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METHOD OF UNDETERMINED COOFFICIENTS: 

The particular integral of an n
th 

order linear non-homogeneous differential equation F(D)y=X 

with constant coefficients can be determined by the method of undetermined coefficients 

provided the RHS function X is an exponential function, polynomial in cosine, sine or sums or 

product of such functions. 

The trial solution to be assumed in each case depend on the form of X. Choose PI from the 

following table depending on the nature of X. 
 

Sl.No. RHS function X Choice of PI yp 

1 K eax C eax 

2 K sin (ax+b) or K cos (ax+b) c1   sin (ax+b)+ c2   cos (ax+b) 

3 K e
ax sin (ax+b) 

or 

K e
ax   cos (ax+b) 

c   e
ax sin (ax+b)+  c   e

ax cos (ax+b) 
1 2 

4 K x
n where n=0,1,2,3….. c c   x c   x

2 
....     c x

n     1 
c x

n
 

0 1 2 n    1 n 

5 K x
n  

e
ax where n=0,1,2,3….. eax       c c   x c   x2 ....   c xn

 
0 1 2 n 

6 K x
n sin (ax+b) 

or 

K x
n cos (ax+b) 

a0  sin(ax    b) b0 cos(ax   b) 

a1 .x.sin(ax     b) b1x cos(ax  b) 

a   .x
2 
.sin(ax    b) b x

2 
cos(ax   b) 

2 2 

........... 
n n 

an .x  .sin(ax    b) bn x  cos(ax  b) 

7 K x
n  

e
dx sin (ax+b) 

or 

K x
n  

e
dx cos (ax+b) 

e
dx     

a  sin(ax    b) b  cos(ax   b) 
0 0 

a1 .x.sin(ax     b) b1x cos(ax  b) 

a   .x
2 
.sin(ax    b) b  x

2 
cos(ax  b) 

2 2 

........... 
n n 

an .x  .sin(ax    b) bn x  cos(ax  b) 

 

 

1. Solve by the method of undetermined coefficients (D
2

 

 

Sol :  m
2

 3m 2 0 (m    1)(m 2) 0 m 1,2 

yc c1e c2e 
 

3 x 

Assume PI   yp c e   substituting this in the given d.e we determine the unknown coefficient as 

3 D  2) y 4 e3x 

2 x 



 

 

1 3 

c e x  c 
1 

a3 

a 

1 1 

1 

1 

1 

1 

x x 

 

(D
2

 3D 2) y 4e3x 

9ce
3x

 9ce
3x

 2ce
3x

 4e3x 

2ce
3x

 4e
3x 

c 2 

2e3x 

 

 
2. Solve d 

2 
y 2   

dy 
4 y 

 
2x

2
 

 
3e  

x 
by the method of undetermined coefficients. 

dx
2 

dx 

Sol: We have (D
2

 2D 4)  y 2x 3e  
x
 

 

 is m
2

 

 

2m 4 0 m 
2 12 

2 
2 2      3i

 i
 

2 

y cos  3x c2 sin   3x 

Assume PI in the form  y a x
2

 a2    x a3 a4e 

Dy 2a1     x a2 a4e 

D
2 

y 2a1 a4e 

Substituting these values in the given d.e 

We get 2a1 a4e 2(2a1     x a2 a4e ) 4(a x
2

 a2    x a3 a4e ) 2x
2

 3e 
x
 

Equating corresponding coefficient on both sides, we get 

x
2 
: 

1 

4a1 2 1 
2
 

x  :  4a1 4a2 
0 4  

1
 

2 
 

2 4a2 

4a2 

 
0 

0 
 

1 
4a2 

2 

c  : 2a1 2a2 4a3 0 

2     
1 

2 
1 

2 2 
4a3 0 0 

e  
x  

: a 

3a4 

2a4 

3 

 
2 

4a4 3 

a4 1 

PI : yp x x 
2 2 

 

y e  
x  

c  cos 3x c2 sin  3x x
2
 x 

2 

yp  

a2 2 

e 
x 

1 

2 
e 

x 

4 

x 

x 

x 

x 



 

 

C 
2 

F 

E 

1 2x 1 1 
1 2 

3 

 
 

3. Solve by using the method of undetermined coefficients 
d 

2 
y 

9y 
 

x3 e2 x 

 
sin3x 

 
Sol: We have (D2

 

 

9) y 

 
x3 e2 x 

 

sin3x 

dx
2

 

 

A.E is   m
2 9 0 m2 9 m 

 

yc 

Choose PI as 

c1e 

y 

c2e 

Ax
3

 

 

 

Bx   
2 

Cx 

 

 

D Ee
2 x

 

 

 
F sin3x 

 

 
G cos3x 

 

y 3Ax
2

 2Bx C 2Ee
2 x

 3F cos3x 3G sin3x 

y 6Ax 2B 4Ee
2 x

 9F sin3x 9G cos3x 
 

 

Substituting these values in the given d.e, we get 

6Ax 2B 4Ee2 x
 9F sin3x 9G cos3x 9 Ax3

 Bx2 Cx D Ee2 x
 F sin3x G cos3x 

 

 

Equating the coefficient of 

x3 e2 x sin3x 

 

x
3 

: 

x
2 

: 

9   A 1 A 
1
 

9 

9B 0 B 0 
 

x   :  6 A    9C 0 6 
1 

9C 0 
9 

2 
9C 0 9C 

2
 

3 3 27 

C    :  2B 9D 0 D 0 

e
2 x    

: 4E 9E 1 

sin3x  : 9F 9G 

cos3x:    9G 9G 

5E 1
 1

 
5 

0 
1 

18 

0 G 0 

1 
x3 

9 

Complete solution 

2x 1 
e2 x 

27 5 

y yc yp  

1 
sin3x 

18 

 

y c e
3x

 c e 3x 

x3 

9 27 
e2 x 

5 
sin3x 

18 

yp  

3x 3x 



 

 

 
 

METHOD OF VARIATION OF PARAMETERS: 
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MODULE - 2 

DIFFERENTIAL EQUATIONS –II 
  
SOLUTION OF CAUCHY’S HOMOGENEOUS LINEAR EQUATION AND LEGENDRE’S LINEAR  

EQUATION 



 

 

 

 

 
 

PROBLEMS: 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 



 

 

A1 p 
n 1 

A2       p ....... An 
n  2 0 

 

Differential equations of first order and higher degree 

If y=f(x), we use the notation 
dy

 
dx 

p throughout this unit. 

A differential equation of first order and n
th 

degree is the form 

A0 p 

Where A0 , A1, A2 ,...An are functions of x and y. This being a differential equation of first order, 

the associated general solution will contain only one arbitrary constant. We proceed to discuss 

equations solvable for P or y or x, wherein the problem is reduced to that of solving one or more 

differential equations of first order and first degree. We finally discuss the solution of clairaut’s 

equation. 

 

Equations solvable for p 
 

Supposing that the LHS of (1) is expressed as a product of n linear factors, then the 

equivalent form of (1) is 

p 
 

 

All these are differential equations of first order and first degree. They can be solved by 

the known methods. If F1      (x, y, c) 0, F2    (x,  y, c) 0,...  Fn    (x, y, c) 0 respectively represents the 

solution of these equations then the general solution is given by the product of all these solution. 

Note: We need to present the general solution with the same arbitrary constant in each factor. 

 

 

1. Solve : y 
 

Sol:  The given equation is 

yp
2

 

(x y) (x y)
2

 

p 
2 y 

p 
(    y x) (x y) 

2 y 

4xy 

 

ie.,  p 
 

ie., p 

y x x y 

2 y 

 

or p 
y x x y 

2 y 

We have, 

p f1 (x, y) 0, p f2 (x, y) 0... p fn (x, y) 0 

f1 (x,  y) p f2 (x, y) ... p fn (x, y) 0 ....(2) 

dy 

dx 

2 

x y 
dy 

dx 
x 0 

(x y)   p x 0 

1 or p x / y 

n 



 

 

dy 

dx 

x 

y 
or    ydy xdx 0 y  dy x  dx k 

y2 x2 
k or y2 x2 2k or (x

2
 y2 c) 0 

(2x 3y) (2x 3y)
2 

24xy 

(2x 3y) (2x 3y) 
2 or 

3y 

y y2 4x(x y) 

y 4x
2 

4xy y2 y (2x y) 

x  or p 
2(  y x) 

(  y x) 

 

dy 
1
 

dx 

 

y x c or 
 

(  y x c) 0 

 

Also, 

 

ie., 
2 2 

Thus the general solution is given by (y-x-c) (x
2

 

 

2. Solve : x( y
' 
)

2
 

 

Sol:  The given equation with the usual notation is, 

xp
2

 

 

p 

 
p 

 

We have 

 

2x 

 
2x x 

dy 
2
 

dx 

 

dy 2 
 

dx c or y 
 

2x c   or  ( y 
 

2x c) 0 

Also  
dy

 3y  
or  

dy 
3    

dx dy 
3      

dx 
k
 

dx x y x y x 

ie., log y 

ie.,   log y 

Thus the general solution is (y-2x-c)(y-cx
3 
) 

 

3)   Solve p( p 

Sol:   The given equation is,  p 
2

 

 
 

py x(x y) 0 
 

p 
2 

 

p 
2 2 

ie., p 
2 

We have, 

y2 c) 0 

(2x 3y)  y 6  y 0 

(2x 3y)  p 6  y 0 

3log   x k or    log y log   x
3 

log c,    where k log x 

log (cx
3 
) y cx

3       
or   y cx

3
 0 

0 

y) x(x y) 



 

 

(x,   p,c) 0 

 

dy x
2

 

x y k 
dx 2 

Also,     
dy 

y x 
dx 

ie., 
dy 

dx 

P 

y x, is alinear d.e (similar tothe previous problem) 

Hence 

ie., ye
x
 ting by  parts. 

Thusthe general solutionis givenby (2 y 

Equations solvable for y: 

 
We say that the given differential equation is solvable for y, if it is possible to express y 

in terms of x and p explicitly. The method of solving is illustrated stepwise. 

Y=f(x, p) 

We differentiate (1) w.r.t x to obtain 

Here it should be noted that there is no need to have the given equation solvable for y in 

the explicit form(1).By recognizing that the equation is solvable for y, We can proceed to 

differentiate the same w.r.t. x. We notice that (2) is a differential equation of first order in p 

and x. We solve the same to obtain the solution in the form. 

By eliminating p from (1) and (3) we obtain the general solution of the given 

differential equation in the form G(x,y,c) =0 

 
Remark: Suppose we are unable to eliminate p from (1)and (3), we need to solve for x and y 

from the same to obtain. 

x 

Which constitutes the solution of the given equation regarding p as a parameter. 

 
Equations solvable for x 

 

We say that the given equation is solvable for x, if it is possible to express x in terms of y 

and p. The method of solving is identical with that of the earlier one and the same is as follows. 

x =  f(y, p ) 

dy 
p 

dx 
F   x, y, 

dp
 

dx 

1, Q x; e 
Pdx 

e x 

ye
x 

xe
x
dx c 

(xe
x 

e
x    

) c, int egra 

x2 c)    e
x 
( y x     1) c 0 

F1   ( p, c), y F2 ( p, c) 



 

 

2   px tan 1 (xp2
 

2 px tan 
1 

(xp
2

 

2 p 2 
dp 

x 
dx 1 

1 

x2 p4 

x.2 p 
dp

 
dx p2 

c / x 

c 

 

Differentiate w.r.t.y to obtain 
 

(2) Being iafdferential equation of first order in p and y the solution is of the form. 
 

 

By eliminating p from (1) and (3) we obtain the general solution of the given d.e in the form 

G(x, y, c) = 0 

Note: The content of the remark given in the previous article continue to hold good here also. 
 

1. Solve:     y ) 

 

Sol :   By data,  y ) 
 

The equation is of the form y = f (x, p), solvable for y. 

Differentiating (1) w.r.t.x, 

p 

ie., 

 

p2 dp p 
ie., p 

1  x2 p4 

2x 

dx  1 

1 

x2 p4 

 
ie., 

1  x2. p4 p 
2  4 

p 
2x   

dp p 

dx 

1 x2 p4 
2  4 

1    x   p 1   x  p 

ie.,  log x 2 log  p k 

consider y 

and xp2 

2 px tan 1`(xp2 ) 

Using (2) in (1) we have, 

dx 1 

dy p 
F  x, y, 

dp
 

dy 

( y,  p, c ) 0 

y  =  2 .   x tan 1(c) 

Thus    y 2     cx tan 1 c, is the general solution. 

p 2x 
dp 
dx 1 

1 

x2 p4 

2xp 
dp

 
dx p2 



 

 

px p2 x4 

px p2 x4 

log p k  or  log (x p  ) log  c x p c 

p c   or   x
2 

p c or     p c / x
2

 

1 
1 

x
 

 

2. Obtain the general solution and the singular solution of the equation y 

 

Sol:  The given equation is solvable for y only. 

y 

Differentiating w.r.t x, 

ie., 2   p x  
dp 

or  
dx dp dx

 1 dp 

 
ie., log x 

Consider, 

x 

dx x 

 

 
y 

2  p x 2 p 

 

Using (2) in (1) we have, y (c / x
2

)x (c
2 

/ x
4

)x
4

 
 

Thus xy he general solution. 

 

Now, to obtain the singular solution, we differentiate this relation partially w.r.t c, 

treating c as a parameter. 

That  is,  1=2cx or c=1/2x. 

 

The general solution now becomes, 

 

xy 
2x 4x

2
 

 

Thus 4x2 y 1   0, is the singular solution. 
 
 

3) Solve y=p sin p + cos p 
 

Sol: y = p sin p + cos p 

Differentiating w.r.t. x, 

p p cos p 
dp

 sin p 
dp

 sin p 
dp

 
dx dx dx 

ie.,    1 cos p 
dp

 
dx 

or    cos p dp dx 

cos  p dp dx c 

px p2x4 

c c2 x  is t 



 

 

x c p     sin   
1 

(x c). 

2cx c2 

y2 2 y 
cot   x cot

2     
x 1  cot

2  
x 

2 

 

ie., sin   p x c  or    x sin  p   c 

Thus we can  say that y p sin p cos p and x sin p - c constitutes 

the general solution of the given d.e 
 

Note:sin  p 

We can as well substitute for p in (1) and present the solution in the form, 

y 

 

4) Obtain the general solution and singular solution of the equation 

y 

Sol: The given equation is solvable for x and it can be written as 

2x  
y 

p 
py........(1) 

Differentiating w.r.t  y we get 

2 1 y  dp 
p y 

dp 

p p p
2

 dy dy 

1 
p 1 y     dp 

0
 

p p dy 

Ignoring 
1 

p whichdoes not contain 
dp 

, this gives 
p dy 

1 
y dp 

 
0 or dy dp 

0
 

p   dy y p 

Integrating we get 

substituting for p from 

y2 

2  in (1) 

 

5) Solve  p
2 

2 py cot  x y
2   . 

Sol: Dividing throughout by p
2
, the equation can be written as 

y 2 y 
cot x 

 
1 adding cot

2 
xtob.s 

p
2 

p 
 

p
2 

p 

 
or 

yp c........(2) 

(x c) sin     
1

(x c) cossin     
1 

(x c) 

2   px p
2 
y . 

y 

p 

2 

cot x cos ec
2 
x 



 

 

y 
cot x cos ecx 

y 
cot   x cos ecx 

1) c y(cos x     1) c 0 

p2 4x
5 
p 

f (x, p) 

3y 0 as the 

 

 
 

p 
 

dy / dx 
 

Integrating these two equations we get 

y(cos x 

general solutionis 

y(cos x 
 

6) Solve: p
2

 the singular solution also. . 
 

Sol: The given equation is solvable for y only. 
 

 

y 
12x

4
 

Differentiating (1) w.r.t.x, 
 

2 p 
dp 

4x5 dp 20x
4 
p 12x

4 
p 48x

3    
y 0 

dx dx 
2 5 

dp 
(2 p 

dx 
4x

5    
) 8x

3 
(xp p 4x    p 

) 0
 

2x
4

 

(    p 2x
5 
) 
dp

 2 p 
( p

 2x
5 
) 

 

dp 2 p 

dx x 

0 
dx x 

c
4 

4c
2 
x

3
 12 y 

Setting c2
 

k 2 

k the general solutionbecomes 

Differentiating w.r.t k partially we get 

2k 

Using k 

x6 

2x3 in general solution we get 

singular solution 

dy sin x 

y cos x  1 
dx  and  

dy
 

y 

sin x 

cos x  1 

p2 4x
5 
p   12x

4 
y 0 ...........(1)_ 

Integrating     log p log   x k 

p c2 x2 equation (1)becomes 

1) c1           and y(cos x     1) c2 

4x5 p    12x4 y 0 , obtain 

4kx3 12 y 

4x3 0 



 

 

4xyp 8  y
2 

0 by solv 

2   dp 1 

cy 

3 

y y 2 

 

7) Solve  p
3

 ing for x. 

Sol: The given equation is solvable for x only. 

p3 4xyp 
3 

8 y 2 0 
2 

x 
p 8 y 

4 yp 
f ( y, p) 

Differentiating (1) w.r.t.y, 

3 p 2  dp 
dy 

4xy 
dp

 
dy 

4 yp. 
1

 
p 

 

4 px 
 

16y 0 

dp 
(3 p 2 

dy 

 

4xy) 
 

4 px 
 

12y 

dp 
3 p 2 p 

dy 

8 y 2 

p 

p3 8 y 2 

y 

 

12y 

dp   2 p3
 

dy 

8 y 2 

p 

p3 4 y 2 

y 

2 dp 
( p 3

 

p dy 

 

4 y 2 ) 
p3 4 y 2 

y 
 

p dy 

2 log p 

y 

log y 

 

 

logc 

U  sin g P in (1) we have, 

cy cy 4xy  cy 8 y 2 0 
 

Dividingthroughoutby   y we have, 

c     c 4x    c 8     y 0 

c  (c 4x) 

Thusthegeneralsolutionisc(c 4x)2
 64y 

 

Clairaut’s Equation 

The equation of the form 

 

y px f ( p) is known as Clairaut’s equation. 
 

 

This being in the form y = F (x , p), that is solvable for y, we differentiate (1) w.r.t.x 
 

dy 
p p x 

dp f ( p) 
dp

 

dx dx dx 

8   y 

3 



 

 

a  / x. x a   x / a 

p(xp k  ) a 

p 

 

This implies that 
dp

 
dx 

 

0 and hence p=c 

Using   p c in (1) we obtain the genertal solution of clairaut's equation in the  form 

y cx f (c) 
 

 
1.   Solve: 

 

y px 
a 

p 
 
 

Sol: The given equation is Clairaut’s equation of the   form y px f ( p) , whose general solution 

is  y 
 

Thus the general solution is 

 
Singular solution 

y      cx 
a 

c 

Differentiating partially w.r.t c the above equation we have, 

0 

 

c 
a 
x 

Hence   y cx 

y 

(a / c) becomes, 

Thus y2 4ax is the singular solution. 

2. Modify the following equation into Clairaut’s form. Hence obtain the associated general 
 

and singular solutions xp
2

 

 

Sol : xp
2

 py kp a 0, by data 
 

 
ie., 

 

 
ie., 

xp
2 

y 

 

ie., y 
 

Here (1) is in the Clairaut’s form y=px+f(p) whose general solution is y = cx + f (c) 

cx f (c) 

x 
a 

c2 

py kp a 0 

px k 
a 

p 

kp a py 



 

 

cx k 
a 

c 

ax 

4ax. 

 
 

Thus   the general solution is  y 
 

Now differentiating partially w.r.t c we have, 

0 x  
a 

c2 

c 

Hence the general solution becomes, 

y- k = 2 

Thus the singular solution is (y - k)
2

 

Remark: We can also obtain the solution in the method: solvable for y. 

 

 
3. Solve the equation (px – y) (py + x) = 2p by reducing into Clairaut’s form, taking the 

substitutions X = x
2  

, Y = y
2

 

Sol : X x
2

 
dX 

2x 
dx 

Y y
2

 
dY 

2 y 
dy 

 
Now, p dy dy dY dX and   let    p 

dY
 

dx dY dX dx dx 

ie.,  p 

 

ie., p 

1  
.P.2x 

2 y 

 

Consider( px 
 

 

ie., 
X    

P X Y 
X   

P    Y X 2 
X 

P 

Y Y Y 

ie.,   (PX Y )   (P 1) 2P 
 

ie., 
 
Y PX 

2P 
is in the Clairaut's form and hence the associated genertal solution is 

P 1 

Y cX 
2c

 

c 1 

Thus the required general solution of the given equation is y
2

 

a / x 

X 
P 

Y 

y)(  py x) 2 p 

cx
2
 

2c 

c 1 



 

 

y py x a
2  

p, use  the substitution X x
2    

,Y y
2
. 

2c 

c 1 

2c 

c 1 

 

4) Solve 

Sol: Let 

px 
 

X x2
 

 
Y x

2
 

 

dX 
2x 

dx 

dX 
2 y 

dy 
 

Now, p dy dy     dY dX   
and let P 

dY 
dx dY    dX dx dx 

P 
1   

.p.2x or    p 
x 

P 

2  y y 

p  
X 

P 
Y 

Consider ( px y)(  py x) 2 p 

 

Y 

Is in the Clairaut’s form and hence the associated general solution is 

Y cX 
 

Thus the required general solution of the given equation is    y 2 cx 2 
 

5) Obtain the general solution and singular solution of the Clairaut’s equation 

Sol: The given equation can be written as 

xp
3

 

xp
3 

1 1 
y y px i s in the Clairaut ' s form y px f ( p) 

p2 p2 

whose general solutionis y 

Thus  general solutionis  y cx 
1
 

c2 

Differnetiating partially w.r.t.c weget 
 

0 
 

Thus general solutionbecomes 
1/3 2/3 

y 
2 
x 

or  4 y
3

 

x 
x 
2 

27x
2

 

22/3 y 3x2/3 

X 

Y 

(PX 

P     X Y 
X 

Y 
P  Y X 2 

X 

Y 
P 

Y  )(P 1) 2P 

PX   
2P 

P 1 

yp
2 

1 0 

cx f (c) 

x 
2 

c3 

c 
2 

x 

1/3 



 

 

z 

x 

2x 

a2 

x2 y2 

 

 

MODULE – 3 

PARTIAL DIFFERENTIAL EQUATIONS 
 

Introduction: 
 

Many problems in vibration of strings, heat conduction, electrostatics involve two or more variables. 

Analysis of these problems leads to partial derivatives and equations involving them. In this unit we first 

discuss the formation of PDE analogous to that of formation of ODE. Later we discuss some methods of 

solving PDE. 

Definitions: 

 

An equation involving one or more derivatives of a function of two or more variables is called a partial 

differential equation. 

The order of a PDE is the order of the highest derivative and the degree of the PDE is the degree of highest 

order derivative after clearing the equation of fractional powers. 

A PDE is said to be linear if it is of first degree in the dependent variable and its partial derivative. 
 

In each term of the PDE contains either the dependent variable or one of its partial derivatives, the PDE is 

said to be homogeneous. Otherwise it is said to be a Non-homogeneous PDE. 

 

 

 

Formation of pde by eliminating the arbitrary constants 

Formation of pde by eliminating the arbitrary functions 

Solutions to first order first degree pde of the type 

P p + Q q =R 

Formation of pde by eliminating the arbitrary constants: 

(1) Solve: 
2z 

a2 b2 

 
Sol: Differentiating (i) partially with respect to x and y, 

 

2 or 
1 

a2 

1 z 

x x 

p 

x 



 

 

2 z 

y 

2 y 

b2 

1 

b2 

1 z 

y x 

q 

y 

 
 

or 
 

Substituting these values of 1/a
2 

and 1/b
2 
in (i), we get 

 

(2)=z(x 
2 

+ a) (y
2 

+ b) 

Sol: Differentiating the given relation partially 

(x-a) 
2 

+ (y-b) 
2 

+ z
2 

= k
2  

…(i) 

Differentiating (i) partially w. r. t. x and y, 

 

(x a) z  
z
 

x 
0,(y b) z      

z 
0 

y 

 

Substituting for (x- a) and (y- b) from these in (i), we get 

 
 

z
2       

1  
z 

x 

2 

z 
k

2 

y 

 
This is the required partial differential equation. 

 

(3) z = ax + by + cxy  ...(i) 
 

Sol: Differentiating (i) partially w.r.t. x  y, we get 
 

z 
a cy..(ii) 

x 

 
z 

b cx..(iii) 
y 

 

It is not possible to eliminate a,b,c from relations (i)-(iii). 

Partially differentiating (ii), 

2z 
c  Using this in (ii) and (iii) 

x y 
 

a z 
y
 

x 

2 z 

x  y 

2 



 

 

x 

a2 

z 

c2 

z 

x 

1 

a 2 

1 

c2 

z 

x 

2 
2z 

z 

x2 

c2 

a 2 

z 

x 

2 
2z 

z 

x2 

2 

 
 

  
 

Substituting for a, b, c in (i), we get 
 

z x  
z 

x 
 
 

z x 

2z 
y 

x y 

 

z 
y 

z 
x y 

y  
z 

x  
z  

xy     y  x y 
 
 

xy 

 

x2 
(5) y2 z2 

1 

a2 b2 c2 

 

Sol: Differentiating partially w.r.t. x, 
 

2x 2z z 

a
2 

c
2 

x 
0, or 

 

Differentiating this partially w.r.t. x, we get 
 

 

or 
 

 

: Differentiating the given equation partially w.r.t. y twice we get 

 

 

Is the required p. d. e.. 
 

Note: 
 

As another required partial differential equation. 

P.D.E. obtained by elimination of arbitrary constants need not be not unique 

Formation of p d e by eliminating the arbitrary functions: 

1)  z = f(x
2  

+ y
2
) 

2z 

x  y 
b z 

x
 

y 

z z 

y y 

z 

y 

2 
2z 

z 

y2 

z z 

x x 

z 

x 

2 

z 
2z 

x2 

2z 

x y 

2z 

x y 



 

 

z 

x 

 

Sol: Differentiating z partially w.r.t. x and y, 
 

p 
z 

f '(x2
 

x 
y2 ).2x, q 

z 
f '(x2

 

y 
y2 ).2y 

 

p /q = x / y  or   y p –x q=0   is the required pde 
 

(2) z = f ( x +ct ) + g (x -ct) 
 

Sol: Differentiating z partially with respect to x and t, 
 

z 
f '(x 

x 

 

ct) 
 

g'(x 
2 z 

ct), 

x2 

 

f "(x 
 

ct) 
 

g"(x 
 

ct) 

Thus the pde is 
 
 

(3) x + y + z = f(x
2 

+ y
2 
+ z

2
) 

Sol:Differentiating partially w.r.t. x and y 

1 
z 

f '(x2
 

x 

 

1 
z 

f '(x
2

 

y 

y2 z2 ) 2x 

 

 
y

2 
z

2 
) 2 y 

 

2z 
 

 

2z 
z 

y 

2 f '(x2
 y2 z2 ) 

1 (  z /  x) 

x z(  z / x) 

1 (  z /  y) 

y z(  z / y) 
 

 

(  y z) z x)  
z 

y 
x y  is the required pde 

 

(4)  z  =  f ( xy / z ). 
 

Sol: Differentiating partially w.r.t. x and y 
 

z 
f ' 

x 

2 z 

t 2 

2 z 

x2 

0 

z 
(
 

x 

xy 

z 

y 

z 

xy z 

z2 x 



 

 

x 

2 z 

x y 
x 

z 

x 
y z 

[
 

y 

 

z 
f ' 

y 

 

f ' 
 

 

 

or xp = yq is the required pde. 

(5) z = y
2  

+ 2 f(1/x + logy) 

 
Sol : 

 

 

z 
2 f '(1/ x 

x 

 

log y) 

 

2 f '(1/ x log y) 
2  z  

y 
x 

z 
2 y 

y 
 

Hence    x
2 z 

y  
z
 

x y 
2 y2

 

 

(6) Z = xΦ(y)  + y (x) 

 

Sol : 
 
 

Substituting '( y) and '(x) 
 

 

xy x ( y) y (x)] 
 
 

is the required pde. 

xy 

x      
z 

y  
z 

x y 

xy 

z 

x 

z 

xy z 

z2 x 

xy 

z 

z /    x z /  y 

( y / z){1 (x / z)(  z /   x} (x /  z){1 ( y / z)(  z / y} 

z 
2   y 2 f   '(1/  x log y) 

y 

1 

y 

1 

x2 

z 

x 
(  y) y '(x); 

z 

y 
x '( y) (x) 

x 
z 

x 
y z 

z
 

y 

2 z 

x y 



 

 

z 
2  f   ( y 2x) g   (2 y x) 

x 

 

7) Form the partial differential equation by eliminating the arbitrary functions from 

z = f(y-2x) + g(2y-x)   (Dec 2011) 

Sol: By data, z = f(y-2x) + g(2y-x) 

 
p 

 
 

q 
 

 
 

 
 

 
2 z 

t f  ( y 

y2 

 

2x) 4g 
 

(2  y x)................(3) 

 

(1)       2 (2) 2r s 6 f  ( y 2x)..............(4) 
 

(2)     2 (3) 2s t 3 f  ( y 2x)............(5) 

Nowdividing(4) by (5) we get 

 

2      z 2      z 2 z 
Thus 2 5 2 0 is the required PDE 

x
2 

x    y y
2

 

 

LAGRANGE’S FIRST ORDER FIRST DEGREE PDE: Pp+Qq=R 
 

(1)  Solve: yzp + zxq = xy. 
 

Sol  :   
dx dy dz 

yz zx xy 
 

Subsidiary equations are 

From the first two and the last two terms, we get, respectively 

r 
2 z 

x2 

4 f    ( y 2x) g   (2 y x)...............(1) 

s 
2 z 

x y 
2 f    ( y 2x) 2g   (2 y x).........(2) 

2r s 

2s t 
2 or2r 5s 2t 0 

z 
f    ( y 2x) 2g   (2 y x) 

y 



 

 

dz z 

 

dx dy 
or xdx 

y  x 

 

ydy 0      and 
dy 

z 

dz 
or ydy 

y 

 

zdz 0. 

 

Integrating  we  get x
2   

-  y
2 

= a, y
2  

– z
2 

= b. 

Hence, a general solution is 

Φ(x
2
-y

2
, y

2  
–z

2
) = 0 

(2) Solve: y
2
p - xyq = x(z-2y) 

 
Sol : 

 
 

From the first two ratios we get 

x
2   

+  y
2 

= a from the last ratios two we get 
 

dz z 
2
 

dy y 
 

from the last ratios two we get 
 

 
dy y 

2  ordinary linear differential equation hence 

 

yz – y
2
= b 

solution   is Φ( x
2  

+  y
2
,  yz – y

2
) = 0 

 

 
(3) Solve : z(xp – yq) = y

2 
–x

2
 

 
Sol : 

 

 

,  or xdy ydx 0  or d(xy) 0, 
 
 

on  integration,  yields xy = a 

dx 

y2 

dy dz 

xy x(z 2 y) 

dx 

zx 

dy 

zy 

dz 

y2 x2 

dx dy 

x y 



 

 

y z 

yz 

z x 

zx 

 

xdx  +ydy +  zdz = 0 x
2 
+ y

2  
+ z

2 
= b 

Hence, a general solution of the given equation 

Φ(xy,x2+y2+z2)=0 

 

(4) Solve: p q 

 

Sol : 
 
 

x dx + y dy + z dz = 0 …(i) 

Integrating (i) we get 

x
2 
+ y

2  
+ z

2 
= a 

yz dx + zx dy + xy dz  = 0 …(ii) 

Dividing (ii) throughout by xyz and then integrating, 

we get  xyz = b 

Φ( x
2  

+ y
2  

+ z
2
, xyz ) = 0 

(5) (x+2z)p + (4zx – y)q = 2x
2  

+ y 

 
Sol : 

 
 

Using multipliers 2x, -1, -1 we obtain 2x dx – dy – dz = 0 

Using multipliers y, x, -2z in (i), we obtain 

y dx + x dy – 2z dz = 0 which on integration yields 

xy  –  z
2 

= b ….(iii) 

5) Solve z
xy 

sin x sin y for which zy 2sin y when x 0 and  z 0 
 

when y is an odd multiple  of  
2 

. 

x y 

xy 

yz 

y z 
dx 

zx 

z x 
dy 

xy 

x y 
dz 

dx dy dz 

x 2z 4zx y 2x
2

 y 
..(i) 



 

 

 

Sol: Here we first find z by integration and apply the given conditions to determine the arbitrary 

functions occurring as constants of integration. 

The given PDF can be   written as 
z
 

x y 
sin x sin y 

 

Integrating w.r.t x treating y as constant, 
 

Integrating w.r.t y treating x as constant 

z 

z 

where F ( y) 
 
 

Thus z 
 

Alsoby data,   
z
 

y 

 
2 sin y when x 

 
0. U sin g this in (1) 

2 sin y (   sin y).1 f ( y) (cos 0 1) 
 
 

Hence F ( y) f ( y) dy sin y dy cos y 

With this, (2) becomes z cos x cos y cos   y g(x) 
 

U sin g theconditionthat z 

 
0 

 
But cos (2n 

0 if y (2n 1) in (3) we have 
2 

 

Thus the solution of the PDE is given by 

z=cos x cosy + cosy 

Method of Separation of Variables 

 

1) Solve by the method of variables 3ux 

Given  3    
u 

2     
u 

0..............(1) 

Sol: 
x x

 

z 

y 
sin y  sin xdx f  ( y) sin  y cos x f ( y) 

cos x    sin y dy f  ( y) dy g (x) 

cos x   (   cos y) F ( y) g(x), 

f ( y) dy. 

cos x cos y F ( y) g (x) 

cos x cos(2n  1) 
2 

cos x c(2n  1) 
2 

g(x) 

1) 
2 

0.and   hence 0 0 0 g(x) 

2uy 0, giventhat u(x, 0) 4e 
x 



 

 

u    
(xy) 2     

u 
(xy) 0 

x x 

log Y Kdy 
c
 Y e 

   ky 

2 
c 2 

K 

e 

x   y 

3   2 
c    c 1      2 

3 

4e 

x   y 

3   2 is re 

1 

 

Assume solution of (1) as 

U=XY  where X=X(x);Y Y ( y) 

3 

3Y 
dX 

 
2 X    

dY 
0 

 

 
3  dX 

 

 
2 dY 

dx dy X    dx Y   dy 

Let   
3   dX 

K 3dX 
 

kdx 
X    dx X 

kx  
c
 

 
 

Let 

X e 3 

2    dY 
k
 

 
dY Kdy 

Y dy Y 2 

2 
2 

Substituting 

 
U 

Also u(x1o) 

(2)&(3) in (1) 

 

i.e.,  4e 

Comparing  we  get A 
 

U quired solution. 
 

 

2) Solve by the method of variables 4 

 
Solution:  Given 4 

 

Assume solution of (1) as 
 
 

u XY   where X X   (x);Y Y ( y) 

3log   X kx c 1 log X 
Kx 

3 
c 1 

x 
k 

Ae 

2 x 

6 4e x 

kx 

Ae 3 

4e x 

4 & K 3 

u 

dx 

u 

y 
3u, giventhat u(0, y) 2e5 y 

u 

x 

u 

y 
3u 



 

 

x 
( XY ) 

y 
( XY ) 3XY 

0 and  u 2e5 y 

x   
5 y 

2e 2 

 
 

4 
 

4Y 
dX 

 
X 

dY 

 

 

3XY 

 

 
4 dX 

 
1     dY 

3
 

dx dy X    dx Y  dy 

Let 4 dX k   , 3 1    dY 
k
 

X    dx Y dy 

Separating var iables and int egrating we get 
 

 

 
 

Hence u 

put x 

The general solutionbecomes 

2e5 y 

Particular solutionis 

 
u 

 

APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS: 

Various possible solutions of standard p.d.es by the method of separation of 

variables. 
 

We need to obtain the solution of the ODEs by taking the constant k equal to 

i)   Zero ii)  positive:  k=+p
2 

iii) negative: k=-p
2 

Thus we obtain three possible solutions for the associated p.d.e 

Various possible solutions of the one dimensional heat equation ut =c
2
uxx by the method of 

separation of variables. 

 

Consider 
 

Let u= XT where X=X(x),T=T(t) be the solution of the PDE 

Hence the PDE becomes 

X 
kx 

e 4 

c 1 

and Y e 
3  k  y   c 

2 

log X 
kx 

4 
c  , 

1 
log  Y 3 k     y c 

2 

XY e 
c1      c2 

kx    
3  k   y 

e 4 

kx 

Ae 4 

3  k  y 

where A e 
c1      c2 

Ae 
3

 
k  y 

A 2 and k 2 

u 
c2 

t 

2u 

x2 



 

 

d 
2 
X 

kX 0  and 

dT 

dt 
c

2
kT 0 

1 

 
 

 
 

Dividing by c
2
XT we have 1  dT 1 d 

2 
X 

c
2
T    dt X  dx

2
 

 

Equating both sides to a common constant k we have 
 

1 d 
2 

X 

X  dx
2

 

 
=k and 1   dT  

=k
 

c
2
T  dt 

 

 

dx
2

 

 

D
2 

k  X 
 

0   and   D 

 

Where D
2  

= 
d
 in the first equation and D = 

d
 
 
in the second equation 

dx
2 

dt 
 

Case (i) : let k=0 

AEs are m=0 amd m
2
=0 amd m=0,0 are the roots 

Solutions are given by 

T = c e
0t

 

 

Hence the solution of the PDE is given by 
 

U= XT=  c1     c2 x 
 

Or u(x,t) =Ax+B where c1c2=A and c1c3=B 

Case (ii) let k be positive say k=+p
2 

AEs are m –c
2
p

2
=0 and m

2
-p

2
=0 

m= c
2
p

2  
and m=+p 

Solutions are given by 

 
T 

XT 

t 

2 

c2     

x2 

XT 
or X 

dT
 

dt 
c2     

dx
2

 

d 
2 
X 

c
2
k    T 0 

c  and X 1 c   x c 2 3 e0 x c   x c 2 3 

c3 

c'  ec  p t 

2   2 

1 and X c'  epx 
2 c' 

3 e px 

2 



 

 

XT c' ec  p  t .( 
2   2 

1 
c' e 

3 
px ) 

e c  p t (A'' 

2   2 

cos px B'' sin px) 

200 
n  1 

1 n2    2c2t 

n  1 n 
e 

l 2 
si 

2 

 

Hence the solution of the PDE is given by 
 

u c'  epx 

 
'       c

2 
p

2
t px px 

Or  u(x,t)  = c1e (A’ e    +B e ) where c1’c2’=A’ and c1’c3’=B’ 

Case (iii): let k be negative say k=-p
2 

AEs are m+ c
2
p

2
=0 and m

2
+p

2
=0 

m=- c
2
p

2 
and m=+ip 

solutions are given by 

T 
 

Hence the solution of the PDE is given by 
 

u 

 

u(x,t) 
 

 

 
 

1. Solve the Heat equation u 
c2 

u 
given  that  u(0,t)=0,u(l,0)=0 and u(x,0)= 100x/l 

t x
2

 

 
Soln:  bn 

 

 

 
 

bn 

 

 

 
 

bn 

 

The required solution is obtained by substituting this value of bn 

 
 

Thus    u(x,t) n 
l 

2   2 

c''  e c  p  t 
1 

and X c'' 
2 
cos   px sin px c'' 

3 

XT 
2   2 

c''  e c  p  t 
1 

.(c
''      

cos px sin px) 
2 c'' 

3 

2 
l  
100x 

l l 
0 

sin dx = 
l 

n  x 200 
l
 

x sin 

l 2 
0 

n x 
dx 

l 

x.   cos 
n
 

n   / l 

x 

1 

sin 
n
 

n   / l 

x 
l 

200 

l 2 

l l 
2 

0 

200 
.  

1 

l2 n 
l cos n 

200 1 

n 

n 

. 
200 1 

n 

n  1 

n  x 

2 



 

 

8T 

n2    2 

sin 
n
 
2 

8T 
2 

1 n n2   2c2t 

n  1  n 
2 

sin e 
2 l 2 sin 

n x 

l 

 

2. Obtain the solution of the heat equation  
u

 
2u 

c
2 

given that u(0,t)=0,u(l,t)and 
 

 

 
u(x,0) =f(x)where 

 

 
 
f (x) 

 

2Tx    
in 0 x 

l 

t x
2

 

l 

2 

 

 

 
Soln: bn 

2T       
l x   in  

l  
x l 

l  2 

bn 

 

 
 

 
bn 

 

The required solution is obtained by substituting this value of bn 

Thus u(x,t) 

3. Solve  the  heat  equation 
u
 2u 

with the boundary conditions u(0,t)=0,u(l,t)and 

 
u(x,0)   =3sin x 

t x
2

 

 

Soln: u(x,t) e   
p

2
t   

(A cos px B  sin px)............................(1) 
 

Consider u(0,t)=0   now 1 becomes 

 

0= e  
p2t 

(A)  thus A=0 

Consider u(1,t)=0 using A=0 (1) becomes 

 

0= e 
p2t 

(Bsinp) 

Since B≠0,sinp=0or p=n 

4T 

l 

l 

2 

x  sin dx (l x) sin 
n  x 

l 

0 
l l 

2 

n x 
dx 

l 

2 
l n  x 

l 
0 

f  (x) sin  dx 
l 

l 
2 

2 2Tx 

l l 
sin 

n  x 

l 

l 

dx 
2Tx 

l 
(l x) sin 

n  x 

l 
dx 

0  l 

2 



 

 

x b1         sin x b2   sin 2    x b3  sin 3 x 

2 t 

3e (s 

2u 2u 

c2 

t2 x2 

d  X 

 

u(x, t) 
n2  2c2t 

e (B sin n x) 
 

In general u(x,t) bne 
n  1 

n2  2c2t 

sin n  x 

 

Consider u(x,0)= 3 sin n   x and we have 
 

 
 

3 sin n 
 

Comparing both sides we get b1 

 

We substitute these values in the expanded form and then get 

 

u(x,  t) in 
 

Various possible solutions of the one dimensional wave equation utt =c
2
uxx by the method of 

separation of variables. 

 

Consider 
 

Let u= XT where X=X(x),T=T(t) be the solution of the PDE 

Hence the PDE becomes 

 
2 2 

Dividing by c
2
XT we have 1   d T 1  d X 

c
2
T    dt

2 
X  dx

2
 

 

Equating both sides to a common constant k we have 
 

1 d 
2 

X 

X  dx
2

 

 

=k and 
1   d 

2
T   

=k 
c

2
T  dt

2
 

 
 

2 

 

dx
2

 

2 
XT 

t2 

2 

c2     

x2 

XT 
2 

or X 
d  T

 
dt

2
 

c2     

dx
2

 

d 
2 
X 

3, b2 0, b3 0 

x) 

kX 0  and 

d 
2
T   

dt
2

 

c kT 2 0 



 

 

c
2
k   T 0 

XT c' ec  p  t .( 
2   2 

1 

1 

2 

 

D
2 

k     X 0   and   D
2

 

 

Where D
2  

= 
d
 in the first equation and D

2  
= 

d
 

 
in the second equation 

dx
2 

dt 
2

 

 

Case(i) : let k=0 

AEs are m=0 amd m
2
=0 amd m=0,0 are the roots 

Solutions are given by 

T = c e
0t

 

 

Hence the solution of the PDE is given by 
 

U= XT=  c1     c2 x 
 

Or u(x,t) =Ax+B where c1c2=A and c1c3=B 

Case (ii) let k be positive say k=+p
2 

AEs are m –c
2
p

2
=0 and m

2
-p

2
=0 

m= c
2
p

2  
and m=+p 

Solutions are given by 
 

T 
 

Hence the solution of the PDE is given by 
 

u c'  epx 

 
'       c

2 
p

2
t px px 

Or  u(x,t)  = c1e (A’ e    +B e ) where c1’c2’=A’ and c1’c3’=B’ 

Case (iii): let k be negative say k=-p
2 

AEs are m+ c
2
p

2
=0 and m

2
+p

2
=0 

m=- c
2
p

2 
and m=+ip 

Solutions are given by 

T 

c  and X 1 c   x c 2 3 e0 x c   x c 2 3 

c3 

c'  ec  p t 

2   2 

1 
andX c' epx c' e px 

2 3 

c
' 
e 

3 
px ) 

2   2 

c''  e c  p  t 
1 

and X c'' 
2 
cos   px sin px c'' 

3 

2 2 



 

 

x 

l 
b sin 

n
 

x 

n  1 
n 

l 

3 
sin

3
 

4 

x 

l 

1 
sin 

3
 

4 

x 

l 
b  sin 

n
 

x 
n 

n  1 l 

3u0 
, b 0  , b u0 ,

 b 0    b 0 , 

3u
0 sin 

x 
cos 

ct u
0 sin 

3  x 
cos 

3
 

ct 

x u
0  sin 

3
 

x 
b sin 

x 
b  sin 

2
 

x 
b sin 

3
 

x 

0 

 

Hence the solution of the PDE is given by 
 

u 

 

u(x,t) 
 

 

 

1. Solve the wave equation utt=c
2
uxx subject to the conditions  u(t,0)=0 ,u(l,t)=0, 

u     
x, 0 0 

t 

 
Soln:  u x,t 

and u(x,0) =u0sin
3
(  x/l) 

 

Consider u(x,0) =u0sin
3
(  x/l) 

 
u  x, 0 

 

 

u sin
3

 

 

 

u0 

 

3u
0 sin 

4 l 4 

 

l 
1 

l 
2 

 

l 
3 

l 
comparing both sides we get 

 
b 

1 
4 

2 3 
4 

4 5 

 

Thus by substituting these values in the expanded form  we get 

 
u(x,t) 

4 l l 4 l l 
 

 
 

2. Solve the wave equation utt=c
2
utt subject to the conditions u(t,0)=0 ,u(l,t)=0, 

u     
x, 0 0 

t 
when t=0and u(x,0) =f(x) 

XT 
2   2 

c''  e c  p  t 
1 

.(c''      cos px sin px) 
2 c'' 

3 

e c  p t (A'' 

2   2 

cos px B'' sin px) 

b sin 
n  x 

cos 
n

 
ct 
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Soln:  u x,t 
 

Consider u(x,0)=f(x) then we have 

Consider u(x,0) = 

F(x) = 
 

The series in RHS is regarded as the sine half range Fourier series of f(x) in (0,l) and hence 

 

bn 

 

 

Thus we have the required solution in the form 

 

u  x,t 
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PROBLEMS: 
 

 



 

 

 
 



 

 

 

 

Evaluation of a Double Integral by Changing the Order of Integration 

 

 Evaluation of a Double Integral by Change of Variables 
 

Applications to Area and Volume 
 



 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Triple Integrals: 
 

The treatment of Triple integrals also known as volume integrals in R
3 
is a simple and straight 

extension of the ideas in respect of double integrals. 

Let f(x,y,z) be continuous and single valued function defined over a region V of space. Let V be 

divided into sub regions v1, v2 ....... vn   in to n parts. Let (xk , yk , zk ) be any arbitrary point 
 



 

 

n 

f (xk , yk , zk ) vk 

k  1 

f (x, y, z) 

2 

 
 

within or on the boundary of the sub region vk  . From the sum s 
 

…………(1) 
 

If as   n and the maximum diameter of every. 
 

Sub region approaches zero the sum (1) has a limit then the limit is  denoted by dv 
V 

 

This is called the triple integral of f(x,y,z) over the region V. 
 

For the purpose of evolution the above triple integral over the region V can be expressed as an 

iterated integral or repeated integral in the form 

 

 

Where f(x,y,z) is continuous in the region V bounded by the surfaces z= z 

y g(x), y h(x), x a, x b . the above integral indicates the three successive integration to be 

performed in the following order, first w.r.t z, keeping x and y as constant then w.r.t y keeping x 

as constant and finally w.r.t.x. 

Note: 
 

  When an integration is performed w.r.t a variable that variable is eliminated completely 

from the remaining integral. 

  If the limits are not constants the integration should be in the order in which dx, dy, dz is 

given in the integral. 

Evaluation of the integral may be performed in any order if all the limits are constants. 

If f(x,y,z) = 1 then the triple integral gives the volume of the region. 
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3. Evaluate 
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Sol :  I 
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4. Evaluate 
R 

dz  over the region R enclosed by the coordinate planes and the 

plane x + y + z=1 

Sol:  In the given region, z varies from 0 to 1 – x – y 

For z-=0, y varies from 0 to 1 – x. For y=0,x varies from 0 to 1. 
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Change of variable in triple integrals 

Computational work can often be reduced while evaluating triple integrals by changing 

the variables x, y, z to some new variables u, v, w, which related to x,y,z and which are 

such that the 

 

 

 

Jacobian  J 
 

 

 

 

It can be proved that 

dxdydz 
R 

(u, v, w)Jdudvdw........(1) 
R 

R is the region in which (x,y,z) vary and  R   is the corresponding  region in which 
 

(u,v,w)vary   and (u, v, w) f   x(u, v, w), y(u, v, w), z(u, v, w) 
 

Once the triple integral wrt (x,y,z) is changed to triple integral wrt (u,v,w) by using the 

formula(1), the later integral may be evaluated by expressing it in terms of repeated 

integrals with appropriate limit of integration 

1 
1 1 x 

2 0 

x (1 x)2       y 2(1 x) y2
 y3 dy  dx 
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R cos    , y Rsin    , z zthenR,  , z  are called 

dz 

f (x, y, z) 

, z) vary, 

xyzdxdyd 

 

Triple integral in cylindrical polar coordinates 

Suppose (x,y,z)  are related to three variables (R,  , z) through the the  relation 
 

x 

In this case, 

cylindriocal polar coordinates; 

 

 

 

 

J 
 

 

 

 

Hence dxdydz has to be changed to R dR d 

Thus we have 

dxdydz 
R 

R 

 

R  is the region in which  (R, 

 

as (x,y,z) vary in R 
 

 
 

Triple integral in spherical polar coordinates 

Suppose (x,y,z) are related to three variables (r,   ,  )  through the relations 
 

x r sin    cos  , y r sin    sin  , z r cos 

coordinates. 

 

PROBLEMS: 

. Then (r,   ,   ) are called spherical polar 

 

1) If R is the region bounded by the planes x=0,y=0,z=0,z=1 and the cylinder x
2

 

.Evaluate the integral 
R 

z  by changing it to cylindrical polar coordinates. 

Sol: Let (R,  , z) be cylindrical polar coordinates. In thegiven region, R varies from  0 
 

to 1, varies  from  0  to and z varies from 0 to 1. 
2 

R 

(R,     , z) f (Rcos  , Rsin  , z) 
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1 1 
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2) Evaluate 
R 

z over the positive octant of the sphere by changing it to 

spherical polar coordinates. 

 
Sol: In the region, r varies from 0 to a,  varies from 0 to 

 
The relations between Cartesian and spherical polar coordinates are 

x r sin     cos  , y r sin    sin   , z r cos   .....(1) 

Also dxdydz 

 

 

varies from 0 to. 

We have x2
 y2 z2 a

2 
.....(2) 
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MODULE-4 

INTEGRAL CALCULUS 

Application of double integrals: 
 

Introduction: we now consider the use of double integrals for computing areas of plane and 

curved surfaces and volumes, which occur quite in science and engineering. 

Computation of plane Areas: 
 

Recall expression 
 

b    y2 ( x) d  x2 (y) 

 
A R a    y1 ( x) c  x1 (y) 

b    y2 ( x) d  x2 (y) 

 
A R a    y1 ( x) c  x1 (y) 

 

The integral dA  represents the total area of the plane region R over which the iterated integral 
A 

are taken . Thus (1) may be used to compute the area A. nNote that dx dy is the plane area 

element dA in the Cartesian form. 
 

Also dxdy 
R 

rdrd 
R 

, rdrd   is the plane area element in polar form. 

 

Area in Cartesian form 
 

Let the curves AB and CD be y1 f1 (x)andy2 f2 (x) . Let the ordinates AC and BD be x=a and 

x=b. So the area enclosed by the two curves and x=a and x=b is ABCD. Let p(x,y) and be 

Q(x x,   y y)  two neighbouring points, then the area of the small rectangle PQ= 
 

y2 

Area of the vertical strip = lim 
y    0   y1 

y2 

x y x   dy 
y1 

 

Since x  the width of the strip is constant throughout, if we add all the strips from x=a to x=b 

we get 
 

h y2 b y2 

The area ABCD = lim 
y    0 

x     dy dx  dy 
a y1 a y1 
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Area= 
b  y2 

 
 
a  y1 

 

Area in Polar form: 
 

x2 y 2 

1. Find the area of  the ellipse 1 by double integration . 

a2 b2 

 

Soln: For the vertical strip PQ, y varies from y =0 to y 
 

from CB   to A, x varies from x=0 to x=a 

b 
a    

2 
x

2  when the strip is slided 
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Therefore Area of the ellipse=4 Area of CAB 
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a 2 a 2 2 

 
2. Find the area between the parabolas y

2
=4ax  and  x

2  
= 4ay 

Soln: We have y
2
=4ax ………………… (1) and  x

2  
= 4ay…………………(2). 

Solving (1) and (2) we get the point of intersections (0,0) and (4a,4a) . The shaded portion 

in the figure is the required area divide the arc into horizontal strips of width  y 
 

y 2 

x  varies from p, to Q 
4a 

 

and then y varies from O, y=0 to A, y=4a . 

 

Therefore the required area is 
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Computation of surface area (using double integral): 
 

The double integral can made use in evaluating the surface area of a surface. 
 

Consider a surface S in space .let the equation of the surface S be z=f(x,y) . it can be that surface 

area of this surface is 
 

Given    by s 1 
z
 

A x 

1 

z   
2    2 

y 

 

dxdy 

 

Where A the region representing the projection of S on the xy-plane. 

Note that (x,y)vary over A as (x,y,z) vary over S. 

Similarly if B and C  projection of S on  the yz-plane and zx - plane respectively , then 
 

s 1 
z
 

A z 
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A z 

1 

z   
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z 2 
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dydz 

 

 

dzdx 

 

1) Find the surface area of the sphere x
2
+y

2
+z

2
=a

2
. 

Soln: the required surface arc is twice the surface are of the upper part of the given sphere,  

whose equation is 
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this, gives, 
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similarly, 
 

 

hence, the, required , surface, area,is 

1 1 

s 2 1 
z
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2   2 dxdy 2 a2 2 
dxdy 

x y a
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x
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y
2

 

Where A the projection of the sphere on the xy-plane . we note that this projication is the area 

bounded by circle x
2
+y

2
=a

2
.hence in A ,Ѳ varies from 0to2 

And r varies from 0to a, where (r, Ѳ) are the polar coordinates. put x=cos θ ,y=sin θ dxdy=rdrd θ 
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2) Find the surface area of the portion of the cylinder x
2
+z

2
=a

2 
which lies inside the  

cylinder x
2
+y

2
+=a

2
. 

Soln:   Let   s1    be  the  cylinder x
2
+z

2
=a

2   
and  s2   be  the  cylinder  x

2
+z

2
=a

2   
for  the    cylinder 

s1 

 

 

so that,1 
 
 

The required surface area is twice the surface area of the upper part of the cylinder S1 which lies 

inside the cylinder x
2
+y

2
=a

2
. Hence the required surface area is 
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Where A is the projection of the cylinder   S1  on the x y plane that   llies        with in the cylinder 

S2:x
2
+y

2
=a

2
. In Ax varies from –a toa and for each x,y   varies from to 
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s 2 
x     a y 

 

dydx 

 

 
a 

4a       dx 4a  
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Volume underneath a surface: 
 

Let Z=(x,y)be the equation of the surface S. let P be a point on the surface S.let A denote the 

orthogonal projection of  S on the xy- plane . divide it into     area elements by drawing thre lines 

parallel to the axes of x and y on    the elements as base ,erect a cylinder  having generators 

parallel to QZ and meeting the surface S in an element of area s .the volume underneath the 

surface bounded by S, its projection A on xy plane and the cylinder with generator through the 

boundary curve of A on the xy plane and parallel to OZ is given by, 
 

v f  x, y dxdy 
A 

Zdxdy 
A 

 

x2 y  2 z 2 

1) Find the volume of the ellipsoid 1 

a2 b2 c2 

Sol: Let S denote the surface of the ellipsoid above the xy-plane .the equation of this   surface 

x  2 y 2 z 
1 z 0 

a 2 
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or, z 

b2 c 2 
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x y 

 

 

1 

2 

f  x, y 

a 2  b2 

 

The volume of the region bounded by this surface and the xy-plane gives the volume v1of the 

upper half of the full ellipsoid .this volume is given by v1 

A 

 

Where A  is the area of the projection of S on the xy plane . 

x, y dxdy 
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Note that A is the area bounded by the ellipse 1 
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The volume of the full ellipsoid is 2v1.thus the required volume is v 2. 
2
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abc 
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Volume of revolution using double integrals: 
 

Let y=f(x) be a simples closed plane curves enclosing an area A. suppose this curve is revolved 

about the x-axis. Then it can be proved that the volume of the solid generated is given by the 

formula . 
 

2  ydxdy 
A 

 

In polar form this formula becomes v r 
2 
sin 

A 

d  dr 

 

1) Find the volume generated by the revolution of the cardioids r =a (1+cosθ) about the 

intial line. 

Sol: The given cardioids is symmetrical about the initial line θ=0.therfore the volume generated 

by revolving the upper part of the curve about the initial line is same as the volume 

generated by revolving the whole the curve .for the upper part of the curve θ varies form 0  

to  π  and  for  each  θ  ,  r  varies  from    0  to  a(1+cosθ),therefore  the  required  volume  is 
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Computation of volume by triple integrals: 
 

Recall the expression, 
 

 

f  x, y, z dv 
v 

f  x, y, z dxdydz 
R 

, y, z dz dy dx 

 

As a particular case ,where f(x,y,z)=1,this expression becomes 
 

 

dv dxdydz 
v R 

b  h x 

 

 
a  g x 

x, y 

dzdydx………………………..(1) 
x, y 

 

The integral 

compute V. 

dv represents the volume V of the region R. thus expression (1)may be used to 
v 

If(x,y,z) are changed to (u,v,w)we obtained the following expression for the volume, 
 

dv dxdydz 
v R 

jdudvdw…………………………(2) 
R* 

 

Taking (u,v,w)= (R,φ,z) in (2) 
 

We obtained  
 

dv 
v 

RdRd 
R 

dz   …………….(3) an  expression  for  volume  in  terms    of 

cylindrical  polar coordinates. 
 

Similarly 
  

dv 
v 

r 
2 
sin 

R 

drd an  expression  for  volume  in  terms  of  spherical      polar 
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coordinates. 

PROBLEMS: 

1) Find the volume common to the cylinders x
2
+y

2
=a

2  
and x

2
+z

2
=a

2
 

 

Soln:   In   the  given  region z   varies   from to and  y  varies  from 
 

to .for z=0, y=0 x varies from –a to a 
 

Therefore, required volume is 
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2) Find the volume bounded by the cylinder X
2
+Y

2
=4 and the planes y+z=3 and z=0 

Soln: Here z varies from 0 to 3-y, y varies from () to () and x varies from -2 to 2 
 

Required volume 
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Curvilinear coordinates: 
 

Introduction: the cartesian co-ordinate system is not always convenient to solve all sorts of 

problems. Many a time we come across a problem having certain symmetries which decide the 

choice of a co ordinates systems .our experience with the cylindrical and spherical polar co- 

ordinates systems places us in a good position to analyse general co-ordinates systems or 

curvilinear coordinates. Any suitable set of three curved surface can be used as reference surface 

and their intersection as the reference axes. Such a system is called curvilinear system. 

Definition: 
 

The position of a point P(x,y,z)in Cartesian co-ordinates system is determined by intersection of 

three mutually perpendicular planes x=k1, y=k2, and z=k 3   where ki (i=1,2,3) 

Are constants in curvilinear system, the axes will in general be curved. Let us the denote the 

curved coordinate axis by and respectively. 

It should be noted that axis is the intersection of two surfaces u1= constant and u2=constant and 

so on. 

Cartesian coordinates (x,y,z) are related to (u1,u2,u3) by the relations which can be expressed as 

x=x(u1,u2,u3);   y=y(u1,u2,u3): z= z(u1,u2,u3)…….(1) 

Equation (1) gives the transformation equation from 1 coordinates system to another. 
 

The inverse transformation equation can be written as u1= u1 (x,y,z), u2= u2 (x,y,z), u3= u3 

(x,y,z)……(2). 
 

(1) And (2) are called transformation of coordinates. 

Each point p(x,y,z) in space determine a unique triplet of numbers (u1,u2,u3) and conversely to 

each such triplet there is a unique point in space. The trial (u1,u2,u3) are called curvilinear 

coordinates of the point p. 
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Unit vectors and scale factors: 

Let  r 

 

xî  

 

ŷj z 
 
be the position vector of the point p. then the set  of equation x=x(u1,u2,u3), 

 
y=y(u1,u2,u3),z=z(u1,u2,u3) can be  written as r 1 , u2 , u3 

 

A tangent vector to the u curve at p (for which u and u are constant ) is 
 

The unit tangent vector in this direction is 
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So   that where h1 

 

h1ê1 

  
Similarly if e2 ande3 and are unit tangent vector to the u and u curves at p respectively. 

Than 
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So that h2 ê2 

 

 
 

And h3ê3 (     where h3 ) 
 

The quantities h1, h2 and h3 are called scale factors. The unit vectors are in the directions of 

increasing u1, u2, and u3 respectively. 

 

Relation between base vectors and normal vectors: 
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Elementary arc length: 

 
Let r u3 
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du 
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du 
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du 

1 2 3 

i.e; dr 
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ê1h1du1 
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ê2h2du2 
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ê3h3du3 

 

If ds represents the differential arc distance between two neighbouring points 
 

u1 , u2 , u3 and u1 du1 , u2 du2 , u3 du3 

then, , , ds
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 dr.dr ê    h du ê     h du ê     h du . ê    h du ê     h du ê     h du 
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On the curve u1 cure u2 and u3 are constants du2 du3 0 ds h1du1 du1 

 

 

Similarly ds h2 du2 , ds h3 du3 
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Elementary volume element: 
 

Let p be one of the vertices of an infinitesimal parallelepiped. The length of the edges of the 

parallelepiped are h1du1 , h2 du2 , h3 du3 

 

Volume of the parallelepiped =dv=h1 h2 h3   du1 du2 du3 is called the volume  element. 
 

dv= [(ê1h1du1 )(ê2 h2 du2 )]   ê3 h3 du3 

 

v= 
(x, y, z) 

(u1 , u2 , u3 ) 
du1  du2 du3 

 
 

=     j du1  du2 du3 

 

Jacobian is positive since each h1, h2, h3  of are positive. 
 

 

  
Expression for , divF, curlFand 

2
 in orthogonal curvilinear coordinates: 

 

Suppose the transformations from Cartesian coordinates x,y,z to curvilinear coordinates u1, u2 , u3 

be x=f( u1, u2 , u3 ), y=g( u1, u2 , u3 ), z=h( u1, u2 , u3 ) where f,g,h are single valued function with 

continuous first partial derivatives in some given region. The condition for the function f,g,h to 

be independent is if the jacobian 

 

 

= 
 

 

 

When this condition is satisfied, u1, u2 , u3 can be solved as single valued functions odf x, y and z 

with continuous partial derivatives of the first order. 

  
Let  p be a point  with  position vector   op 

 

xî  ŷ j zk  in the Cartesian form. The change     of 

coordinates to u1 , u2 , u3  makes r a function of  u1 , u2 , u3 . The vectors , , are along 

(x, y, z) 

(u1, u2 , u3 ) 
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tangent  to  coordinate  curves u1 c2 , u2 

 
c2 , u3 

 
c3 . Let ê1 , ê2  , ê3 denote  unit  vector along 

these tangents. Then =   ê     h  , 
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If  ê1 ,  ê2 ,  ê3 are such that  ê1 .  ê2 =0,  ê2 . ê3 =0,  ê3 . ê1 =0 
 

Then the curvilinear coordinates will be orthogonal and  ê1 = ê2 x  ê3 , ê2 = ê3 x ê1  ê3 = ê1 x ê2 

 

Now  r
 
= r

 
( u , u , u3 ) dr du1 

+ du2 du3 

 
 

Gradient in orthogonal curvilinear coordinates: 

 
Let Φ(x,y,z) be a scalar point function in orthogonal curvilinear coordinates. 

 

letgrad ê1 ê2 ê3 where 1 2 ,   3 are functions of u1, u2 , u3 
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ê1     ê2      
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ê1  ,

 

h1 

ê2  ,
 

h2 

 

.......... .....(5) 
h3 

here.. u1 , u2    , u3 

r
 

u1 

r
 

u2 

r
 

u3 

 
u3 
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Are vectors along normal to the coordinates surfaces u1=c1,u2=c2,u3=c3 

 

 
Using (4) in (3)we get  ê1  u    

ê2     u   ê3    .......... .......... .....(6) 

h1 u1 2 2 3 3 

Expression for divergence of a vector functions in orthogonal curvilinear 

coordinates. 

Let 
 

f u1 , u2 , u3 

 

 
be  a  vector  point  function  such  that 
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f 2 ê2 

 

f3ê3  where  f1,f2,f3   are 

components   f  along  ê1 , ê2 , ê3   respectively. 
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Expression for 

 

 
 

curlF in orthogonal curvilinear coordinates 

 
Let F 

 

(u1 , u2 , u3 ) be a vector point function such that f f1ê1 f 2 ê2 f3ê3 

curlF = curl( f1ê1 ) + curl( f2 ê2 ) + curl( f3ê3 ) 
 

Consider  curl( f1ê1 ) = curl( f1h1 u1 ) = f1h1curl( u1 ) gradf1h1 u1 
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 1 

h h h 

( f3 h3 ) 
u2 
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2      2 1     1 3   3 

1 

 
 

 
Thus 

 
 

curlf 
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is   the   expression   for 

 
 

curlf 

 

 
in   orthogonal  curvilinear 

coordinates. 

 

Expression   for 2 in orthogonal curvilinear coordinates 
 

Let (u1 , u2 , u3 ) be a scalar function of u1,u2,u3 

 

We know 
 

 

 
 

This  is  the expression for n orthogonal curvilinear coordinates. 
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BETA AND GAMMA FUNCTIONS 
 

 

 
Definitions 

 

 
 

Properties of Beta and Gamma Functions 
 

 

 
 



 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 

 

 
 

 

 
 



 

 

 

 

Relationship between Beta and Gamma Functions 
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Specialization to Cartesian coordinates: 
 

For Cartesian system, we have u1 

 

The elementary arc length is given by ds
2

 

 

dA1 dxdy, dA2 dydz, dA3 dzdx the elementary volume element is given by dv 
 

Specialization to cylindrical Polar coordinates: 
 

In this case u1 
 
 

         

 

 
     

Also x cos  , y sin    , z z. The unit vectors e1 , e2 , e3 are denoted by e , e , ez respectively 

in this system. 

Let r 

x, u 2 
y, u z; e 

3 1 
i, e 

2 
j, e 

3 k and h 1 h 2 h 1 3 

dx
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dy
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dz
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dxdydz 
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2. 



 

 

r
 

1, h2 
r
 

1, h3 
r
 

1, 
z 

h
2 

(du  )
2 

h 
2  

(du h
2 
(du 

1 1 2 2 )2 
3 3 )2 

z 

z 

 
 

The scalar factors are given by h1 

 

 

The elementary arc length is given by  (ds)
2

 

 

i.e; (ds)2
 

 

The volume element dv is given by dv 
 

Show that the cylindrical coordinate system is orthogonal curvilinear 

coordinate system 
 

Proof: Let  r cos  î  sin ĵ zk̂  be the position vector of any point P. If e
 
, e

 
, e are the 

unit vectors at P in the direction of the   tangents to , and z curves respectively, then we have 

 
 

For cylindrical coordinate system h1 

 

 

Now   ê ê cos     sin sin     cos 0; ê 

 

êz 0 and êz    ê 0 

Hence the unit vectors e
 
, e

 
, e  are mutually perpendicular, which shows that the cylindrical 

polar coordinate system is orthogonal curvilinear coordinate system. 
 

Specialization to spherical Polar coordinates 
 

In this case u1 r, u2 , u3 . Also  x r   sin cos    , y r   sin cos    , z r cos   . In this system 
                    

unit vectors e1 , e2 , e3 are denoted by e , e , ez respectively. These unit vectots are extended 

respectively in the directions of r increasing, increasing and increasing. 

Let  r
 
be the position vector of the point P. Then 
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r
 

r
 

, h3êz 
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The scalar factors are h1 

 

The elementary arc length is given by  (ds)
2

 

 

i.e (ds)2
 

 

The volume element is given by dv 
 

Show that the spherical coordinate system is orthogonal curvilinear coordinate system and 

also prove that  (e
 
, e

 
, e

 
) form a right handed basis. 

Proof: We have for spherical Polar coordinate system 
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Let  e
 
, e

 
, e be the base vectors at P in the directions of the tangents to  r,  , curves respectively 

then we have 

 

h1ê1 

 

i.e h1êr 

 

 

 
 

We know that for spherical polar coordinate the scalar factors h1 
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This shows that  êr , ê and ê are mutually perpendicular. Hence spherical polar coordinates are 

also orthogonal curvilinear coordinates. 

 

 
Further  êr 

 

 

Similarly we can show  that  ê ê 

handed basis. 

êr  and ê êr ê which shows that  (e
 
, e

 
, e

 
) form a right 

 

Coordinate transformation with a change of basis: 

To express the base vectors e1,e2,e3 in terms of i, j, k 

We can use from matrix algebra, if Y=AX then X=A
-1

Y provided A is non singular. 

 

 
1) Cylindrical polar coordinates (eρ, eφ, ez) 

 

We have for cylindrical coordinate system 
 

eρ= cosφi+sinφj,  eφ =-sinφj +cosφi; ez=k…………(1) 

This gives the transformation of the base vectors in terms of (i,j,k) 
 

e 

1) Can be written in matrix form
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cos 

= sin 

0 

sin 0 

cos 0 

0 1 

 
On inverting ,we get 

i cos 

j   =  sin 

k 0 

sin 

cos 

0 

0 e 

0 e ………………..(a) 

1 e 
 

i=cosφeρ-sinφeρ ; j=sinφeρ+ cosφeφ, k=ez 

This gives the transformation of (i,j,k) in terms of the base vectors(eρ,eφ,ez). 

2) Spherical polar coordinates: 
 

We have er = sinθcosφi + sinθsinφj + cosθk 

eθ = cosθcosφi + cosθsinφj + sinθk 

eφ= -sinφi + cosφj 
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This gives the transformation of the base vectors in terms of (i,j,k) 
 

er si 

Writing in matrix  form    e = co 
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Inverting the coefficient matrix, 
 

 

we get 
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cos 

sin 0 e 
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k cos sin 0 
 

This gives the transformation of (i,j,k) in terms of the base vectors (er eθ,,eφ). 
 

3) Relation between cylindrical and spherical coordinates 
 

Now from (a) and (b) 
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Each of the matrices are invertible, therefore we get 
 

e cos 
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sin 

= cos 
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0 cos e 

0 sin e 

1 0 e 

 

This gives  er 
= e  + e , 

 

e = e e   and e  = e 

 
These two results give us the relation between cylindrical and spherical coordinates bases and 

vice versa. 

PROBLEMS: 
 

1. Express vector f=2yi-zj+3xk in cylindrical coordinates and find fρ, fφ fz. 

Sol:The relation between the Cartesian and cylindrical coordinates given by 

X=ρcosφ,y=ρsinφ,z=z 
 

i=cosφeρ-sinφeρ ; j=sineρ+ cosφeφ, k=ez. 

We have f=2yi-zj+3xk 
 

f= 2y(cosφeρ - sinφeρ) - z(sinφeρ  +  cosφeφ) + 3x(ez) 

f= 2ρsinφ (cosφeρ - sinφeρ) - z(sinφeρ + cosφeφ) + 3 ρcosφ (ez) 

f= (2ρsinφcosφ - zsinφ)eρ - (2ρsin
2 

φ + zcosφ)eφ + 3ρcosφez 

Therefore 

fρ =2ρsinφcosφ - zsinφ ; fφ = -2ρsin
2 
φ + zcosφ ; fz = 3ρcosφ. 

 

 
2) Express the vector f=zi-2xj+yk in terms of spherical polar coordinates and find fr, fθ, fφ, 

Sol: In spherical coordinates, we have 
 

er = Sinθcosφi + sinθsinφj + cosθk ………(1) 

eθ = Cosθcosφi + cosθsinφj - sinθk ………(2) 

eφ = -Sinφi + cosφj ………(3). 

The relation between Cartesian and spherical coordinates 



 

 

 

 

MODULE – 5 

LAPLACE TRANSFORM 

INTRODUCTION 

▪ Laplace transform is an integral transform employed in solving physical problems. 
 

▪ Many physical problems when analysed assumes the form of a differential equation 

subjected to a set of initial conditions or boundary conditions. 

▪ By initial conditions we mean that the conditions on the dependent variable are specified 

at a single value of the independent variable. 

▪ If the conditions of the dependent variable are specified at two different values of the 

independent variable, the conditions are called boundary conditions. 

▪ The problem with initial conditions is referred to as the Initial value problem. 
 

▪ The problem with boundary conditions is referred to as the Boundary value problem. 
 

 
Example 1: The problem of solving the equation d 

2 
y dy 

y
 x with conditions y(0) =    

 

(0) = 1 is an initial value problem. 

dx
2 dx 

 
 

Example 2: The problem of solving the equation 
d 

2 
y 

3 2 
dy 

 
y cos x   with y(1)=1, 

 

y(2)=3 is called Boundary value problem. 

dx
2 dx 

 

Laplace transform is essentially employed to solve initial value problems. This technique 

is of great utility in applications dealing with mechanical systems and electric circuits. 

Besides the technique may also be employed to find certain integral values also. The 

transform is named after the French Mathematician P.S. de’ Laplace (1749 – 1827). 

The subject is divided into the following sub topics. 



 

 

 

 

  
 

 

 

 

 

Definition: 
 

Let f(t) be a real-valued function defined for  all t 0 and s  be a parameter, real or 
 

complex.  Suppose the integral e  
st  

f (t)dt exists (converges).  Then this integral is called the 
0 

Laplace transform of f(t) and is denoted by L[f(t)]. 
 

 
Thus, L[f(t)]  = e  

st  
f (t)dt 

0 

 
(1) 

 

We note that the value of the integral on the right hand side of (1) depends on s. Hence 

L[f(t)] is a function of s denoted by  F(s) or f (s) . 
 

Thus, L[f(t)]  =  F(s) (2) 
 

Consider relation (2). Here f(t) is called the Inverse Laplace transform of F(s) and is 

denoted by L
-1 

[F(s)]. 

Thus, L
-1  

[F(s)]   = f(t) (3) 

Suppose f(t) is defined as follows : 
 

f1(t),  0 < t < a 

f(t)   = f2(t), a < t < b 

f,3(tt) > b 

 
Note that f(t) is piecewise continuous. The Laplace transform of f(t) is defined as 

LAPLACE TRANSFORMS 

Definition and 

Properties 

Transforms of 

some functions 

Convolution 

theorem 

Inverse 

transforms 

Solution of 

differential 

equations 



 

 

1 2 3 

 

 

L[f(t)] = e  
st  

f (t) 
0 

 

a b 

= e  st  f (t)dt e  st  f (t)dt e  st  f (t)dt 
0 a b 

 

NOTE:  In a practical situation, the variable t represents the time and s represents frequency. 

Hence the Laplace transform converts the time domain into the frequency domain. 
 

Basic properties 

The following are some basic properties of Laplace transforms: 
 

1. Linearity property: For any two functions f(t) and (t) (whose Laplace transforms exist) 

and any two constants a and b, we have 

L [a f(t) + b (t)] = a L[f(t)] + b L[ (t)] 

Proof :- By definition, we have 

 

L [af (t) + b  (t)] = e st af (t) b    (t) dt = a e  
st  

f (t)dt b e st (t)dt 

0 0 0 

 

= a L[f(t)] + b L[  (t)] 
 

This is the desired property. 
 

In particular, for a=b=1, we have 
 

L  [ f(t) + (t)] =  L [f(t)] +  L[  (t)] 
 

and for a = -b = 1, we have L [   f(t) - (t)] =  L [f(t) ]-  L[  (t)] 

 

2. Change of scale property: If L L[f(t)] = F(s), then L[f(at)] =  
1 

F 
a 

positive constant. 
 

Proof: - By definition, we have 

 

 
 

where a is a 

 

 
L[f(at)] = e  st  f (at)dt 

0 

 
(1) 

s   
,
 

a 



 

 

1 

e ( s  a )t 

(s a) 
0 

1 

s a 

 

Let us set   at = x. Then expression (1) becomes, 
 

 
L f(at) = 

s 

1 
e a 

a 
0
 

 
F 

 
x 

f (x)dx 

a 
 

This is the desired property. 
 

3. Shifting property: - Let a be any real constant. Then 

L [e
at
f (t)] = F(s-a) 

Proof :-  By definition, we have 

 

L [e
at
f (t)] = e st 

0 

at  f (t) dt 

 

 

( s   a) 
f (t)dt 

0 
 

= F(s-a) 

This is the desired property. Here we note that the Laplace transform of e
at 

f(t) can be written 

down directly by changing s to s-a in the Laplace transform of f(t). 

 

 

LAPLACE TRANSFORMS OF STANDARD FUNCTIONS 

1. Let a be a constant. Then 

 
 

L[(e
at
)] = 

e st eat dt e ( s a)t dt 

0 0 

 

 

 

= , s > a 
 
 

Thus, 

s 

a 

e 
= 



 

 

1 1 

s a 

eat e at 

2 

1 

2 

e ( s a)t e ( s a)t 

(s a) (s a) 
0 

eat e at a 

2 s 2 a2 

2 

 

L[(e
at
)]    = 

1
 

s a 
 

In particular, when a=0, we get 
 

L(1) = 
1     

, s > 0 
s 

 

By inversion formula, we have 
 

L eat L 1 1 
s 

eat 

 

1 
2. L(cosh  at) =   L = e 

0 

st  eat e  at  dt 

 
s  a)t 

= 
s   a)t dt 

 
 

Let   s > |a|. Then, 

 

L(coshat) s 
= 

 

 
 

 
Thus, L (cosh at) = 

s 

s  2 a 2 

 
, s > |a| 

 

and so 
 

L    
1 s 

s  2 a 2 

 
L 

coshat 

3. L  (sinh at) = , s > |a| 
 
 

Thus, 

1 ( 

2 
e 

0 

e ( 

s  2 a 2 



 

 

1 1 

s  2 a 2 

sinh at 

a 

a 

s  2 a 2 

 

 

L (sinh at) = 

a 

s  2 a 2 

 

, s > |a| 

 

and so, 

 

L 
 

 
 

4. L (sin at) = e  st  sin at dt 

0 

 

Here we suppose that s > 0 and then integrate by using the formula 
 

e
ax 

sinbxdx 
eax 

a2 b2 

 

a sinbx 
 

b cosbx 

 

Thus, 

 

L (sinh at) = 

 

 
 

,   s > 0 
 

and so 
 

 

 

 

 

 

5. L (cos at) = e  st cosatdt 
0 

 

Here we suppose that s>0 and integrate by using the formula 
 

eax cosbxdx 
eax 

a2 b2 

s 

 

a cosbx 
 

b sinbx 

Thus, L (cos at) = 
s  2 a 2 , s > 0 

L 1 
1 

s2 a2 

sinh at 

a 



 

 

1 s 

s  2 a2 

x x dx 
n 

 

s s 

(n 1) 

sn 1 

1 1 

sn 1 

t n 

(n 1) 

 
 

and so L cosat 
 

 

 
 

6. Let n be a constant, which is a non-negative real number or a negative non-integer. Then 
 
 

L(t
n
)    = e 

0 

stt ndt 

 

Let s > 0 and set st  = x, then 

 

L(t 
n   

) e 
1 

sn 1 
e  

x 
x

n 
dx 

0 0 

 
 

The    integral e 
0 

 

L(t n ) 

x xndx 
 

is called gamma function of (n+1) denoted by   (n 

 

1) . Thus 

 

 
In particular, if n is a non-negative integer then 

 

L(t
n 
) 

(n 1) =n!. Hence 

 

 

and so 
 

t n 
L 

or 
n!

 
as the  case may be 

 

Application of shifting property:- 
 

The shifting property is 

If   L f(t) = F(s), then L [e
at
f(t)] = F(s-a) 

Application of this property leads to the following results : 

n! 

sn 1 



 

 

 

s    s   a 

s 

s  2 b2 s    s   a 

s a 

(s a)2
 b2 

1 s a 

(s a)2
 b2 

1 1 

(s a)2
 b2 

1 s a 

(s a)2
 b2 

 
 

1. L(e
at     

coshbt) L(coshbt) = 

 
 

Thus, 

L(e
at
coshbt) = 

and 
 

L 

 
 

eat coshbt 
 

 

2. L(e
at

 

 

sinh bt) 
 
 

and 

 

L 

 

 

eat sinh bt 
 

 

 

 

 

3. L(e
at

 cosbt) 
 
 

and 

 

L 

 

 

eat cosbt 
 

 

 

 

 

4. L(e
at

 sin bt) 
 
 

and 

s a 

(s a)
2

 b2 

a 

(s a)
2

 b2 

s a 

(s a)
2

 b2 

b 

(s a)
2

 
b2 



 

 

1 1 

(s a)2
 b2 

(n 1) 

(s a)n
 

1 

1 1 

(s a)n
 

1 
(s a)n

 
1 

e 
3 

 

 

L 

 

 
L(eat t n ) 

eat 
sin bt 

b 

n! 
or 

 

 

 

 

 

as the case may be 
 
 

Hence 

 
 

L 

 

 
n! 

or as the case may be 
 
 

Examples :- 

1. Find L[f(t)] given    f(t) = t, 0 < t < 3 

4, t > 3 
 

Here 
 

 
L[f(t)]= e  st  f (t)dt 

3 

e sttdt 4e  st dt 
0 0 3 

 

Integrating the terms on the RHS,  we get 
 

1 3s 

L[f(t)]    = 
 e 
s 

(1 s ) 

 

This is the desired result. 
 

2. Find  L[f(t)]  given   L[f(t)] = sin2t,   0 < t   

0, t >   

Here 
 
 

 

L[f(t)] = e  
st  

f (t)dt 
0 

e  
st  

f (t)dt = e  st sin 2tdt 
0 

(s a)n
 

1 

eat t n 

(n 1) 

1 

s 2 

5. 



 

 

e 

s 2 

st 

4 
s 

0 

2 s 

s 2 4 
1 e 

1  1 

2  s 

s 

s 2 64 

 

 

= sin   2t 2   cos2t = 

 
 

This is the desired result. 
 

3. Evaluate: (i)   L(sin3t sin4t) 

(ii) L(cos
2 

4t) 

(iii) L(sin
3
2t) 

 

 

(i) Here L(sin3t sin4t) = L [ 
1 

(cost 
2 

 
cos7t)] 

 

= 
1 

L(cost) 
2 

L(cos7t)  ,  by using linearity property 

 

= 
 
 

(ii) Here 

 
L(cos

2
4t) = L 

 
1 

(1 
2 

 

 
 

cos8t) 

 

 

 

(iii) We 

have 

 
sin

3
 

 
1 

3sin 
4 

 

 

sin3 

 

For     =2t, we get 
 

sin
3 

2t 
1  

3sin 2t 
4 

 

sin6t 

 

so that 

 
L(sin

3 
2t) 

 

 

This is the desired result. 

1 s s 

2 s 2 1 s 2 

24s 

49 (s  
2 

1)(s   
2 

49) 

1 6 6 

4 s2 4 s2 

48 

36 (s
2 

4)(s
2 

36) 



 

 

1 

t 

(n 1) 

 

4. Find L(cost cos2t cos3t) 
 

Here cos2t cos3t = 
1 

[cos5t 
2 

 

cost] 

 

so that 

 
cost cos2t cos3t = 

 
1 

[cos 5t cost 
2 

 

 
cos

2  
t] 

 

= 
1 

[cos 6t 
4 

 

cos 4t 
 

1   cos 2 t] 

 

Thus  L(cost cos2t cos3t) = 
 

 

 

 

5. Find L(cosh
2
2t) 

 

We have 

 
cosh

2
 

 

 
1 cosh2 

2 
 

For = 2t, we get 
 

cosh
2 
2t 

1 cosh4t 

2 
 

Thus, 

 
L(cosh

2  
2t) 

 

 

6. Evaluate (i) L(     t ) (ii)     L (iii) L(t
-3/2

) 
 

 

We   have L(t
n
) =  

sn  1 

 

(i) For n= 
1 

, we get 
2 

1 s s 

4 s2 36 s2 16 

1 

s 

s 

s2 4 

1  1 

2  s 

s 

s2 16 



 

 

1 
1 

1 1 
2 2 2 2 

3 

1 

  2  
1 

2 
1 

2 s 

 

(    
1 

1) 

L(t
1/2

)   =  2  

s3 / 2 

 

 

Since 
 

(n   1) 

 

n  (n) ,  we have 
 

 

Thus, 
 

L(   t ) 
 
 

2s 2
 

 

(ii) For n = - 
1 

,   we get 
2 

 

 
1 

L(t 2 ) 
 

 

 

 

(iii) For n = - 
3 

, we get 
2 

 

 
3 

L(t 2 ) 

s     2 s   2 

 

7. Evaluate:   (i)   L(t
2
) (ii)  L(t

3
) 

 

We have, 

 
L (t

n
) = 

 

 
n! 

sn 1 

 

(i) For n = 2, we get 
 

L  (t
2
) =    

2! 2
 

s3 s3 

 

(ii) For n=3, we get 
 

L  (t
3
) =    

3! 6
 

s4 s4 
 

8. Find L [e
-3t 

(2cos5t – 3sin5t)] 

1 

2 
1 

s 2 s 



 

 

s 3 15 

(s 3)2 25 (s 3)2 25 

s2 

2s 9 

6s 34 

a(s
2 

2a
2 
) 

[(s a)
2 

a
2  

][( s a)
2 

a
2 
] 

 

Given =  

2L (e
-3t  

cos5t) – 3L(e
-3t 

sin5t) 

 

=   2 ,  by using shifting property 
 

 

= ,   on simplification 
 

 

 
 

9. Find L [coshat sinhat] 
 

Here L [coshat sinat] = L 
eat e at 

2 

 

sin at 

 

 

= 
 

 

 

 

, on simplification 
 

 
 

10. Find L (cosht sin
3 

2t) 

Given 

 

L 
 

 

=  
1 

3 
8 

 
= 

L e
t 
sin 2t L(e

t 
sin 6t) 3L(e 

t 
sin 2t) L(e 

t 
sin 6t) 

 

 
 

= 

1 a 

2     (s a)
2

 a2 

a 

(s a)
2

 a2 

et e t 3sin 2t sin 6t 

2 4 

1 6 

8     (s 1)
2 

4 

6 6 6 

(s 1)
2 

36 (s 1)
2 

4 (s 1)
2 

36 

3 1 

4    (s 1)
2 

4 

1 1 1 

(s 1)
2 

36 (s 1)
2 

24 (s 1)
2 

36 



 

 

(n 1) 

(    3/ 2) 4 

( 
0 

n 

n n 

n 

n 

n 

n 

 
 

11. Find L(e 
5 

4tt 2 ) 
 

We have 

L(t
n
) = 

L(t
-5/2

) = 

 

 

 
sn  1 

 

 
s 3 / 2 

 

 

Put n= -5/2. Hence 

 

 
Change s to s+4. 

3s 3 / 2 

 

 
Therefore, 

 

L(e 
4tt 5 / 2 ) 

 

Transform of t
n 

f(t) 
 

Here we suppose that n is a positive integer.  By definition, we have 
 

 
F(s) = e st  f (t)dt 

0 

 

Differentiating ‘n’ times on both sides w.r.t. s, we get 
 

d 
F (s) 

n 
st  f (t)dt 

ds s 
0

 

 

Performing differentiation under the integral sign, we get 
 

d 
F (s) (  t)

n 
e 

st  
f (t)dt 

ds 0 

 

Multiplying on both sides by (-1)
n  

, we get 
 

(  1)
n

 

d 
F (s) t 

n 
f (t)e st dt 

L[t
n 
f (t)], by definition 

ds 
 

Thus, 
 

L [t
n
f(t)]= ( 1)n   d 

 
F (s) 

dsn
 

This is the transform of t
n  

f (t). 

4 

3(s 4) 3 / 2 

e 

n 



 

 

1 d n 

dsn
 

 

Also, 

 

L 

 

 
 

F(s) 

 

 
(  1) n t n  f (t) 

 

 

In particular, we have 
 

L[t f(t)] = 
d 

F (s) , for n=1 
ds 

 

L [t
2  

f(t)]= 
d

 
 
F(s) ,   for n=2,  etc. 

 

 

Also, 

 
 

L 1 d 

ds 

ds2
 

 
F(s) 

 

 

(t) 

 

 

and 

 

L 1    d 
 
F(s) 

2 
f (t) 

ds
2

 

 

 

 

Transform of 
f(t) 

t 
 

 

We have, F(s) = e 
st  

f (t)dt 
0 

 

Therefore, 

 

F (s)ds 
s s 

e  
st 

f (t)dt ds 

0 
 

 

= f (t) 
0 

 

e  
st
ds dt 

s 

 

= f (t) 
0 

e st 

dt 
s 

tf 

t 

2 

2 

t 



 

 

f (t) 

t 

f (t) 

4 

(s     1)
2 

16 

d 

ds s 2 

1 

2s 17 

2 

 

= e st 

0 

f (t)    
dt L 

t 
 

 
Thus, L 

f (t) 
t 

 

F (s)ds 
s 

 

This is the transform of 
f (t) 

 
 

t 
 

 
Also, L 1     F (s)ds 

s t 
 

Examples : 

1. Find L [te
-t 

sin4t] 

 

We have, L[e t  
sin 4t] 

 

 

So that, 

 
L [te

-t  
sin4t] = 4 

 

 

= 
 

2. Find L (t
2 

sin3t) 

 
We   have L (sin3t) = 

 

 
 

3 

s  
2 

9 
 

So that, 

L (t
2  

sin3t) =  
d 3

 

ds
2

 

= 6 
d

 

s  
2 

9 

s 

ds  (s 
2 

9)
2

 

= 

8(s 1) 

(s  
2 

2s 17)
2

 

18(s  
2 

3) 

(s  
2 

9)
3

 



 

 

e  
t 
sint 

t 

2 
t 

sint  
.
 

t 

sint 

t 
s 

ds 

s 2 1 
tan 

2 
t 

sin at 

t 

s 
1 

 

 

3. Find L 
 

We have 

 

L(e 

 

 

t  
sin t) 

 

 

 

Hence L 
e 

t 
sint 

t 

 

= 

0 (s 

ds 

1)
2 

1 

 

tan 
1 
(s 1) s 

 

= an 
1    

(s 1) = cot 
–1 

(s+1) 
 

 

4. Find   L Using this, evaluate L 
 

We    have L  (sint)  = 
1
 

s  
2 

1 

 

So   that L [f  (t)] =  L = S 

 

 

= an  
1 

s cot  
1 
s F(s) 

 

Consider 

L 

 

 

 
= a L 

 

 

sin at 

at 

 

 

 
aLf (at) 

= a  
1 

F 
a 

 

= cot 

 

in view of the change of scale property 

1 

(s 1)
2 

1 

sin at 

t 

s 
,
 

a 

1 s 

a 



 

 

cosat  cosbt 

t 

s s 

s  2 a  2 s  2 b2 

s 2 

s 2 

a 2 

b2 
s 

1 
Lt l 

2 
s 

s 2 

s 2 

a 2 

b 2 

l 
s  2 a 2 

s  2 b 2 

1      
0 l 

2 

s  2 b 2 

s  2 a 2 

s  2 b2 

s  2 a 2 

e 3 

0 

e 3 

0 

 
 

5. Find L 

 

 
We   have L [cosat – cosbt] = 

 
 

 
So   that L cosat cosbt  

=
 

t s 

s 

s  2 a 2 

s 
ds 

s  2 b2 

 

=  
1  

log 
2 

 

 

= og og 
 

 

 

= og 
 

 

=  
1 

log 
2 

 

6. Prove that t
t   sintdt  

3 

50 
 

We have 

 

e 
st
t sintdt 

0 

L(t  sint) = 

 

 
= 

d     
L(sint) = 

ds 

 
2s 

 
 

Putting s = 3 in this result, we get 
 

t
t   sintdt  

3 

50 
 

This is the result as required. 

d 1 

ds s 2 1 

(s  
2 

1)
2

 



 

 

0 
(  s 

Lt ( 
t 

s 

e 

 

Consider 
 

 
L f  (t)= e  st f 

0 

 

(t)dt 

 
 

=  e  st  f (t) )e  st  f (t)dt , by using integration by parts 
0 

 

= e  
st  

f (t) f (0) Lf (t) 

 

= 0 - f (0) + s L[f(t)] 
 

Thus 
 

L  f  (t) = s L[f(t)] –  f(0) 
 

Similarly, 
 

L  f 

 

(t) = s
2 

L[f(t)] – s f(0) - 

 

 
f (0) 

 

 

 

In general, we have 
 

Lf n (t) sn Lf (t) sn 1 f (0) sn  2 f (0) ....... f n  1 (0) 
 

 

Transform of 

t 

f(t)dt 
0 

 

t 

Let (t) = 
0 

 

f  (t)dt .   Then (0)  = 0    and (t) = f(t) 

 
 

Now, L   (t) = e st 

0 

(t)dt 

 

e st 

= (t) 
s 

0 

st 

(t) dt 
0 

 
s 



 

 

2 
t 1 

s 3 / 2 

 

=    (0 0) 
1 

f (t)e 

s 
0
 

st dt 

 

 

Thus, 

t 

L f 

(t)dt 
0 

1 
L[ f (t)] 

s 

 

 

Also, 
L 

1    1 
L[ f (t)] 

s 

t 

f (t)dt 
0 

 

Examples: 

1. By using the Laplace transform of sinat, find the Laplace transforms of cosat. 

 
Let   f(t) = sin at, then Lf(t) = 

 

We note that 
 

f    (t) a cosat 
 

Taking Laplace transforms, we get 
 

Lf (t) L(a cosat) aL(cosat) 
 

or L(cosat) = 

 

 
= 

1 
Lf 

a 

 

(t) 
1  

sLf (t) 
a 

 

f (0) 

 

 

Thus 

 
L(cosat) = 

 

This is the desired result. 
 
 

2. Given     L ,  show that L 

Let f(t) = 2 
t ,    given L[f(t)] = 

1
 

s3 / 2 

a 

s  2 a 2 

1 sa 

a s 2 a 2 

0 

s 

s  2 a 2 

1 

t 

1 

s 



 

 

2 1 

2  t 

1 

t 

cosat cosbt 

t 

1 

2 

s  2 b2 

s  2 a2 

1 

s  2 b2 

s  2 a 2 

 
 

We note that,  f  (t) 
 

 

Taking Laplace transforms, we get 
 

 

Lf    (t) L 
 
 

Hence 

 

L 
1 

t 

 

 
 

Lf  (t) 

 

 
 

sLf (t) 

 

 
 

f (0) 

 

 

 

Thus L 
 
 

This is the result as required. 
 

 

 

 

3. Find 

t 
cosat 

L 

0 t 

cosbt 
dt

 

 
 

Here L[f(t)] =   L log 
 

 

t 

Using  the  result L 
0 

 

f (t)dt 

 
Lf (t) 

s 

 

 
We get, 

t 
cosat 

L 

0 t 

cosbt 
 

dt  = 

 
1 

log 
2s 

 

 
4. Find 

t 

L  te 
0 

 
t 
sin 4tdt 

= s 
1 

s3 / 2 

0 

1 

t 

1 

t 

1 

s 



 

 

8(s 1) 

(s  2 2s 17)2
 

8(s 1) 

s(s  
2 

2s 17)
2

 

 

 
Here 

 

L te t  sin 4t 
 
 

 
Thus 

t 

L  te 
0 

t  sin 4tdt = 

 

Laplace Transform of a periodic function 

Formula: Let f (t) be a periodic function of period T. Then 
 

 

Lf (t) 1 
T 

e 

1 e ST 

 
st  

f (t)dt 

 

Proof :By definition, we have 
 

 
L f (t) = e  

st  
f (t)dt e  

su  
f (u)du 

0 0 

 

T 

= e  
su  

f (u)du 
0 

2T 

e  
su  

f (u)du 
T 

 

....... 

(n 1)T 

    e 
nT 

 
su  

f (u)du 

 

.... 

 

(n 1)T 

= e 
n   0    nT 

 
su  f (u)du 

 

Let us set u = t + nT,  then 
 

 

L f(t) = 

T 

e 
n  0 t   0 

 

s(t nT )  f (t 
 

nT)dt 

 

Here 
 

f(t+nT) = f(t), by periodic property 
 

Hence 
 

 

Lf (t) 

T 

(e   sT  )n e 
n     0 0 

 
st  f (t)dt 

0 



 

 

L[f(t)] = 
3(1 e 2s 

 

s 
2 
(1 e 

2se 

4s ) 

4s ) 

1 

1 e 

T 

ST 
e st 

0 

1 

1 e 

T 

sT 
e st 

0 

1 

1 e 

4 

4s 
e st 

0 

1 

1 

e 

e 
st 

2 

4s 
3 t 

s 
0 

s 

 

 

= f (t)dt , identifying the above series as a geometric series. 
 

 

 

Thus L[ f(t)] = 
1 

1 e sT 

T 

e  st  f (t)dt 
0 

 

This is the desired result. 
 

Examples:- 

1. For the periodic function f(t) of period 4, defined by  f(t) =   3t,  0 < t < 2 

6,  2 < t < 4 
 

find  L [f(t)] 
 

Here, period of f(t) = T = 4 

We have, 

 

L f(t) = f (t)dt 
 

 

 

= f (t)dt 
 

 

1 

=     
1 e  4 s 

2 

3te 
0 

st dt 
4 

6e  
st 
dt 

2 

 

2 
e st 

= 1. dt 
0 

 

 
 

= 
 
 

Thus, 
 

st 
4 

6  
e 

s 
2 

1 

1 e 

31 e 
2s 

2se 
4s 

4s 

s2 



 

 

f (t)= E ,   0 t a 

2 

2 
. 

/ 

e st 

= 
1 e 

E 

s( 2    /     ) s 2 

e st 

2 
s sin 

/ 

t 

0 

t c 

 

 

3.    A periodic function of period is defined by 
 

 

f   (t)= Esin   t,    0 t < 
 

 

0, 
 

 
 

where  E  and are positive constants.  Show that  L f(t) = 
 

 

Sol:   Here   T = Therefore 
 

 

L f(t) = 

 

 

 
= 

1
 

 

1 

 

 

1 

e  s(2  / 

 
2 

f (t)dt 
0 

 
 

/ 

Ee  st sin 
0 

 

 

 

 
 

tdt 

 

 

os 
 

 

 

= 
 

 

 

= 
 

 

 

= 
 
 

This is the desired result. 
 

3. A periodic function f(t) of period 2a,  a>0 is defined by 
 

t 
2 

E 

(s  2 w2    )(1 e s / w ) 

1 e 
s(2   /   ) 

1 e 

E 
s(2   /   ) 

(e 

s2 

s   / 1) 
2 

(1 e 
s   / 

E (1 

)(1 

e 

e 

s   / 

s   / 

) 

)(s 
2

 2 ) 

E 

(1 e 
s   / )(s 

2
 2 ) 

) 



 

 

as 

2 

E 

s 
eas / 2 

eas / 2 

e 

e 

as / 2 

as / 2 

 

-E,  a < t 2a 
 

 

show   that L [f (t)] = 
E 

tanh 
s 

 

 
Sol:  Here T = 2a.  Therefore  L [f (t)] = 

1 
2a 

e 
0 

st  
f (t)dt 

 

1 
=     

1 e 

 
 

2as 

a 

Ee  st dt 
0 

2a 

Ee 
a 

 

 

e 2as 

 
st dt 

 

 
e as ) 

 

  

 

 

 

= 

 
 

E 
tanh 

s 
 

This is the result as desired. 
 

Step Function: 
 

In many Engineering applications, we deal with an important discontinuous function H 

(t-a) defined as follows: 

 

0,     t a 
 

H  (t-a)  = 1,   t > a 

where a is a non-negative constant. 

2 

s(1 

E 

e 

as 

2as ) 
e 

E(1 e as )2 

s(1 e   as  )(1 e as ) 

1 e 2as 

E 
= 

s(1 e 2as ) 
e sa ( 

as 

2 



 

 

a 

 

This function is known as the unit step function or the Heaviside function. The function is 

named after the British electrical engineer Oliver Heaviside.The function is also denoted by         

u (t-a).  The graph of the function is shown below: 

H (t-1)   
 

Note that the value of the function suddenly jumps from value zero to the value 1 as  t  

from the left and retains the value 1 for all t>a. Hence the function H (t-a) is called the unit step 

function. 

In particular, when a=0, the function H(t-a) become  H(t), where 
 

0 ,    t 0 
 

H(t)   = 1 ,  t > 0 
 

 

 

Transform of step function 

 
By definition, we have L [H(t-a)] = 

 

e st H (t 
0 

 

 

a)dt 

 

a 

= e st  0dt 
0 

 

e st  (1)dt 
a 

 

 

 

 

 
 

In particular, we have   L H(t) = 

e as 

= 
s
 

1 
 

 

s 
 

 
Also, 

as 

L 1 

s 

 

H  (t a) 
 

and L 1    1 
s 

 
H (t) 

 

Unit step function (Heaviside function) 

Statement: - L [f (t-a) H (t-a)] = e
-as 

Lf(t) 

Proof: - We have 

e 



 

 

e 2 

 

 

L [f(t-a) H(t-a)] = f (t 
0 

a)H (t a)e st dt 

 
 

= e  st  f (t 
a 

a)dt 

 

Setting t-a = u, we get 
 
 

L[f(t-a) H(t-a)] = e s(a 

0 

u)  
f (u)du 

 

= e
-as 

L [f(t)] 

This is the desired shift theorem. 

Also, L
-1 

[e
-as  

L f(t)] = f(t-a) H(t-a) 

Examples: 

1. Find L [e
t-2  

+ sin(t-2)] H(t-2) 

Sol:   Let f (t-2) = [e
t-2  

+ sin (t-2)] 

Then f (t) = [e
t 
+ sint] 

so   that L f(t) = 
 

By Heaviside shift theorem, we have 

 

 

L[f(t-2) H(t-2)] = e
-2s 

Lf(t) 
 

Thus, 

 

L[e(t   2) 

 

 

sin(t 

 

 
2)]H   (t 2) s

 

 

 

 
 

2. Find L (3t
2  

+2t +3) H(t-1) 

Sol:    Let f(t-1) = 3t
2  

+2t +3 

1 

s 1 

1 

s 2 1 

1 

s 1 

1 

s 2 1 



 

 

6 8 8 

s 1 

 

so that 

f (t) = 3(t+1)
2 

+2(t+1) +3 = 3t
2 

+8t +8 
 

Hence 

 

L[ f (t)] 
s  3 s  2 s 

 

Thus 

L [3t
2  

+2t +3] H(t-1) = L[f(t-1) H(t-1)] 

= e
-s  

L [f(t)] 

 
= e 

 

 

 

 

3. Find Le
-t 

H (t-2) 

Sol: Let f (t-2) =   e
-t  

, so that,   f(t) = e
-(t+2)

 

 

e 2 

Thus, L [f(t)] = 
 

By shift theorem, we have 
 

L[ f (t 2)H (t 2)] e  2s Lf (t) 
 
 

Thus 
 

L e   
t 
H (t 2) 

 

f1       (t), t a 

4. Let  f (t) = f2  (t) ,   t  > a 

Verify that f(t) = f1(t) + [f2(t) – f1(t)]H(t-a) 

Sol:  Consider 

s 6 

s3 

8 

s 2 

8 

s 

e 2(s  1) 

s 1 

e 2(s 1) 

s 1 



 

 

2 4 

 

f+1(t[)f 2(t) – f1(t)]H(t-a) = f1(t) + f2  (t) – f1(t),   t > a 
 

0   , t a 

 

 

= f2  (t),   t > a 
 

f1(t), t a   = f(t), given 

Thus the required result is verified. 
 

5. Express the following functions in terms of unit step function and hence find their 

Laplace transforms. 

1. f(t)   = t
2  

,    1 < t 2 

4t   , t > 2 

 

 

Sol: Here, f(t) = t
2  

+ (4t-t
2
) H(t-2) 

 

Hence, L f(t) =  
2

 

s3 

 

L(4t t 
2  

)H (t 2) (i) 

 

Let (t-2) = 4t – t
2

 

so   that (t) = 4(t+2) – (t+2)
2 

= -t
2 

+ 4 

 

Now, L[ (t)]  

s  
3 s 

 

Expression (i) reads as 
 

2 
L f(t) = 

s3 

 

L (t 
 

2)H  (t 2) 

 

2 2s 

=  
s3 e L  (t) 

 
s 

= 
 

 

This is the desired result 

2 

s3 

e 2 4 

s 

2 

s3 



 

 

1 s 

s 2 1 s 2 1 

s s 

s 2 1 
e 

 

2. cost,  0 < t < 
 

f  (t)  = sint,   t > 
 

Sol:  Here  f(t) = cost + (sint-cost)H(t-  ) 
 

Hence, L[ f(t)] = 
s 

s  
2 

1 

 

L(sint 
 

cost)H (t ) (ii) 

 

Let (t-  ) = sint – cost 
 

Then (t) = sin(t +   ) – cos(t +   ) = -sint + cost 

so that  L[   (t)] = 

 

Expression  (ii) reads as L [f(t)] = 
s 

s  2 1 

 

L (t 
 

)H (t 

 

= L  (t) 
 

UNIT IMPULSE FUNCTION 

) 



 

 

 

 
 

 

 

 

 

Solution: 



 

 

 

 

 

3.  
 

 
4. 

 

 

 

 

 
 



 

 

 

The Inverse Laplace Transforms 

Introduction: 

Let L [f (t)]= F(s). Then f(t) is defined as the inverse Laplace transform of F(s) and is 

denoted by L
-1 

F(s).  Thus L
-1 

[F(s)] = f (t). 

Linearity Property 

Let L
-1 

[F(s)] = f(t) and L
-1 

[G(s) = g(t)] and a and b be any two constants. Then 

L
-1 

[a F(s) + b G(s)] = a L
-1 

[F(s)] + b L
-1

[G(s)] 

 

Table of Inverse Laplace Transforms 
 
 

F(s) f   (t) L 
1 
F (s) 

1 
,   s 0 

s 

1 

1 
,    s a 

s a 

eat 

s 
,    s 0 

s2 a2 

Cos at 

1 
,    s 0 

s2 a2 

Sin at 

a 

1  
, s a 

s2 a2 

Sin h at 

a 

s  
, s 

a  s2 a2 

 
 

Cos h at 

1     
,  s 0 

sn  1 

n = 0, 1, 2, 3, . . . 

t n 

 

n! 

1     
, s 0 

sn 1 

n > -1 

tn 

n 1 



 

 

(ii) 
s b 

s2 a2 

2s 

4s
2

 

5 

25 

4s 9 

9 s2 

1 1 

2s 5 

1 

2 

1 

s 

1 

5 
2 

1 

2 

1 2s 

4s 
2

 

5 

25 

4s 8 

9 s 2 

2 

4 

s 5 

L 1 
2 

s 2 
25 

4 

4L 1 
s 

s 2 

9 
2 

9 

1 
c 

2 

1 3s   1 

s 
1 

4 

1 

s 

1 

1 
4 

2s 5 

 

 

Example 

 

(i) 
1
 

 
1. Find the inverse Laplace transforms of the following: 

(iii) 
 

Here 

 
5t 

(i) L L e 2 
 

 

 

(ii) L    
1  s

 b 
s    

2 a 2 

L    1 s 

s   2 a 2 

 
b L 

1
 

1 

s   2 a 2 

 
cos at 

 
b 

sin at 
a 

 

 

 

 

 

(iii) L 
 

 

 

 

os 
5t 
2 

sin 
5t

 
2 

 

4  cos h3t 
3 

sin h3t 
2 

 

 
 

Evaluation of L
-1 

F(s – a) 

We  have,  if L [f(t)] = F(s),  then L[e
at 

f(t)] = F(s – a),  and so 

L
-1 

[F(s – a) ]= e
at 

f (t)  = e 
at  

L
-1   

[F(s)] 

Examples 
 

 

 

1. Evaluate : L 
 

 
 

Given L-1 3 s     1-1 1 

s   1 
4
 

3 L 
1

 

1 
2 L 

s   1 
3
 



 

 

1 1 

s 4 

1 1 

s n 1 

t n 

 

n! 

3e tt 2 e tt3 

s 

s 2 

1 
2 

L    
1 s   1 

4 s 
1 

2 

3 

4 

L 1 

s 

s   1 

1 
2 

3L 
1
 

4 s 

1 

1 
2 4 

1 1 

s 2 4 

1 

s 
3 

2 

1 
2 5 

4 

e 

3t 

2 1 s 
e 

3t 

2 

s 2 5 
4 

1 1 

s 2 5 
4 

3t 

2 c 

s 

 

3e   
t      

L 
1 1

 

s 3 

2e  
t  

L 

 

Using the formula 

 

L 

 

 

and taking n 

 

 

2 and 

 

 

3, we get 
 

 
 

 

 
 

2. Evaluate : L
-1

 

Given 
2 3 

 

 

 

Given L-1 

 

 

 
 

 

et  L-1 s 

s  2 4 
3 et  L 

 

 

 

 

3. Evaluate :L 
1

 

 

 

 
2s   1 

e
t   

cos 2t 3 e
t 
sin 2t 

2 

s
2 

3s   1 
 

 

Given 
3 1 

2L-1 2 

3        2 5 
2 4 

2  L 1
 

s 

 
3 

2 L 
3        2 5 
2 4 

 

 

2 L L 
 

 
 

2e os   h 
5 

t 
2 

2    
sin h 

5 
t 

5 2 

s 2 

s 
2    

- 2s 5 

s 

s 



 

 

2s  
2 

5s 4 

s  3 s 2 2s 

1 4s 5 

s 
1 

2 s 2 

 
 

4. Evaluate : L-1 

 
 

we have 

 

 

 
 

 

Then   2s
2
+5s-4 = A(s+2) (s-1) + Bs (s-1) + Cs (s+2) 

For s = 0, we get A = 2, for s = 1, we get C = 1 and for s = -2, we get B = -1. Using these values 

in (1), we get 

 

 

Hence 
 

L 
1    2s 

s 2 

5s 4 

s  
2 

25 
2 e    2t et 

 

 

 

 

5. Evaluate : L 

 
 

Let us take 
 

 

Then 4s + 5 =A(s + 2) + B(s + 1) (s + 2) + C (s + 1)
2

 

For s = -1, we get A = 1, for s = -2, we get C = -3 

2s    
2 
5s 4 

s     s2  s   1 

2s  
2 

5s 

s  3 s 2 

4 

2s 

2s  
2 

5s 4 

s s 
2

 s 2 

A B C 

s s 2 s   1 

2s
2 

5s 4 

s3 s2 2s 

2 1 1 

s s 2 s  1 

s 

4s 

1 
2 

5 

s 2 s 

A 

1 
2 

B C 

s     1 s 2 

2 



 

 

1 4s 

1 
2 

5 

s 
e t 

s 2 

1 1 

s 

 

Comparing the coefficients of s
2
, we get B + C = 0, so that B = 3.  Using these values in 

 

 
(1), we get 

 

Hence L L    1 1 

s 2 

3e  
t 
L 

1   1
 

s 
3e  

2t 
L 

 

te 
t
 3e 

t
 3e 2t 

 

6. Evaluate :L 
1
 

s3 

s4 a4 

 

 

 

Let 

Hence s
3 

= A(s + a) (s
2 

+ a
2
) + B (s-a)(s

2
+a

2
)+(Cs + D) (s

2 
– a

2
) 

(1) 

 

For s = a, we get A = ¼; for s = -a, we get B = ¼; comparing the constant terms, we get 

D = a(A-B) = 0; comparing the coefficients of s
3
, we get 

1 = A + B + C and so C = ½.  Using these values in (1), we get 
 

 

Taking inverse transforms, we get 
 

L    
1 s 

s  4 a 4 

1 
eat 

4 
e at 

1 
cos at 

2 
 

 

 

 

7. Evaluate :L 
1

 

s4 

 

 

 
s 

s
2 

1 

1    
cos hat cos  

2 

 

 

 
Consider 

s3 

s4 a4 

1 

4 

1 1 

s a s a 

1 

2 s
2

 

s 

a2 

s 

4s 

1 
2 

5 

s 2 s 

1 

1 
2 

3 3 

s     1 s 2 

s3 

s   4 a 4 

A 

s a 

B 

s a 

Cs D 

s 2 a 2 

s4 

s 

s2 

s 

1 s2 s 1 s2 s 1 

1 

2 

2s 

s2 s 1 s2 s 1 

3 



 

 

1 s 

s  4 s 2 1 

1 

2 

1 

e 2 
1 1 

e 

1 

2 

s    2 3 
4 

1 1 

s    2 3 
4 

1 

2 

1 

e 2 

3 3 
sin t 

2 

3 

2 

3 

2 

t 

2 

2 

 

 
 
 

 
 

 

Therefore 
 

 

 
t t 

L L L 
 

 

 

 

t     sin t 1 
t 

e 2 

3 

2 
 
 

sin t   sin h 
 

 

 

 

Evaluation of L
-1

[e
-as   

F (s)] 

We have, if L [f (t)] = F(s), then L[f(t-a) H(t-a) = e
-as 

F(s), and so 

L
-1

[e
-as 

F(s)] = f(t-a) H(t-a) 

1 

2 
s 2 

s 2 

s 1 

s 1 
s 2 

s 2 

s 1 

s 1 

1 

2 s 2 

1 

s 1 s 2 

1 

s 1 

1 

2 
s 

1 

1 

2 

1 

2 

3 

4 
s 

1 

2 

2 3 

4 

2 

3 



 

 

1 e 

s 

ss 

2 
4 

1 e 

s 

5s 

2 
4 

e2 t   5 t 5 
3 

t H t cos2 t 2 

 

Examples 

 

(1) Evaluate: L 
 

 

Here 

 
a 

 

 
 

5,  F (s) 

 
 

Therefore 

 

Thus 

 

f (t) L 
1
F (s) L    1 1 

s 2 
4
 

e2t L 1  1 

s4 

e2tt3 

6 

L f (t a)  H (t a) 

 

 
H 

6 
 

 

 

(2) Evaluate:  L  1 e 

s2 1 

se 2  s 

s2 4 
 

Given 

 
Here 

f1  t 

 
f1(t) 

H t 

L    1 1 
s

2 
1 

f2     t 2 H 

 
sin t 

(1) 

f2 (t) L    1 s 
s

2 
4 

cos 2t 

Now relation(1) reads as 
 

Given sin H 
 

cos t H t cos 2t  H 

s 

1 

2 
4 

t 5 

t 2 

t 2 

t 2 

s 



 

 

d 

ds 
F s tf (t) 

s a 

s b 

s 

s 

a 

b 
l l 

d 

ds 

 

Inverse transform of logarithmic functions 

We have, if L f(t) 

 

 
L 1 

F(s), then  L  tf  
d  

F 
ds 

Hence 
 

Examples: 

 
(1) Evaluate:  L 

1
 

 

 

log 
 

 

Let F (s) log og   s a og s 
 

 
 

Then  
d  

F 
ds 

 

 

So   that L 1
 F    s e at

 e bt 

 

 
 

or t  f  t e bt e at 

 
 

 

Thus 
 

 
(2) Evaluate L 1 

 

f  t 
 

 
tan 

e    bt e at 

b 

 

 

Let   F (s) tan 
 

 

 

Then  
d  

F 
ds 

b 

s 
1 1 

s a s b 

1 a 

s 

s 
a 

s2 a2 

1 a 

s 



 

 

s 
1 

s2 a2 

1 cos at 

L 1 

 

 

 
or L 

1
 

 
d 

F s 
ds 

 
sin at 

 
so that 

 

or t  f   t sin at 
 

f     t 
sin at 

a 
 

 

 
 

Inverse transform of 
 
 

 

(1) Evaluate:  L 
1
 

 

 

 
 

Let us denote F 

 

 

 
 

so that 
 

f (t) F     s 
sin at 

a 
 

Then  L 1
 

1 

s   s2 a2
 

L 1  F s 
s 

sin at 
dt

 

0 
a 

 

 

a2 

 

 

 
 

Convolution Theorem:  
 

F s 

s 

1 

s s
2

 a2 

t 
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Using Convolution 

 

 

 

theorem find the 

 

 

 

inverse laplace 

 

 

 

transforms 

 



 

 

1 1 

s a 
2 

e att 

s2 

1 

s a 
2 

1 

a2 

t 

1     e 1 at 
at 

dt 
0 

L 1 F (s) G(s) f   (t) g(t) f     t u  g  u   du 

 

 
(2) Evaluate :  L 1 

1 

s2       s a 
2
 

 

Solution :  we have  L 
 

 
 

 

Hence  L 1
 

1 

s    s a 

t 

e  att dt 
0 

 
 

1 
1     e  at     1 at 

a2 

,  on integration by parts. 

 

 

Using   this, we get 
 

 

L-1 

 

 

 

 

Inverse  transform  of  F(s) by  using   convolution  theorem : 
 

 

We have, if L(t) 
 
 

L    f(t) g(t) Lf (t) Lg(t) F (s) G(s) and so 
 
 

t 

 
0 

This expressionis calledthe convolution theoremforinverse Laplace transform 

1 

a3 
at    1 e 

at 
2    e 1 

at 

F(s)  and  Lg(t) G(s), then 

2 



 

 

1 

a b 

 

Examples 

Employ convolution theorem to evaluate the following: 

 

(1) L 
1
 

 

 
Sol:Let us denote F(s) 

 

 

Taking the inverse, we get f(t) 
 
 

Therefore, by convolution theorem, 
 

 
 

L-1 

 
 

 

(2) L 
1
 

 

 
Sol: Let us denote F(s) 

 

 
 

f(t) sin at 
, g(t)

 
a 

 

cos at 

 

 

Hence by convolution theorem, 
 
 

L-1 

e 
at        

a b 
e 

a  b  t 1 

 
 

e bt 

a 

e 

b 

at 

1 

s a 
,    G(s) 

1
 

s b 

1 
t t 

s a s b 
e a  t   u 

e
 budu e 

at 

e 
a  b u

du
 

0 0 

e
-at 

, g(t) e-bt 

s 

s2 a2 
2 

1 
, G(s) 

s2 a2 

s 

s2 a2 

Then 

s 

s2 a2 

t 
1 

2 

0  a 
sin a   t u  cos au du 



 

 

1 
t 

a 0 

sin   at sin    at 2au 

2 
du, 

1 

s 1 

e u 

2 
s 

t 

0 

et t s 

 

 

 

by using compound angle formula 
 

 
 

 

(3) L 
1
 

 
 

Sol: Here 

 
F(s) , G(s) 

 

Therefore 
 

f(t) e
t 
, g(t) sin t 

 
 

By convolution theorem, we have 
 

L-1 

s 

1 

1   s 
2 

1 
et  u 

sin u  du e
t
 

 

in u 
 

cos u 

 

 
 

in t 
2 

 

cos t 1 
1 

e
t
 

2 

 

sin t 
 

cos t 

 

LAPLACE TRANSFORM METHOD FOR DIFFERENTIAL EQUATIONS 
 

 

As noted earlier, Laplace transform technique is employed to solve initial-value 

problems. The solution of such a problem is obtained by using the Laplace Transform of the 

derivatives of function and then the inverse Laplace Transform. 

The following are the expressions for the derivatives derived earlier. 

1 
u sin at 

2a 

cos    at 2au 

2a 

t 

0 

t sin at 

2a 

s 1 

s 

s 2 1 

s 

s 2 1 



 

 

1 2 

s 1 s 

1 

1 
3 

t t 

 

L[f   (t)] s L f(t) - f(0) 
 

 

L[f (t) s 
2  

L f(t) - s f(o)- f (0) 
 

 

L[f 
 

(t) s 
3  

L f(t) - s 
2  

f(0)- s f (0) - f (0) 
 

 

1. Solve by using Laplace transform method 
y
 y t e  

t 
, 

 

y(o) 2 

Sol: Taking the Laplace transform of the given equation, we get 
 

sL  y  t y   o L y 
 

 

s 1  L y t 2 
 

so that 
 

L y 
 

Taking the inverse Laplace transform, we get 
 

 
2s 2 

 
4s 3 

Y   t L 1    
 

s 1 
3

 

 
 

2   s 1   1 
2

 4   s 1     1 3 

L 1       

s 1 
3

 

 

 
 

L 
 

 

1    
e 2 

2 
 

This is the solution of the given equation. 
 

2.   Solve by using Laplace transform method: 
 

y 2y 3y sin t, y(o) y   (o) 0 

t 
s 

1 

1 
2 

s 

1 

1 
2 

t 
2s  2 4s 3 

s 1 
3 

4 



 

 

2 
1 

s 2 1 

1 

s    1  s 3 s 2 1 

1 1 

s    1  s 3 s 2 1 

1 A 

s  1 

B 

s 3 

Cs D 

s 2 1 

1 1 

8 

1 1 

s     1 40 

1 

s 3 

s 

10 

s 2 

1 

5 

1 

l 

 

Sol: Taking the Laplace transform of the given equation, we get 

 

s 2 Ly(t) sy(0) y (0) Ly(t) y(0) 3 L y(t) 
 

 

Using the given conditions, we get 

 

L  y(t) s 2 2s 

or 

L y(t) 
 

or 

 
y(t) L 

 

 

 

L 
 

 

 

 

L 
 

 

 
 

by using the method of partial sums, 
 

1 
et 

8 

1  
e 3t 

40 

1   
cos t 

10 

 
2 sin t 

 

This is the requiredsolutionof the given equation. 
 

 

 

3) Employ Laplace Transform methodtosolve the integral equation. 
 

t 

f(t) f 
0 

3 
1 

s 2 1 

u s in   t u du 



 

 

s2 1 

20 

6x'(t) 25x(t) 0 

20,   x'(0) 10. 

 

Sol:  Taking Laplace transform of the given equation, we get 
 

 

L f(t) 
 

By using convolution theorem, here, we get 
 

 
 

L f(t) 
1 

Lf (t) 
s 

 

L sin t 

 

Thus 
 

L  f (t) 

s3 

or   f (t) 

 

 

This is the solutionof the given integral equation. 
 

 

d
2    

x dx 
(4) A particle is moving along a path satisfying,  the equation 6 25x 

 
0 where 

dt
2 

dt 

x denotes the displacement of the particle at time t. If the initial position of the particle is at x 

and the initial speed is 10, find the displacement of the particle at any time t using Laplace transforms. 

Sol: Given equation may be rewritten as 

x''(t) 

Here the initial conditions are x(0) 

Taking the Laplace transform of the equation, we get 
 

Lx (t) 
 

 

Lx (t) 
 

 

so that 
 

 
 

x(t) 

1 

s 

t 

L    f   u  sin  t u  du 
0 
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s 

L  f (t) 
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L 1 s2 

s3 
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2 
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20s   130 

s2 6s 25 

L 1 
20s   130 

s 3 16 
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s2 6s 25 20s     130 0 or 
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2 

16 

 
70  L 

1
 

1 
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2 

16 
 

 

20 e 

 
3t  

cos 4t 35 
e
 

3t 
sin 4t 

2 

 

This is the desiredsolutionof the given problem. 
 

 

 

(5) A voltage Ee-at   is applied at t 0 to a circuit of inductance L and resistanceR. Show that the 
 

 

current at any time t is 
E 

R - aL 
e at 

 

 

Sol: The circuit is an LR circuit.  The differential equation with respect to the circuit is 
 

L    
di 

Ri 
dt 

 

E(t) 

 

Here L denotes the inductance, i denotes current at any time t and E(t) denotes the E.M.F. 

It is given that E(t) = E e
-at

.  With this, we have 

 

 

Thus, we have  
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di 

Ri 
dt 

 

 
Ee    

at 
or 

Li'(t) R i(t) Ee  at 

 

L LT i'(t) R LT i'(t) E LT e    
at 

or 
 

Taking Laplace transform(LT ) on both sides, we get 

L  1      20 s 3 70 
s 3 

2 16 

e 

Rt 
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E 

s a 

1 

T 

E 

(s a)(sL R) 

 

L s LT 

 

i(t) 
 

i(0) R LT i(t) E 
1

 
 

 

Since i(o) o, we get LT       i(t)  sL R or 
 

 

 

LT  i(t) 
 

 
 

Taking  inverse transform L, we get i(t) L 
 
 

E 1 1 1 1 
 

 
Thus 

LT 

R aL s a 
L  LT 

sL R 

 

  

This is the result as desired. 
 

(6) Solve the simultaneous equations for x and y in terms of t given 
dx

 
dt 

 

 
 

4  y 0, 

dy 
9x 

dt 
0 with x(o) 2, y(o)  1. 

 

Sol: Taking Laplace transforms of the given equations, we get 
 

s  Lx(t) - x(o) 4Ly(t) 0 
 

9 L x(t) s Ly(t) y(o) 0 
 

Using the given initial conditions, we get 
 

s L x(t) 

9 L x(t) 

4 L   y(t) 2 

5 L   y(t) 1 
 

Solving theseequations for Ly(t), we get 

 

L y(t) 

e 

Rt 

L i(t) 
E 

R aL 
e at 

E 

s a sL R 

s 18 

s2 36 



 

 

1 s 

s2 36 s2 

18 

36 

 

so that 

 

y(t) L 

 

 

Using  this in  
dy 

9x 
dt 

cos 6t 

 
 

0, we get 

3 sin 6t (1) 

 

x(t) 
1

 
9 

or 

 

6 sin 6t 
 

18 cos 6t 

 

 

x(t) 
2 

3 cos 6t 
3 

 

sin 6t 
 

(2) 
 

(1) and (2) together represents the solution of the given equation. 


