

Phase 1: establish security capabilities

 – Details of cipher suite: key exchanged method.

– The following key exchange methods are supported

• RSA(Ron Shamir Adleman)- the secret key is encrypted with reciever’s RSA

public key

• Fixed Diffie-Hellmann- The server’s certificate contains the Diffie- Hellman

public parameters signed by public certificate authority(CA).

• Ephemeral Diffie-Hellman: this technique is used to create one time/temporary

key

• Anonymous Diffie-Hellman: the base Diffie-Hellman algorithm is used with no

authentication.

• Fortezza: Information security system that uses the Fortezza cryptography card.

31

Phase 2: Server authentication and key exchange

1. Server sends its certificate: one or chain of X.509 certificates;

2. Server sends a server_key_exchange message;

– E.g. 1 anonymous DH

– E.g. 2 Ephemeral Diffie-Hellman

– E.g 3 RSA key exchange

– E.g. 4 Fortezza : Signature in this message

3. Server sends a certificate_request message

– Certificate type and a list of CAs

4. Server sends a server_hello_done message

32

Phase 3: Client authentication and key exchange

Client first verify server’s certificate and parameters Received.

If all good 

1. If server requests a certificate, client sends a certificate message

2. Client sends a client_key_exchange message

– E.g. 1 RSA: 48-byte pre-master secret, encrypted with server’s public

key or RSA key

– E.g. 2 anonymous DH

– E.g. 3 Fixed DH

3. Client sends a certificate_verify message

33

Phase 4: Finish

1. Client sends a change_cipher_spec message

2. Client sends a finished message

– Verify the key exchange and authentication process were

successful

• Server sends a change_cipher_spec message

• Server send a finished message

 --- handshake is complete ---

34

Secure Shell (SSH)

• SSH is a protocol for secure network communication

• Simple and inexpensive to implement.

– SSH1 is designed to replace Telnet

– security issues with Telnet

• Sends all data in clear text.

• Host between sender and receiver can see what the

traffic is.

• No security

– SSH provides secure remote access between client/server

and can be used for file transfer and e-mail.

– Transmission can be compressed.

35

History of SSH

• Created by Tatu Ylönen in July 1995, a student of Helsinki

University of Technology

– Initial version is SSH1, provides secure logon facility.

– A new version SSH 2 fixes a number of security flaws in

SSH1 (RFC4250 – 4256)

• SSH client and server applications are widely available in most

operating systems.

• SSH is organized as three protocols, run on top of TCP

1. Transport layer Protocol

2. User authentication Protocol

3. Connection Protocol

36

37

Functions of SSH protocol stack

• Transport layer protocol

– Provides server authentication, data confidentiality and

integrity

• User authentication protocol

– Authenticates the user to the server

• Connection protocol

– Multiplex multiple logic communication channels over a

single SSH connection

38

SSH Transport layer protocol

• Server authentication is based on the server’s public/private

key pair

– Host Keys: a server may have one host or many hosts could

share one key

– Client must have the server’s public key in advance!

• Two alternative trust models defined in RFC4251

• The client has a local DB associates each server with

public key

• The host name to key association is certified by CA.

The client only knows CA root key can verify validity

of all host keys certified by CA.

39

SSH Packate exchange

• Package exchange of SSH Transport Layer Protocol

– First, client establish TCP connection to the server

– Then starts SSH key exchange steps (next slide)

– The client and server exchange data (packets)

• Packet format (after next slide)

 pktl, pdl, payload (may be compressed), random

padding, MAC,

40

SSH Transport Layer Protocol Packet exchange steps

41

SSH Transport Layer Protocol Packet Formation

42

SSH Transport Layer Protocol Packet

Formation
• Packet Length : Length of the packet in bytes.

• Padding Length: Length of the random padding Field.

• Payload: Useful contents of the packet. Added before

algorithm negotiation.

• Random Padding: Once an encryption algorithm has been

negotiated this field is added. It contains random bytes of

padding.

• Message Authentication Code (MAC): If a message

authentication has added to encryption this field contains the

MAC value.

• Sequence Number : It is 32 bit. Sequence Number is initiated

to zero for the first Packet and incremented for every packet.

43

SSH Transport Layer Protocol key exchange

steps

• Establish TCP Connection.

• Identification string Exchange

• Algorithm Negotiation

• Key Exchange

• End of Key Exchange

• Service request

44

SSH Transport Layer Protocol key exchange

steps

1. Establish TCP Connection.

2. Identification string Exchange

• SSH-protoversion-softwareversion SP Comments CR LF

• SP-space character

• CR-carriage return

• LF-line feed

• Example: SSH-2.0-billsSSH_3.6.3q3<CR><LF>

• The client responds with its own identification string.

• The server responds with its own identification string.

45

SSH Transport Layer Protocol key exchange

steps

3. Algorithm Negotiation

• Each side sends an SSH_MSG_KEXINIT containing list of supported

algorithms.

4. Key Exchanges

5. End of key Exchanges: : SSH_MSG_NEWKEYS packets

6.Service Request : SSH_MSG_SERVICE_REQUEST

46

SSH Transport Layer Crypto Algorithms

 Cipher MAC algorithm

3des-cbc* Three-key 3DES in

CBC mode

 hmac-sha1* HMAC-SHA1; digest

length = key length = 20

blowfish-cbc Blowfish in CBC mode hmac-sha1-96** First 96 bits of HMAC-
SHA1; digest length =

12; key length = 20

twofish256-cbc Twofish in CBC mode

with a 256-bit key

 hmac-md5 HMAC-MD5; digest

length = key length = 16

twofish192-cbc Twofish with a 192-bit

key

 hmac-md5-96 First 96 bits of HMAC-

MD5; digest length = 12;

key length = 16

twofish128-cbc Twofish with a 128-bit

key

aes256-cbc AES in CBC mode

with a 256-bit key

 Compression algorithm

aes192-cbc AES with a 192-bit key none* No compression

aes128-cbc** AES with a 128-bit key zlib Defined in RFC 1950

and RFC 1951

Serpent256-cbc Serpent in CBC mode

with a 256-bit key

Serpent192-cbc Serpent with a 192-bit

key

Serpent128-cbc Serpent with a 128-bit

key

arcfour RC4 with a 128-bit key

cast128-cbc CAST-128 in CBC

mode

47

SSH User Authentication Protocol

• User Authentication Protocol provides client Authentication to

the server

• Message Types and Formats used: Three types of messages

are used

• byte SSH_MSG_USERAUTH_REQUEST (50)

 string user name

 string service name

 string method name

• byte SSH_MSG_USERAUTH_FAILURE (51)

 name-list authentication that can continue

 boolean partial success

• byte SSH_MSG_USERAUTH_SUCCESS (52)

48

SSH User Authentication Protocol

• Message exchange

1. Client sends request

2. Server checks if user name is valid  valid or NOT

3. Server returns result of step 2 and a list of authentication

methods

4. Client selects one of authentication method in step 3 and

reply its choice

A sequence of exchange to perform authentication

5. Based on authentication result, go to step 3 Or

6 when all required authentication methods succeeds, server

sends a success message

49

Authentication methods in SSH User

Authentication Protocol

• Public key
– Client sends message to server. The message contains signature

(message encrypted by client’s private key) and client’s public key

– Server verify if the key is acceptable and if the signature is valid

• Password
– Client sends a password encrypted by Transport layer protocol

• Hostbased
– Client sends a signature created with private key of client host

– Server verifies the identity of client host, and then believes the client

host already authenticate that client

50

SSH Connection Protocol

• SSH connection protocol runs on the top of SSH Transport

layer protocol

– Secure authentication connection is called tunnel

– Each side may open a channel, and each side associates a

unique channel number.

• SSH Connection Protocol steps (next slide)

1. Open a channel

2. Data transfer

3. Close a channel

51

SSH Connection Protocol

• The life of a channel progress through three stages

• Open a channel, data transfer and closing a channel

• Open a channel

• When either side wishes to open a channel, it allocates a local

number of channel and sends a message of the form

• byte SSH_MSG_CHANNEL_OPEN

 string channel type (application for this channel)

 unit32 sender channel (local channel number)

 unit32 initial window (bytes of channel data)

 unit32 maximum packet size

 … channel type specific data follows

52

SSH Connection Protocol

• If the remote side is able to open channel, it returns a

SSH_MSG_CHANNEL_CONFIRMATION message, which

includes the sender channel number, and window and packet

size values for incoming traffic. - Otherwise, the remote

channel returns a SSH_MSG_CHANNEL_FAILURE message

with a reason code indicating the reason of failure.

• Once channel is open, data transfer is performed using a

SSH_MSG_CHANNEL_DATA message, which includes the

recipient channel number and a block of data. - These

messages in both directions, may continue as long as the

channel is open.

• When either side wishes to close a channel, it sends a

SSH_MSG_CHANNEL_CLOSE message, which includes the

recipient channel number.

53

SSH connection Protocol Message

exchange

54

Secure Shell Connection Protocol

• Channel Types –

• Four channel types are recognized in the SSH connection

protocol specification.

• session : The remote execution of a program. The program

may be a shell, an application such as file transfer or e – mail,

a system command, or some built – in subsystem. Once a

session channel is opened, subsequent requests are used to

start the remote program.

• x11 : This refers to the X window system, a computer

software system and network protocol that provides a GUI for

networked computers. X allows applications to run on a

network server but to be displayed on a desktop machine..

• forwarded – tcpip : This is remote port forwarding.

• direct – tcpip : this is local port forwarding.

Secure Shell Connection Protocol

55

Port Forwarding

• One of the most useful features of SSH is port forwarding.

• In essence, port forwarding provides the ability to convert

any insecure TCP connection into a secure SSH connection.

• This is also referred to as SSH tunnelling.

• A port is an identifier of a user of TCP. So, any application

that runs on top of TCP has a port number.

• Incoming TCP traffic is delivered to the appropriate

application on the basis of the port number.

• An application may employ multiple port numbers.

• SSH supports two types of port forwarding : local

forwarding and remote forwarding.

56

Connection via SSH Tunnel

Secure Shell Connection Protocol

57

Local Forwarding

• Allows the client to set up a “hijacker” process.

• This will work on selected application-level traffic and

redirect it from an unsecured TCP connection to a secure

SSH tunnel.

• SSH is configured to work on selected ports.

• SSH grabs all traffic using a selected port and sends it

through an SSH tunnel.

• On the other hand, the SSH server sends the incoming

traffic to the destination port dictated (as said) by the client

application.

Secure Shell Connection Protocol

58

Remote Forwarding

• With remote forwarding, the user’s SSH client acts on the

server’s behalf.

• The client receives traffic with a given destination port

number, places the traffic on the correct port and sends it to

the destination the user chooses.

59

Secure Command Shell

• Allow you to edit files.

• View the contents of directories.

• Custom based applications.

• Create user accounts.

• Change permissions.

• Anything can be done from command prompt can be done

remotely and securely.

Secure Shell Connection Protocol

60

Remote Forwarding

• With remote forwarding, the user’s SSH client acts on the

server’s behalf.

• The client receives traffic with a given destination port

number, places the traffic on the correct port and sends it to

the destination the user chooses.

61

Port Forwarding
• A Powerful Tool.

– provide security to TCP/IP applications including e-mail,

sales and customer contact databases, and in-house

applications.

– allows data from normally unsecured TCP/IP applications

to be secured.

62

Two Cryptographic Items in Handshake process

(formula is Not required)

• The creation of a shared master secret key by

key exchange

• Generation of cryptographic parameters

from master secret;

The creation of a shared master secret key by

key exchange (formula is Not required)

• Shared master secret is one-time 48-byte for

this session by secret key exchange

1. Pre_master_secret is exchanged

2. Master-secret is calculated by both parties;

– E.g. 1 RSA

– E.g. 2 DH

64

Port Forwarding

65

THANK YOU

