ENGINEERING MATHEMATICS-II

SUBJECT CODE: 17MAT21

MODULE - 1
DIFFERENTIAL EQUATIONS -I

LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER WITH CONSTANT COEFFICIENTS

A differential equation of the form

$$
\begin{equation*}
\frac{d^{n} y}{d x^{n}}+a_{1} \frac{d^{n-1} y}{d x^{n-1}}+a_{2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots+a_{n} y=X \tag{1}
\end{equation*}
$$

where X is a function of x and $a_{1}, a_{2} \ldots, a_{n}$ are constants is called a linear differential equation of $n^{\text {th }}$ order with constant coefficients. Since the highest order of the derivative appearing in (1) is n, it is called a differential equation of $n^{\text {th }}$ order and it is called linear.

Using the familiar notation of differential operators:

$$
D=\frac{d}{d x}, D^{2}=\frac{d^{2}}{d x^{2}}, \quad D^{3}=\frac{d^{3}}{d x^{3}} \ldots, D^{n}=\frac{d^{n}}{d x^{n}}
$$

Then (1) can be written in the form

$$
\left\{D^{n}+a_{1} D^{n-1}+a_{2} D^{n-2}+\ldots a_{n}\right\} y=X
$$

i.e.,

$$
\begin{equation*}
f(D) y=X \tag{2}
\end{equation*}
$$

where

$$
f(D)=D^{n}+a_{1} D^{n-1}+a_{2} D^{n-2}+\ldots a_{n} .
$$

Here $f(D)$ is a polynomial of degree n in D
If

$$
\begin{aligned}
x & =0, \text { the equation } \\
f(D) y & =0
\end{aligned}
$$

is called a homogeneous equation.
If $x \neq 0$ then the Eqn. (2) is called a non-homogeneous equation.

SOLUTION OF A HOMOGENEOUS SECOND ORDER LINEAR DIFFERENTIAL EQUATION

1. Solve $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=0$.

Solution. Given equation is $\left(D^{2}-5 D+6\right) y=0$

$$
\text { A.E. is } \quad m^{2}-5 m+6=0
$$

i.e., $\quad(m-2)(m-3)=0$
i.e., $\quad m=2,3$
$\therefore \quad m_{1}=2, m_{2}=3$

$$
\begin{aligned}
m^{2} & =-w^{2}=w^{2} i^{2}\left(i^{2}=-1\right) \\
m & = \pm w i
\end{aligned}
$$

This is the form $\alpha \pm i \beta$ where $\alpha=0, \beta=w$.
\therefore The general solution is

$$
y=e^{0 t}\left(C_{1} \cos w t+C_{2} \sin w t\right)
$$

$\therefore \mathrm{y}=C_{1} \cos w t+C_{2} \sin w t$.
6. Solve $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+13 y=0$.

Solution. The equation can be written as

$$
\left(D^{2}+4 D+13\right) y=0
$$

A.E. is $m^{2}+4 m+13=0$

$$
\begin{aligned}
m & =\frac{-4 \pm \sqrt{16-52}}{2} \\
& =-2 \pm 3 i(\text { of the form } \alpha \pm i \beta)
\end{aligned}
$$

\therefore The general solution is

$$
y=e^{-2 x}\left(C_{1} \cos 3 x+C_{2} \sin 3 x\right)
$$

INVERSE DIFFERENTIAL OPERATOR AND PARTICULAR INTEGRAL

Consider a differential equation

$$
\begin{equation*}
f(D) y=x \tag{1}
\end{equation*}
$$

Define $\frac{1}{f(D)}$ such that

$$
\begin{equation*}
f(D)\left\{\frac{1}{f(D)}\right\} x=x \tag{2}
\end{equation*}
$$

Here $f(D)$ is called the inverse differential operator. Hence from Eqn. (1), we obtain

$$
\begin{equation*}
y=\frac{1}{f(D)} x \tag{3}
\end{equation*}
$$

Since this satisfies the Eqn. (1) hence the particular integral of Eqn. (1) is given by Eqn. (3)
Thus, particular Integral (P.I.) $=\frac{1}{f(D)} x$
The inverse differential operator $\frac{1}{f(D)}$ is linear.
i.e., $\quad \frac{1}{f(D)}\left\{a x_{1}+b x_{2}\right\}=a \frac{1}{f(D)} x_{1}+b \frac{1}{f(D)} x_{2}$
where a, b are constants and x_{1} and x_{2} are some functions of x.

Type 1: P.I. of the form $\frac{e^{a x}}{f(D)}$
We have the equation $f(D) y=e^{a x}$
Let

$$
f(D)=D^{2}+a_{1} D+a_{2}
$$

We have

$$
D\left(e^{a x}\right)=a e^{a x}, D^{2}\left(e^{a x}\right)=a^{2} e^{a x} \text { and so on. }
$$

$$
\begin{aligned}
\therefore \quad f(D) e^{a x} & =\left(D^{2}+a_{1} D+a_{2}\right) e^{a x} \\
& =a^{2} e^{a x}+a_{1} \cdot a e^{a x}+a_{2} e^{a x} \\
& =\left(a^{2}+a_{1} \cdot a+a_{2}\right) e^{a x}=f(a) e^{a x}
\end{aligned}
$$

Thus $f(b) e^{a x}=f(a) e^{a x}$
Operating with $\frac{1}{f(D)}$ on both sides
We get,

$$
\begin{aligned}
& e^{a x}=f(a) \cdot \frac{1}{f(D)} \cdot e^{a x} \\
& \text { P.I. }=\frac{1}{f(D)} e^{a x}=\frac{e^{a x}}{f(D)}
\end{aligned}
$$

In particular if $f(D)=D-a$, then using the general formula.
We get, $\quad \frac{1}{D-a} e^{a x}=\frac{e^{a x}}{(D-a) \phi(D)}=\frac{1}{D-a} \cdot \frac{e^{a x}}{\phi(a)}$
i.e., $\frac{e^{a x}}{f(D)}=\frac{1}{\phi(a)} e^{a x} \int 1 \cdot d x=\frac{1}{\phi(a)} \cdot x e^{a x}$
$\therefore \quad f(a)=0+\phi(a)$
or

$$
f(a)=\phi(a)
$$

Thus, Eqn. (1) becomes

$$
\frac{e^{a x}}{f(D)}=x \cdot \frac{e^{a x}}{f^{\prime}(D)}
$$

where

$$
f(a)=0
$$

and

$$
f(a) \neq 0
$$

This result can be extended further also if

$$
f(a)=0, \frac{e^{a x}}{f(D)}=x^{2} \cdot \frac{e^{a x}}{f^{\prime \prime}(a)} \text { and so on. }
$$

Type 2: P.I. of the form $\frac{\sin a x}{f(D)}, \frac{\cos a x}{f(D)}$
We have $\quad D(\sin a x)=a \cos a x$

$$
\begin{aligned}
D^{2}(\sin a x) & =-a^{2} \sin a x \\
D^{3}(\sin a x) & =-a^{3} \cos a x \\
D^{4}(\sin a x) & =a^{4} \sin a x \\
& =\left(-a^{2}\right)^{2} \sin a x \text { and so on. }
\end{aligned}
$$

Therefore, if $f\left(D^{2}\right)$ is a rational integral function of D^{2} then $f\left(D^{2}\right) \sin a x=f\left(-a^{2}\right) \sin a x$.
Hence $\frac{1}{f\left(D^{2}\right)}\left\{f\left(D^{2}\right) \sin a x\right\}=\frac{1}{f\left(D^{2}\right)} f\left(-a^{2}\right) \sin a x$
i.e., $\quad \sin a x=f\left(-a^{2}\right) \frac{1}{f\left(D^{2}\right)} \sin a x$
i.e., $\quad \frac{1}{f\left(D^{2}\right)} \sin a x=\frac{\sin a x}{f\left(-a^{2}\right)}$

Provided

$$
\begin{equation*}
f\left(-a^{2}\right) \neq 0 \tag{1}
\end{equation*}
$$

Similarly, we can prove that

$$
\frac{1}{f\left(D^{2}\right)} \cos a x=\frac{\cos a x}{f\left(-a^{2}\right)}
$$

if

$$
f\left(-a^{2}\right) \neq 0
$$

In general, $\frac{1}{f\left(D^{2}\right)} \cos a x=\frac{\cos a x}{f\left(-a^{2}\right)}$
if

$$
\begin{aligned}
f\left(-a^{2}\right) & \neq 0 \\
\frac{1}{f\left(D^{2}\right)} \sin (a x+b) & =\frac{1}{f\left(-a^{2}\right)} \sin (a x+b)
\end{aligned}
$$

$$
\frac{1}{f\left(D^{2}\right)} \cos (a x+b)=\frac{1}{f\left(-a^{2}\right)} \cos (a x+b)
$$

These formula can be easily remembered as follows.

$$
\begin{aligned}
\frac{1}{D^{2}+a^{2}} \sin a x & =\frac{x}{2} \int \sin a x d x=\frac{-x}{2 a} \cos a x \\
\frac{1}{D^{2}+a^{2}} \cos a x & =\frac{x}{2} \int \cos a x a x=\frac{x}{2 a} \sin a x .
\end{aligned}
$$

Type 3: P.I. of the form $\frac{\phi(x)}{f(D)}$ where $\phi(x)$ is a polynomial in x, we seeking the polynomial Eqn. as the particular solution of

$$
f(D) y=\phi(x)
$$

where

$$
\phi(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots a_{n-1} x+a_{n}
$$

Hence P.I. is found by divisor. By writing $\phi(x)$ in descending powers of x and $f(D)$ in ascending powers of D. The division get completed without any remainder. The quotient so obtained in the process of division will be particular integral.

Type 4: P.I. of the form $\frac{e^{a x} V}{f(D)}$ where V is a function of x.
We shall prove that $\frac{1}{f(D)} e^{a x} V=e^{a x} \frac{1}{f(D+a)} V$.
Consider

$$
\begin{aligned}
D\left(e^{a x} V\right) & =e^{a x} D V+V a e^{a x} \\
& =e^{a x}(D+a) V
\end{aligned}
$$

and

$$
\begin{aligned}
D^{2}\left(e^{a x} V\right) & =e^{a x} D^{2} V+a e^{a x} D V+a^{2} e^{a x} V+a e^{a x} D V \\
& =e^{a x}\left(D^{2} V+2 a D V+a^{2} V\right) \\
& =e^{a x}(D+a)^{2} V
\end{aligned}
$$

Similarly, $\quad D^{3}\left(e^{a x} V\right)=e^{a x}(D+a)^{3} V$ and so on.
$\therefore \quad f(D) e^{a x} V=e^{a x} f(D+a) V$
Let

$$
\begin{equation*}
f(D+a) V=U \text {, so that } V=\frac{1}{f(D+a)} U \tag{1}
\end{equation*}
$$

Hence (1) reduces to

$$
f(D) e^{a x} \frac{1}{f(D+a)} U=e^{a x} U
$$

Operating both sides by $\frac{1}{f(D)}$ we get,

$$
\begin{aligned}
e^{a x} \frac{1}{f(D+a)} U & =\frac{1}{f(D)} e^{a x} U \\
\text { i.e., } \quad & \frac{1}{f(D)} e^{a x} U
\end{aligned}=e^{a x} \frac{1}{f(D+a)} U
$$

Replacing U by V, we get the required result.
Type 5: P.I. of the form $\frac{x V}{f(D)}, \frac{x^{n} V}{f(D)}$ where V is a function of x.
By Leibniz's theorem, we have

$$
\begin{align*}
D^{n}(x V) & =x D^{n} V+n \cdot 1 D^{n-1} \cdot V \\
& =x D^{n} V+\left\{\frac{d}{d D} D^{n}\right\} V \\
\therefore \quad f(D) x V & =x f(D) V+f^{\prime}(D) V \tag{1}
\end{align*}
$$

Eqn. (1) reduces to

$$
\begin{equation*}
\frac{x V}{f(D)}=\left[x-\frac{f^{\prime}(D)}{f(D)}\right] \frac{V}{f(D)} \tag{2}
\end{equation*}
$$

This is formula for finding the particular integral of the functions of the $x V$. By repeated application of this formula, we can find P.I. as $x^{2} V, x^{3} V \ldots \ldots$. .

Type 1

1. Solve $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=e^{5 x}$.

Solution. We have

$$
\left(D^{2}-5 D+6\right) y=e^{5 x}
$$

A.E. is

$$
m^{2}-5 m+6=0
$$

i.e.,

$$
(m-2)(m-3)=0
$$

\Rightarrow

$$
m=2,3
$$

Hence the complementary function is

$$
\therefore \quad \text { C.F. }=C_{1} e^{2 x}+C_{2} e^{3 x}
$$

Particular Integral (P.I.) is

$$
\begin{aligned}
\text { P.I. } & =\frac{1}{D^{2}-5 D+6} e^{5 x} \quad(D \rightarrow 5) \\
& =\frac{1}{5^{2}-5 \times 5+6} e^{5 x}=\frac{e^{5 x}}{6} .
\end{aligned}
$$

\therefore The general solution is given by

$$
\begin{aligned}
y & =\text { C.F. }+ \text { P.I. } \\
& =C_{1} e^{2 x}+C_{2} e^{3 x}+\frac{e^{5 x}}{6}
\end{aligned}
$$

2. Solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=10 e^{3 x}$.

Solution. We have

$$
\left(D^{2}-3 D+2\right) y=10 e^{3 x}
$$

A.E. is $m^{2}-3 m+2=0$
i.e.,

$$
\begin{aligned}
(m-2)(m-1) & =0 \\
m & =2,1 \\
\text { C.F. } & =C_{1} e^{2 x}+C_{2} e^{x} \\
\text { P.I. } & =\frac{1}{D^{2}-3 D+2} 10 e^{3 x} \quad(D \rightarrow 3) \\
& =\frac{1}{3^{2}-3 \times 3+2} 10 e^{3 x} \\
\text { P.I. } & =\frac{10 e^{3 x}}{2}
\end{aligned}
$$

\therefore The general solution is

$$
\begin{aligned}
y & =\text { C.F. }+ \text { P.I. } \\
& =C_{1} e^{2 x}+C_{2} e^{x}+\frac{10 e^{3 x}}{2}
\end{aligned}
$$

Type2:
Solve $\left(D^{3}+D^{2}-D-1\right) y=\cos 2 x$.

1. Solution. The A.E. is

$$
\left.\begin{array}{rl}
m^{3}+m^{2}-m-1 & =0 \\
\text { i.e., } m^{2}(m+1)-1(m+1) & =0 \\
(m+1)\left(m^{2}-1\right) & =0 \\
m & =-1, m^{2}=1 \\
m & =-1, m= \pm 1 \\
m & =-1,-1,1 \\
\text { C.F. } & =C_{1} e^{x}+\left(C_{2}+C_{3} x\right) e^{-x} \\
\therefore \quad \text { P.I. } & =\frac{1}{D^{3}+D^{2}-D-1} \cos 2 x \\
& =\frac{1}{(D+1)\left(D^{2}-1\right)} \cos 2 x \\
& =\frac{1}{(D+1)\left(-2^{2}-1\right)} \cos 2 x \\
& =\frac{-1}{5} \frac{1}{D+1} \cos 2 x \\
& =\frac{-1}{5} \frac{\cos 2 x}{D+1} \times \frac{D-1}{D-1} \\
& =\frac{-1}{5} \frac{(D-1) \cos 2 x}{D^{2}-1} \\
& =\frac{-1}{5}\left[\frac{-2 \sin 2 x-\cos 2 x}{-2^{2}-1}\right] \\
& =\frac{-1}{25}\left(D^{2}\right. \\
(2 \sin 2 x+\cos 2 x) \\
\hline
\end{array} \quad-2^{2}\right)
$$

\therefore The general solution is

$$
\begin{aligned}
y & =\text { C.F. }+ \text { P.I. } \\
& =C_{1} e^{x}+\left(C_{2}+C_{3} x\right) e^{-x}-\frac{1}{25}(2 \sin 2 x+\cos 2 x)
\end{aligned}
$$

2. Solve $\left(D^{2}+D+1\right) y=\sin 2 x$.

Solution. The A.E. is
i.e.,

$$
m^{2}+m+1=0
$$

$$
m=\frac{-1 \pm \sqrt{1-4}}{2}=\frac{-1 \pm \sqrt{3} i}{2}
$$

Hence the C.F. is

$$
\begin{aligned}
\text { C.F. } & =e^{-\frac{x}{2}}\left[C_{1} \cos \frac{\sqrt{3}}{2} x+C_{2} \sin \frac{\sqrt{3}}{2} x\right] \\
\text { P.I. } & =\frac{1}{D^{2}+D+1} \sin 2 x \\
& =\frac{1}{-2^{2}+D+1} \sin 2 x \\
& =\frac{1}{D-3} \sin 2 x
\end{aligned} \quad\left(D^{2} \rightarrow-2\right.
$$

Multiplying and dividing by $(D+3)$

$$
\begin{aligned}
& =\frac{(D+3) \sin 2 x}{D^{2}-9} \\
& =\frac{(D+3) \sin 2 x}{-2^{2}-9}=\frac{-1}{13}(2 \cos 2 x+3 \sin 2 x)
\end{aligned}
$$

$\therefore y=$ C.F. + P.I. $=e^{\frac{-x}{2}}\left[C_{1} \cos \frac{\sqrt{3}}{2} x+C_{2} \sin \frac{\sqrt{3}}{2} x\right]-\frac{1}{3}(2 \cos 2 x+3 \sin 2 x)$.
3. Solve $\left(D^{2}+5 D+6\right) y=\cos x+e^{-2 x}$.

Solution. The A.E. is

$$
m^{2}+5 m+6=0
$$

i.e., $\quad(m+2)(m+3)=0$

$$
\begin{aligned}
m & =-2,-3 \\
\text { C.F. } & =C_{1} e^{-2 x}+C_{2} e^{-3 x} \\
\text { P.I. } & =\frac{1}{D^{2}+5 D+6} \cdot\left[\cos x+e^{-2 x}\right] \\
& =\frac{\cos x}{D^{2}+5 D+6}+\frac{e^{-2 x}}{D^{2}+5 D+6} \\
& =\text { P.I. }_{1}+\text { P.I. }_{2}
\end{aligned}
$$

$$
\text { P.I. }_{1}=\frac{\cos x}{D^{2}+5 D+6}
$$

$$
\left(D^{2}=-1^{2}\right)
$$

$$
=\frac{\cos x}{-1^{2}+5 D+6}=\frac{\cos x}{5 D+5}
$$

$$
\begin{array}{rlr}
& =\frac{1}{5} \frac{\cos x(D-1)}{(D+1)(D-1)} \\
& =\frac{1}{5} \frac{(D-1) \cos x}{D^{2}-1} \\
& =\frac{1}{5} \frac{-\sin x-\cos x}{-1^{2}-1} \\
& =\frac{-1}{5} \frac{\sin x+\cos x}{-2} \\
& =\frac{1}{10}(\sin x+\cos x) & (D \rightarrow-2 \\
\text { P.I. }_{2} & =\frac{e^{-2 x}}{D^{2}+5 D+6} \\
& =\frac{e^{-2 x}}{(-2)^{2}+5 \times-2+6} & (D r=0)
\end{array}
$$

Differential and multiply ' x '

$$
\begin{aligned}
& =\frac{x e^{-2 x}}{2 D+5} \\
& =\frac{x e^{-2 x}}{2(-2)+5}=\frac{x e^{-2 x}}{1}=x e^{-2 x} \\
\text { P.I. } & =\frac{1}{10}(\sin x+\cos x)+x e^{-2 x}
\end{aligned}
$$

\therefore The general solution is

$$
\begin{aligned}
& y=\text { C.F. }+ \text { P.I. } \\
& y=C_{1} e^{-2 x}+C_{2} e^{-3 x}+\frac{1}{10}(\sin x+\cos x)+x e^{-2 x}
\end{aligned}
$$

Type 3

1. Solve $y^{\prime \prime}+3 y^{\prime}+2 y=12 x^{2}$.

Solution. We have $\left(D^{2}+3 D+2\right) y=12 x^{2}$
A.E. is

$$
m^{2}+3 m+2=0
$$

i.e., $\quad(m+1)(m+2)=0$

$$
\Rightarrow \quad \begin{aligned}
m & =-1,-2 \\
\text { C.F. } & =C_{1} e^{-x}+C_{2} e^{-2 x} \\
\text { P.I. } & =\frac{12 x^{2}}{D^{2}+3 D+2}
\end{aligned}
$$

We need to divide for obtaining the P.I.

$2+3 D+D^{2}$	$6 x^{2}-18 x+21$	
	$\begin{aligned} & 12 x^{2} \\ & 12 x^{2}+36 x+12 \end{aligned}$	Note: $3 D\left(6 x^{2}\right)=36 x$
	$-36 x-12$	$D^{2}\left(6 x^{2}\right)=12$
	$-36 x-54$	
	42	
	42	
	0	

Hence, P.I. $=6 x^{2}-18 x+21$
\therefore The general solution is

$$
\begin{aligned}
& y=\text { C.F. }+ \text { P.I. } \\
& y=C_{1} e^{-x}+C_{2} e^{-2 x}+6 x^{2}-18 x+21 .
\end{aligned}
$$

2. Solve $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=2 x+x^{2}$.

Solution. We have $\left(D^{2}+2 D+1\right) y=2 x+x^{2}$
A.E. is $\quad m^{2}+2 m+1=0$
i.e.,

$$
(m+1)^{2}=0
$$

i.e., $\quad(m+1)(m+1)=0$
$\Rightarrow \quad m=-1,-1$
C.F. $=\left(C_{1}+C_{2} x\right) e^{-x}$
P.I. $=\frac{2 x+x^{2}}{D^{2}+2 D+1}=\frac{x^{2}+2 x}{1+2 D+D^{2}}$

Type 4

1. Solve $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=e^{x} \cos x$.

Solution. We have

$$
\left(D^{2}+2 D-3\right) y=e^{x} \cos x
$$

A.E. is

$$
m^{2}+2 m-3=0
$$

i.e.,

$$
(m+3)(m-1)=0
$$

i.e.,

$$
m=-3,1
$$

$$
\text { C.F. }=C_{1} e^{-3 x}+C_{2} e^{x}
$$

$$
\text { P.I. }=\frac{1}{D^{2}+2 D-3} e^{x} \cos x
$$

Taking e^{x} outside the operator and changing D to $D+1$

$$
\begin{aligned}
& =e^{x} \frac{1}{(D+1)^{2}+2(D+1)-3} \cos x \\
& =e^{x} \frac{1}{D^{2}+4 D} \cos x \quad\left(D^{2} \rightarrow-1^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad \text { P.I. }=x^{2}-2 x+2 \\
& \therefore \quad y=\text { C.F. }+ \text { P.I. } \\
& =\left(C_{1}+C_{2} x\right) e^{-x}+\left(x^{2}-2 x+2\right) .
\end{aligned}
$$

$$
\begin{aligned}
& =e^{x} \frac{1}{-1+4 D} \cos x \\
& =e^{x}\left[\frac{\cos x}{4 D-1} \times \frac{4 D+1}{4 D+1}\right] \\
& =e^{x}\left[\frac{-4 \sin x+\cos x}{16 D^{2}-1}\right] \quad\left(D^{2} \rightarrow-1^{2}\right) \\
& =e^{x}\left[\frac{-4 \sin x+\cos x}{-17}\right] \\
& =\frac{e^{x}}{17}(4 \sin x-\cos x) \\
\therefore y & =\text { C.F. }+ \text { P.I. } \\
\therefore y & =C_{1} e^{-3 x}+C_{2} e^{x}+\frac{e^{x}}{17}(4 \sin x-\cos x) .
\end{aligned}
$$

2. Solve $\left(D^{3}+1\right) y=5 e^{x} x^{2}$.

Solution. A.E. is

$$
m^{3}+1=0
$$

i.e., $(m+1)\left(m^{2}-m+1\right)=0$

$$
\begin{aligned}
(m+1) & =0, m^{2}-m+1=0 \\
m & =-1
\end{aligned}
$$

$$
m=\frac{1 \pm \sqrt{3} i}{2}
$$

$$
\text { C.F. }=C_{1} e^{-x}+e^{\frac{x}{2}}\left(C_{2} \cos \frac{\sqrt{3}}{2} x+C_{3} \sin \frac{\sqrt{3}}{2} x\right)
$$

$$
\text { P.I. }=\frac{1}{D^{3}+1} 5 e^{x} x^{2}
$$

Taking e^{x} outside the operator and changing D to $D+1$

$$
\begin{aligned}
& =e^{x} \frac{1}{(D+1)^{3}+1} \cdot 5 x^{2} \\
& =e^{x} \frac{5 x^{2}}{D^{3}+3 D^{2}+3 D+2}
\end{aligned}
$$

$$
=\frac{5 e^{x}}{2}\left[\frac{2 x^{2}}{2+3 D+3 D^{2}+D^{3}}\right]
$$

(For a convenient division we have multiplied and divided by 2)

$$
\begin{aligned}
2+3 D+3 D^{2}+D^{3} & \begin{array}{l}
\frac{x^{2}-3 x+\frac{3}{2}}{} \begin{array}{l}
\frac{2 x^{2}}{2 x^{2}+6 x+6} \begin{array}{|c}
-6 x-6 \\
-6 x-9
\end{array} \\
\\
\therefore \quad 3
\end{array} \\
\therefore
\end{array} \\
& =\frac{5 e^{x}}{4}\left(2 x^{2}-6 x+3\right) \\
y & =\text { C.F. }+ \text { P.I. } \\
& =C_{1} e^{-x}+e^{\frac{x}{2}}\left\{x_{2}-3 x+\frac{3}{2}\right) \cdot \frac{5 e^{x}}{2}
\end{aligned}
$$

Type 5

1. Solve $\frac{d^{2} y}{d x^{2}}+4 y=x \sin x$.

Solution. We have
A.E. is

$$
\begin{aligned}
\left(D^{2}+4\right) y & =x \sin x \\
m^{2}+4 & =0 \\
m^{2} & =-4 \\
m & = \pm 2 i \\
\text { C.F. } & =C_{1} \cos 2 x+C_{2} \sin 2 x \\
\text { P.I. } & =\frac{1}{D^{2}+4} x \sin x
\end{aligned}
$$

Let us use

$$
\begin{aligned}
\frac{x V}{f(D)} & =\left[x-\frac{f^{\prime}(D)}{f(D)}\right] \frac{V}{f(D)} \\
\frac{x \sin x}{D^{2}+4} & =\left[x-\frac{2 D}{D^{2}+4}\right] \frac{\sin x}{D^{2}+4} \quad\left(D^{2} \rightarrow-1^{2}\right) \\
& =\frac{x \sin x}{D^{2}+4}-\frac{2 D(\sin x)}{\left(D^{2}+4\right)^{2}} \quad\left(D^{2} \rightarrow-1^{2}\right) \\
& =\frac{x \sin x}{3}-\frac{2 \cos x}{3^{2}} \\
& =\frac{x \sin x}{3}-\frac{2 \cos x}{9} \\
\text { P.I. } & =\frac{1}{9}(3 x \sin x-2 \cos x) \\
y & =\text { C.F. }+ \text { P.I. } \\
& =C_{1} \cos 2 x+C_{2} \sin 2 x+\frac{1}{9}(3 x \sin x-2 \cos x)
\end{aligned}
$$

2. Solve $\left(D^{2}+2 D+1\right) y=x \cos x$.

Solution. A.E. is

$$
\text { i.e., } \quad \begin{aligned}
m^{2}+2 m+1 & =0 \\
(m+1)^{2} & =0 \\
m & =-1,-1 \\
\text { C.F. } & =\left(C_{1}+C_{2} x\right) e^{-x} \\
\text { P.I. } & =\frac{x \cos x}{D^{2}+2 D+1} .
\end{aligned}
$$

Let us we have $\frac{x V}{f(D)}=\left[x-\frac{f^{\prime}(D)}{f(D)}\right] \cdot \frac{V}{f(D)}$

$$
\begin{aligned}
& =\left[x-\frac{2 D+2}{D^{2}+2 D+1}\right] \cdot \frac{\cos x}{D^{2}+2 D+1} \\
& =\frac{x \cos x}{D^{2}+2 D+1}-\frac{(2 D+2) \cos x}{\left(D^{2}+2 D+1\right)^{2}} \\
& =\text { P.I. }_{1}-\text { P.I. }_{2}
\end{aligned}
$$

$$
\text { P.I. }_{1}=\frac{x \cos x}{D^{2}+2 D+1} \quad\left(D^{2} \rightarrow-1^{2}\right)
$$

$$
=\frac{x \cos x \times D}{2 D \times D}
$$

$$
=\frac{-x \sin x}{2 D^{2}} \quad\left(D^{2} \rightarrow-1^{2}\right)
$$

$$
\text { P.I. }_{1}=\frac{x}{2} \sin x
$$

$$
\text { P.I. } ._{2}=\frac{(2 D+2) \cos x}{\left(D^{2}+2 D+1\right)^{2}} \quad\left(D^{2} \rightarrow-1^{2}\right)
$$

$$
=\frac{-2 \sin x+2 \cos x}{(2 D)^{2}}
$$

$$
=\frac{-2 \sin x+2 \cos x}{4 D^{2}} \quad\left(D^{2}=-1^{2}\right)
$$

$$
=\frac{2 \sin x-2 \cos x}{4}
$$

$$
=\frac{1}{2}(\sin x-\cos x)
$$

$$
\text { P.I. }=\frac{1}{2} x \sin x-\frac{1}{2}(\sin x-\cos x)
$$

$$
=\frac{1}{2}(x \sin x-\sin x+\cos x)
$$

$$
y=\text { C.F. }+ \text { P.I. }
$$

$$
y=\left(C_{1}+C_{2} x\right) e^{-x}+\frac{1}{2}(x \sin x-\sin x+\cos x)
$$

METHOD OF UNDETERMINED COOFFICIENTS:

The particular integral of $\mathrm{an}^{\text {th }}$ order linear non-homogeneous differential equation $\mathrm{F}(\mathrm{D}) \mathrm{y}=\mathrm{X}$ with constant coefficients can be determined by the method of undetermined coefficients provided the RHS function X is an exponential function, polynomial in cosine, sine or sums or product of such functions.

The trial solution to be assumed in each case depend on the form of X. Choose PI from the following table depending on the nature of X.

Sl.No.	RHS function X	Choice of PI yp_{p}
1	$\mathrm{K} e^{a x}$	C $e^{a x}$
2	$\mathrm{K} \sin (\mathrm{ax}+\mathrm{b})$ or $\mathrm{K} \cos (\mathrm{ax}+\mathrm{b})$	$c_{1} \sin (\mathrm{ax}+\mathrm{b})+c_{2} \cos (\mathrm{ax}+\mathrm{b})$
3	$\begin{aligned} & \mathrm{K} e^{a x} \sin (\mathrm{ax}+\mathrm{b}) \\ & \text { or } \\ & \mathrm{K} e^{a x} \cos (\mathrm{ax}+\mathrm{b}) \end{aligned}$	$c_{1} e^{a x} \sin (\mathrm{ax}+\mathrm{b})+c_{2} e^{a x} \cos (\mathrm{ax}+\mathrm{b})$
4	$\mathrm{K} x^{n}$ where $\mathrm{n}=0,1,2,3 \ldots$.	$c_{0} c_{1} x c_{2} x^{2} \cdots .{ }_{c}^{c} x^{n}{ }^{1} c_{c} x^{n}$
5	$\mathrm{K} x^{n} e^{a x}$ where $\mathrm{n}=0,1,2,3 \ldots \ldots$	
6	$\begin{aligned} & \mathrm{K} x^{n} \sin (\mathrm{ax}+\mathrm{b}) \\ & \mathrm{or} \\ & \mathrm{~K} x^{n} \cos (\mathrm{ax}+\mathrm{b}) \end{aligned}$	
7	$\begin{aligned} & \mathrm{K} x^{n} e^{d x} \sin (\mathrm{ax}+\mathrm{b}) \\ & \text { or } \\ & \mathrm{K} x^{n} e^{d x} \cos (\mathrm{ax}+\mathrm{b}) \end{aligned}$	

1. Solve by the method of undetermined coefficients $\left(D^{2}-3 D+2\right) y=4 e^{3 x}$

Sol : $m^{2}-3 m+2=0 \Rightarrow(m-1)(m+2)=0 \Rightarrow m=1,2$

$$
y_{c}=c_{1} e^{x}+c_{2} e^{2 x}
$$

Assume PI $y_{p}=c_{1} e^{3 x}$ substituting this in the given d.e we determine the unknown coefficient as

$$
\begin{aligned}
& \left(D^{2}-3 D+2\right) y=4 e^{3 x} \\
& 9 c e^{3 x}-9 c e^{3 x}+2 c e^{3 x}=4 e^{3 x} \\
& 2 c e^{3 x}=4 e^{3 x} \Rightarrow c=2 \\
& \therefore y_{p}=2 e^{3 x}
\end{aligned}
$$

2. Solve $\frac{d^{2} y}{d x^{2}}+{ }^{2} \frac{d y}{d x}+4 y=2 x^{2}+3 e^{-x}$ by the method of undetermined coefficients.

Sol: We have $\left(D^{2}+2 D+4\right) \neq 2 x+3 e^{-x}$

$$
\text { is } \begin{aligned}
m^{2} & +2 m+4=0 \Rightarrow m=\frac{-2 \pm \sqrt{-12}}{2}=\frac{-2 \pm 2 \sqrt{3}}{2} 3 \dot{i}-1 \pm \sqrt{3} \\
y_{c} & \left.=e^{-}{ }_{x} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x\right]
\end{aligned}
$$

Assume PI in the form $y=a_{1} x^{2}+a_{2} * a_{3}+a_{4} e^{-x}$

$$
\begin{aligned}
& D y=2 a_{1} * a_{2}-a_{4} e^{-x} \\
& D^{2} y=2 a_{1}+a_{4} e^{-x}
\end{aligned}
$$

Substituting these values in the given d.e
We get $2 a_{1}+a_{4} e^{-x}+2\left(2 a_{1} * a_{2}-a_{4} e^{-x}\right)+4\left(a_{1} x^{2}+a_{2} * a_{3}+a_{4} e^{-x}\right)=2 x^{2}+3 e^{-x}$
Equating corresponding coefficient on both sides, we get

$$
\begin{aligned}
& x^{2}:{ }_{4 a_{1}}={ }_{2} \Rightarrow a=\frac{1}{2} \\
& x: 4 a_{1}+4 a_{2}=0 \Rightarrow 4\left(\frac{2}{2}\right)+4 a_{2}=0 \\
& c: 2 a_{1}+2 a_{2}+4 a_{3}=0 \\
& 2\left(-\frac{1}{2}\right)+2\left(-\frac{1}{2}\right)+4 a_{3}=0 \Rightarrow a_{3}=0 \\
& e^{-x}: a_{4}-2 a_{4}+4 a_{4}=3 \\
& 3 a_{4}=3 \Rightarrow a_{4}=1 \\
& \therefore P I: y_{\overline{\bar{P}}} \frac{1}{2} x^{2}-\frac{1}{2} x+e^{-x} \\
& y=e^{-x} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x+\frac{1}{2} x^{2}-\frac{1}{2} x+e^{-x}
\end{aligned}
$$

3. Solve by using the method of undetermined coefficients $\frac{d^{2} y}{d x^{2}}-9 y=x^{3}+e^{2 x}-\sin 3 x$

Sol: We have $\left(D^{2}-9\right) y=x^{3}+e^{2 x}-\sin 3 x$
A.E is $m^{2}-9=0 \Rightarrow m^{2}=9 \Rightarrow m= \pm 3$

$$
y_{c}=c_{1} e^{3 x}+c_{2} e^{-3 x}
$$

Choose PI as $\quad y=A x^{3}+B x+C x+D+E e^{2 x}+F \sin 3 x+G \cos 3 x$

$$
\begin{aligned}
y^{\prime} & =3 A x^{2}+2 B x+C+2 E e^{2 x}+3 F \cos 3 x-3 G \sin 3 x \\
y^{\prime \prime} & =6 A x+2 B+4 E e^{2 x}-9 F \sin 3 x-9 G \cos 3 x
\end{aligned}
$$

Substituting these values in the given d.e, we get

$$
\left.\begin{array}{r}
6 A x+2 B+4 E e^{2 x}-9 F \sin 3 x-9 G \cos 3 x-9 A x^{3}+B x^{2}+C x+D+E e^{2 x}+F \sin 3 x+G \cos 3 x \\
=x^{3}+e^{2 x}-\sin 3 x
\end{array}\right\}
$$

Equating the coefficient of

$$
\begin{aligned}
& x^{3}:-9 \quad \underline{A} 1 \Rightarrow A=-\frac{1}{9} \\
& x^{2}:-9 B=0 \Rightarrow B=0 \\
& x: 6 A-9 G 0 \Rightarrow 6\left(-\frac{1}{9}\right)-9 C=0 \\
& \Rightarrow-\frac{2}{3}-9 C=0 \Rightarrow 9 C=-\frac{2}{3} \quad \therefore C=-\frac{2}{27} \\
& C \quad: 2 B-9 D=0 \Rightarrow D=0 \\
& e^{2 x}: 4 E 9 E=1 \Rightarrow-5 E=1 \Rightarrow E=-\frac{1}{5} \\
& \sin 3 x \quad \div 9 F-9 G=0 \Rightarrow F=\frac{1}{18} \\
& \cos 3 x:-9 G-9 G=0 \Rightarrow G=0 \\
& \therefore y_{p}=-\frac{1}{9} x^{3}-\frac{2 x}{27}-\frac{1}{5} e^{2 x}+\frac{1}{18} \sin 3 x
\end{aligned}
$$

Complete solution $y=y_{c}+y_{p}$

$$
\therefore y=c_{1} e^{3 x}+c_{2} e^{-3 x}-\frac{1}{9} x^{3}-\frac{2 x}{27}-\frac{1}{5} e^{2 x}+\frac{1}{18} \sin 3 x
$$

METHOD OF VARIATION OF PARAMETERS:

Consider a linear differential equation of second order

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{2} y=\phi(x) \tag{1}
\end{equation*}
$$

where a_{1}, a_{2} are functions of ' x '. If the complimentary function of this equation is known then we can find the particular integral by using the method known as the method of variation of parameters.

Suppose the complimentary function of the Eqn. (1) is

$$
\text { C.F. }=C_{1} y_{1}+C_{2} y_{2} \text { where } C_{1} \text { and } C_{2} \text { are constants and } y_{1} \text { and } y_{2} \text { are }
$$ the complementary solutions of Eqn. (1)

The Eqn. (1) implies that

$$
\begin{align*}
y_{1}^{\prime \prime}+a_{1} y_{1}^{\prime}+a_{2} y_{1} & =0 \tag{2}\\
y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{2} y_{2} & =0 \tag{3}
\end{align*}
$$

We replace the arbitrary constants C_{1}, C_{2} present in C.F. by functions of x, say A, B respectively,

$$
\begin{equation*}
\therefore \quad y=A y_{1}+B y_{2} \tag{4}
\end{equation*}
$$

is the complete solution of the given equation.
The procedure to determine A and B is as follows.

$$
\begin{equation*}
\text { From Eqn. (4) } \quad y^{\prime}=\left(A y_{1}^{\prime}+B y_{2}^{\prime}\right)+\left(A^{\prime} y_{1}+B^{\prime} y_{2}\right) \tag{5}
\end{equation*}
$$

We shall choose A and B such that

$$
\begin{equation*}
A^{\prime} y_{1}+B^{\prime} y_{2}=0 \tag{6}
\end{equation*}
$$

Thus Eqn. (5) becomes $y_{1}^{\prime}=A y_{1}^{\prime}+B y_{2}^{\prime}$
Differentiating Eqn. (7) w.r.t. ' x ' again, we have

$$
y^{\prime \prime}=\left(A y_{1}^{\prime \prime}+A y_{2}^{\prime \prime}\right)+\left(A^{\prime} y_{1}^{\prime}+B^{\prime} y_{2}^{\prime}\right)
$$

Thus, Eqn. (1) as a consequence of (4), (7) and (8) becomes

$$
\begin{equation*}
A^{\prime} y_{1}^{\prime}+B^{\prime} y_{2}^{\prime}=\phi(x) \tag{9}
\end{equation*}
$$

Let us consider equations (6) and (9) for solving

$$
\begin{align*}
& A^{\prime} y_{1}+B^{\prime} y_{2}=0 \tag{6}\\
& A^{\prime} y_{1}^{\prime}+B^{\prime} y_{2}^{\prime}=\phi(x) \tag{9}
\end{align*}
$$

Solving A^{\prime} and B^{\prime} by cross multiplication, we get

$$
\begin{equation*}
A^{\prime}=\frac{-y_{2} \phi(x)}{W}, B^{\prime}=\frac{y_{1} \phi(x)}{W} \tag{10}
\end{equation*}
$$

Find A and B
Integrating,

$$
\begin{aligned}
& A=-\int \frac{y_{2} \phi(x)}{W} d x+k_{1} \\
& B=\int \frac{y_{1} \phi(x)}{W} d x+k_{2}
\end{aligned}
$$

where $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}$
Substituting the expressions of A and B

$$
y=A y_{1}+B y_{2} \text { is the complete solution. }
$$

1. Solve by the method of variation of parameters

$$
\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x
$$

Solution. We have

$$
\left(D^{2}+1\right) y=\operatorname{cosec} x
$$

A.E. is

$$
m^{2}+1=0 \quad \Rightarrow \quad m^{2}=-1 \quad \Rightarrow \quad m= \pm i
$$

Hence the C.F. is given by

$$
\begin{align*}
\therefore \quad y_{c} & =C_{1} \cos x+C_{2} \sin x \tag{1}\\
y & =A \cos x+B \sin x \tag{2}
\end{align*}
$$

be the complete solution of the given equation where A and B are to be found.
The general solution is $y=A y_{1}+B y_{2}$
We have

$$
\begin{aligned}
y_{1} & =\cos x \text { and } y_{2}=\sin x \\
y_{1}^{\prime} & =-\sin x \text { and } y_{2}^{\prime}=\cos x \\
W & =y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime} \\
& =\cos x \cdot \cos x+\sin x \cdot \sin x=\cos ^{2} x+\sin ^{2} x=1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
A^{\prime}=\frac{-y_{2} \phi(x)}{W}, & B^{\prime}=\frac{y_{1} \phi(x)}{W} \\
=\frac{-\sin x \cdot \operatorname{cosec} x}{1}, & B^{\prime}=\frac{\cos x \cdot \operatorname{cosec} x}{1} \\
A^{\prime}=-1, & B^{\prime}=\cot x
\end{aligned} \\
& A=\int(-1) d x+C_{1}, \text { i.e., } A=-x+C_{1} \\
& B=\int \cot x d x+C_{2}, \text { i.e., } B=\log \sin x+C_{2}
\end{aligned}
$$

Hence the general solution of the given Eqn. (2) is
$y=C_{1} \cos x+C_{2} \sin x-x \cos x+\sin x \log \sin x$.
2. Solve by the method of variation of parameters

$$
\frac{d^{2} y}{d x^{2}}+4 y=4 \tan 2 x
$$

Solution. We have

$$
\left(D^{2}+4\right) y=4 \tan 2 x
$$

A.E. is $\quad m^{2}+4=0$
where $\phi(x)=4 \tan 2 x$.
i.e.,

$$
m= \pm 2 i
$$

Hence the complementary function is given by

$$
\begin{align*}
y_{c} & =C_{1} \cos 2 x+C_{2} \sin 2 x \\
y & =A \cos 2 x+B \sin 2 x \tag{1}
\end{align*}
$$

be the complete solution of the given equation where A and B are to be found
We have

$$
\begin{array}{ll}
y_{1}=\cos 2 x & \text { and } y_{2}=\sin 2 x \\
y_{1}^{\prime}=-2 \sin 2 x & \text { and } y_{2}^{\prime}=2 \cos 2 x
\end{array}
$$

Then

$$
\begin{aligned}
W & =y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime} \\
& =\cos 2 x \cdot 2 \cos 2 x+2 \sin 2 x \cdot \sin 2 x \\
& =2\left(\cos ^{2} 2 x+\sin ^{2} 2 x\right) \\
& =2
\end{aligned}
$$

Also,

$$
\phi(x)=4 \tan 2 x
$$

$$
A^{\prime}=\frac{-y_{2} \phi(x)}{W} \text { and } B^{\prime}=\frac{y_{1} \phi(x)}{W}
$$

$$
\begin{aligned}
& A^{\prime}=\frac{-\sin 2 x \cdot 4 \tan 2 x}{2}, B^{\prime}=\frac{-\cos 2 x \cdot 4 \tan 2 x}{2} \\
& A^{\prime}=\frac{-2 \sin ^{2} 2 x}{\cos 2 x}, B^{\prime}=2 \sin 2 x
\end{aligned}
$$

On integrating, we get

$$
\begin{aligned}
A & =-2 \int \frac{\sin ^{2} 2 x}{\cos 2 x} d x, B=2 \int \sin 2 x d x \\
& =-2 \int \frac{1-\cos ^{2} 2 x}{\cos 2 x} d x \\
& =-2 \int\{\sec 2 x-\cos 2 x\} d x \\
& =-2\left\{\frac{1}{2} \log (\sec 2 x+\tan 2 x)-\frac{1}{2} \sin 2 x\right\} \\
A & =-\log (\sec 2 x+\tan 2 x)+\sin 2 x+C_{1} \\
B & =2 \int \sin 2 x d x \\
& =\frac{2(-\cos 2 x)}{2}+C_{2} \\
B & =-\cos 2 x+C_{2}
\end{aligned}
$$

Substituting these values of A and B in Eqn. (1), we get

$$
y=C_{1} \cos 2 x+C_{2} \sin 2 x-\cos 2 x \log (\sec 2 x+\tan 2 x)
$$

which is the required general solution.

MODULE - 2

DIFFERENTIAL EQUATIONS -II

SOLUTION OF CAUCHY'S HOMOGENEOUS LINEAR EQUATION AND LEGENDRE'S LINEAR

EQUATION

A linear differential equation of the form

$$
\begin{equation*}
x^{n} \frac{d^{n} y}{d x^{n}}+a_{1} x^{n-1} \cdot \frac{d^{n-1} y}{d x^{n-1}}+a_{2} x^{n-2} \frac{d^{n-2} y}{d x^{n-2}}+\cdots+a_{n-1} x \cdot \frac{d y}{d x}+a_{n} y=\phi(x) \tag{1}
\end{equation*}
$$

Where $a_{1}, a_{2}, a_{3} \ldots a_{n}$ are constants and $\phi(x)$ is a function of x is called a homogeneous linear differential equation of order n.

The equation can be transformed into an equation with constant coefficients by changing the
i.e.,

$$
\begin{aligned}
x \frac{d^{2} y}{d x^{2}} & =\frac{d^{2} y}{d z^{2}} \cdot \frac{1}{x}-\frac{d y}{d x} \\
& =\frac{1}{x} \cdot \frac{d^{2} y}{d z^{2}}-\frac{1}{x} \cdot \frac{d y}{d z}
\end{aligned}
$$

i.e., $\quad x^{2} \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d z^{2}}-\frac{d y}{d z}$
i.e.,

$$
x^{2} \frac{d^{2} y}{d x^{2}}=\left(D^{2}-D\right) y=D(D-1) y
$$

Similarly,

$$
\begin{aligned}
& x^{3} \frac{d^{3} y}{d x^{3}}=D(D-1)(D-2) y \\
& \text {.. }
\end{aligned}
$$

$$
x^{n} \frac{d^{n} y}{d x^{n}}=D(D-1) \ldots(D-n+1) y
$$

Substituting these values of $x \frac{d y}{d x}, x^{2} \frac{d^{2} y}{d x^{2}} \cdots \cdots \cdots x^{n} \frac{d^{n} y}{d x^{n}}$ in Eqn. (1), it reduces to a linear differential equation with constant coefficient can be solved by the method used earlier.

Also, an equation of the form,

$$
\begin{equation*}
(a x+b)^{n} \cdot \frac{d^{n} y}{d x^{n}}+a_{1}(a x+b)^{n-1} \cdot \frac{d^{n-1} y}{d x^{n-1}}+\ldots a n y=(x) \tag{2}
\end{equation*}
$$

where $a_{1}, a_{2} \ldots . a_{n}$ are constants and $\phi(x)$ is a function of x is called a homogeneous linear differential equation of order n. It is also called "Legendre's linear differential equation".

This equation can be reduced to a linear differential equation with constant coefficients by using the substitution.

$$
a x+b=e^{z} \text { or } z=\log (a x+b)
$$

As above we can prove that

$$
(a x+b) \cdot \frac{d y}{d x}=a D y
$$

The reduced equation can be solved by using the methods of the previous section. PROBLEMS:

1. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{4}$.

Solution. The given equation is

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{4} \tag{1}
\end{equation*}
$$

Substitute

$$
x=e^{z} \text { or } z=\log x
$$

So that

$$
x \frac{d y}{d x}=D y, \quad x^{2} \frac{d^{2} y}{d x^{2}}=D(D-1) y
$$

The given equation reduces to

$$
\begin{align*}
D(D-1) y-2 D y-4 y & =\left(e^{z}\right)^{4} \\
{[D(D-1)-2 D-4] y } & =e^{4 z} \\
\text { i.e., } \quad\left(D^{2}-3 D-4\right) y & =e^{4 z} \tag{2}
\end{align*}
$$

which is an equation with constant coefficients
A.E. is $\quad m^{2}-3 m-4=0$
i.e., $\quad(m-4)(m+1)=0$
$\therefore \quad m=4,-1$
C.F. is

$$
\text { C.F. }=C_{1} e^{4 z}+C_{2} e^{-z}
$$

$$
\text { P.I. }=\frac{1}{D^{2}-3 D-4} e^{4 z} \quad D \rightarrow 4
$$

$$
=\frac{1}{(4)^{2}-3(4)-4} e^{4 z} \quad \operatorname{Dr}=0
$$

$$
=\frac{1}{2 D-3} z e^{4 z} \quad D \rightarrow 4
$$

$$
=\frac{1}{(2)(4)-3} z e^{4 z}
$$

$$
=\frac{1}{5} z e^{4 z}
$$

$$
\begin{aligned}
& (a x+b)^{2} \cdot \frac{d^{2} y}{d x^{2}}=a^{2} D(D-1) y \\
& (a x+b)^{n} \cdot \frac{d^{n} y}{d x^{n}}=a^{n} D(D-1)(D-2) \ldots . .(D-n+1) y
\end{aligned}
$$

\therefore The general solution of (2) is

$$
\begin{aligned}
& y=\text { C.F. }+ \text { P.I. } \\
& y=C_{1} e^{4 z}+C_{2} e^{-z}+\frac{1}{5} z e^{4 z}
\end{aligned}
$$

Substituting $e^{z}=x$ or $z=\log x$, we get

$$
\begin{aligned}
& y=C_{1} x^{4}+C_{2} x^{-1}+\frac{1}{5} \log x\left(x^{4}\right) \\
& y=C_{1} x^{4}+\frac{C_{2}}{x}+\frac{x^{4}}{5} \log x
\end{aligned}
$$

is the general solution of the Eqn. (1).
2. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=(x+1)^{2}$.

Solution. The given equation is

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=(x+1)^{2} \tag{1}
\end{equation*}
$$

Substituting

$$
x=e^{z} \quad \text { or } \quad z=\log x
$$

Then

$$
x \frac{d y}{d x}=D y, \quad x^{2} \frac{d^{2} y}{d x^{2}}=D(D-1) y
$$

\therefore Eqn. (1) reduces to

$$
\begin{aligned}
D(D-1) y-3 D y+4 y & =\left(e^{z}+1\right)^{2} \\
\text { i.e., } \quad\left(D^{2}-4 D+4\right) y & =e^{2 z}+2 e^{z}+1
\end{aligned}
$$

which is a linear equation with constant coefficients.

$$
\begin{align*}
& \text { A.E. is } \\
& m^{2}-4 m+4=0 \\
& \text { i.e., } \\
& (m-2)^{2}=0 \\
& \therefore \quad m=2,2 \\
& \text { C.F. }=\left(C_{1}+C_{2} \mathrm{z}\right) e^{2 z} \\
& \text { P.I. }=\frac{1}{(D-2)^{2}}\left(e^{2 z}+2 e^{z}+1\right) \tag{2}\\
& =\frac{e^{2 z}}{(D-2)^{2}}+\frac{2 e^{z}}{(D-2)^{2}}+\frac{e^{0 z}}{(D-2)^{2}} \\
& =\text { P.I. } ._{1}+\text { P.I. }_{2}+\text { P.I. }_{3} \\
& \text { P.I. } ._{1}=\frac{e^{2 z}}{(D-2)^{2}} \quad(D \rightarrow 2) \\
& =\frac{e^{2 z}}{(2-2)^{2}} \quad(D r=0) \\
& =\frac{z e^{2 z}}{2(D-2)} \quad(D \rightarrow 2)
\end{align*}
$$

$$
\begin{array}{rlr}
& =\frac{z e^{2 z}}{2(2-2)} & (D r=0) \\
\text { P.I. }_{1} & =\frac{z^{2} e^{2 z}}{2} & \\
\text { P.I. }_{2} & =\frac{2 e^{z}}{(D-2)^{2}} & (D \rightarrow 1) \\
& =\frac{2 e^{z}}{(-1)^{2}} & \\
\text { P.I. }_{2} & =2 e^{z} & \\
\text { P.I. }_{3} & =\frac{e^{0 z}}{(D-2)^{2}} & (D \rightarrow 0) \\
& =\frac{e^{0 z}}{4}=\frac{1}{4} & \\
\text { P.I. } & =\frac{z^{2}}{2} e^{2 z}+2 e^{z}+\frac{1}{4} &
\end{array}
$$

The general solution of Eqn. (2) is

$$
\begin{aligned}
& y=\text { C.F. }+ \text { P.I. } \\
& y=\left(C_{1}+C_{2} z\right) e^{2 z}+\frac{z^{2} e^{2 z}}{2}+2 e^{z}+\frac{1}{4}
\end{aligned}
$$

Substituting

$$
\begin{aligned}
& e^{z}=x \text { or } z=\log x, \text { we get } \\
& y=\left(C_{1}+C_{2} \log x\right) x^{2}+\frac{x^{2}(\log x)^{2}}{2}+2 x+\frac{1}{4}
\end{aligned}
$$

is the general solution of the equation (1).
3. Solve $x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-12 y=x^{2} \log x$.

Solution. The given Eqn. is

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-12 y=x^{2} \log x \tag{1}
\end{equation*}
$$

Substituting

$$
x=e^{z} \quad \text { or } z=\log x \text {, so that }
$$

$$
x \frac{d y}{d x}=D y, \quad \text { and } \quad x^{2} \frac{d^{2} y}{d x^{2}}=D(D-1) y
$$

Then Eqn. (1) reduces to

$$
\begin{array}{lr}
D(D-1) y+2 D y-12 y & =e^{2 z} z \\
\text { i.e., } \quad\left(D^{2}+D-12\right) y & =z e^{2 z} \tag{2}
\end{array}
$$

which is the Linear differential equation with constant coefficients.
A.E. is $\quad m^{2}+m-12=0$

$$
\begin{aligned}
& \text { C.F. }=C_{1} e^{-4 z}+C_{2} e^{3 z} \\
& \text { P.I. }=\frac{1}{D^{2}+D-12} z e^{2 z}
\end{aligned}
$$

$$
=e^{2 z} \frac{z}{(D+2)^{2}+(D+2)-12} \quad(D \rightarrow D+2)
$$

$$
=e^{2 z}\left[\frac{z}{D^{2}+5 D-6}\right]
$$

$$
-\frac{1}{6} z-\frac{5}{36}
$$

$$
\begin{array}{r}
- 6 + 5 D + D ^ { 2 } \longdiv { z } \\
{\cline { 1 - 2 }{6}} } \\
\hline \frac{5}{6}
\end{array}
$$

$$
\begin{array}{|l}
\frac{5}{6} \\
\hline 0
\end{array}
$$

$$
\text { P.I. }=e^{2 z}\left[-\frac{z}{6}-\frac{5}{36}\right]=\frac{-e^{2 z}}{6}\left[z+\frac{5}{6}\right]
$$

\therefore General solution of Eqn. (2) is

$$
\begin{aligned}
& y=\text { C.F. }+ \text { P.I. } \\
& y=C_{1} e^{-4 z}+C_{2} e^{3 z}-\frac{e^{2 z}}{6}\left(z+\frac{5}{6}\right)
\end{aligned}
$$

Substituting

$$
\begin{aligned}
& e^{z}=x \text { or } z=\log x, \text { we get } \\
& y=C_{1} x^{-4}+C_{2} x^{3}-\frac{x^{2}}{6}\left(\log x+\frac{5}{6}\right) \\
& y=\frac{C_{1}}{x^{4}}+C_{2} x^{3}-\frac{x^{2}}{6}\left(\log x+\frac{5}{6}\right)
\end{aligned}
$$

which is the general solution of Eqn. (1).

Differential equations of first order and higher degree

If $\mathrm{y}=\mathrm{f}(\mathrm{x})$, we use the notation $\frac{d y}{d x}=p$ throughout this unit.
A differential equation of first order and $n^{\text {th }}$ degree is the form

$$
A_{0} p^{n}+A_{1} p^{n-1}+A_{2} \stackrel{n-2}{p}+\ldots \ldots . .+A_{n}=0
$$

Where $A_{0}, A_{1}, A_{2}, \ldots A_{n}$ are functions of x and y . This being a differential equation of first order, the associated general solution will contain only one arbitrary constant. We proceed to discuss equations solvable for P or y or x , wherein the problem is reduced to that of solving one or more differential equations of first order and first degree. We finally discuss the solution of clairaut's equation.

Equations solvable for p

Supposing that the LHS of (1) is expressed as a product of n linear factors, then the equivalent form of (1) is

$$
\begin{align*}
& p-f_{1}(x, y) p-f_{2}(x, y) \ldots p-f_{n}(x, y)=0 \tag{2}\\
\Rightarrow \quad & p-f_{1}(x, y)=0, p-f_{2}(x, y)=0 \ldots p-f_{n}(x, y)=0
\end{align*}
$$

All these are differential equations of first order and first degree. They can be solved by the known methods. If $F_{1}\left(x, y, c \neq 0, F_{2}\left(x, y, c \neq 0, \ldots F_{n}(x, y, c \neq 0\right.\right.$ respectively represents the solution of these equations then the general solution is given by the product of all these solution. Note: We need to present the general solution with the same arbitrary constant in each factor.

1. Solve : $y\left(\frac{d y}{d x}\right)^{2}+x-y \frac{d y}{d x}-x=0$

Sol: The given equation is

$$
\begin{aligned}
& y p^{2}+(x-y) \quad p x=0 \\
& \therefore \quad p=\frac{-(x-y) \pm \sqrt{(x-y)^{2}+4 x y}}{2 y} \\
& \quad p=\frac{(\bar{y} x) \pm(x+y)}{2 y} \\
& \text { ie., } p=\frac{y-x+x+y}{2 y} \quad \text { or } \quad p=\frac{y-x-x-y}{2 y} \\
& \text { ie., } \quad p=1 \quad \text { or } \quad p=-x / y \\
& \text { We have, }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=1 \Rightarrow y=x+c \quad \text { or } \quad(y x-c)=0 \\
& \text { Also, } \frac{d y}{d x}=\frac{-x}{y} \quad \text { or } \quad y d y \quad x d x=0 \quad \Rightarrow \int y \quad d y \int x \quad d x k \\
& \text { ie., } \quad \frac{v^{2}}{2}+\frac{v^{2}}{2}=k \quad \text { or } \quad v^{2}+r^{2}=2 k \quad \text { or } \quad\left(x^{2}+v^{2}-c\right)=0
\end{aligned}
$$

Thus the general solution is given by $(\mathrm{y}-\mathrm{x}-\mathrm{c})\left(\mathrm{x}^{2}+v^{2}-c\right)=0$
2. Solve: $x\left(y^{\prime}\right)^{2}-(2 x+3 y)$ 'y+6 $\ddagger 0$

Sol: The given equation with the usual notation is,

$$
\begin{aligned}
& x p^{2}-(2 x+3 y) \nexists 6 \quad y 0 \\
& p=\frac{(2 x+3 y) \pm \sqrt{(2 x+3 y)^{2}-24 x y}}{2 x} \\
& p=\frac{(2 x+3 y) \pm(2 x-3 y)}{2 x}=2 \quad \text { or } \frac{3 y}{x}
\end{aligned}
$$

We have

$$
\frac{d y}{d x}=2 \Rightarrow \int d y=2 \int d x+c \quad \text { or } \quad y=2 x+c \quad \text { or }(y-2 x-c)=0
$$

Also $\frac{d y}{d x}=\frac{3 y}{x}$ or $\frac{d y}{y}=3 \frac{d x}{x} \Rightarrow \int \frac{d y}{y}=3 \int \frac{d x}{x} k$
ie., $\log y=3 \log * k$ or $\log \neq \log x \neq \log c$, where $k \log x$ ie., $\log y=\log \left(c x^{3}\right) \Rightarrow y=c x^{3}$ or $y c x^{3}=0$
Thus the general solution is $(\mathrm{y}-2 \mathrm{x}-\mathrm{c})\left(\mathrm{y}-\mathrm{cx}{ }^{3}\right)=0$
3) Solve $p(p+y)=x(x+y)$

Sol: The given equation is, $p^{2}+p y-x(x+y)=0$

$$
\begin{aligned}
& p=\frac{-y \pm \sqrt{v^{2}+4 x(x+y)}}{2} \\
& p=\frac{-y \pm \sqrt{4 x^{2}+4 x y+v^{2}}}{2}=\frac{-y \pm(2 x+y)}{2} \\
& \text { ie., } p=x \text { or } p=\frac{-2(y+x)}{2}=-(y+x)
\end{aligned}
$$

We have,
$\frac{d y}{d x}=x \Rightarrow y=\frac{x^{2}}{2}+k$
Also, $\frac{d y}{d x} \stackrel{y}{=}-y_{+} x$
ie., $\frac{d y}{d x}+y=-x$, is alinear d.e (similar tothe previous problem)
$P=1, Q=-x ; e^{\int P d x}=e^{x}$
Hence $y e^{x}=\int-x e^{x} d x+c$
ie., $y e^{x}=-\left(x e^{x}-e^{x}+c\right.$, int egrating by parts.
Thusthe general solutionis givenby $\left(2 y-r^{2}-c\right)\left[e^{x}(\psi x-1) c\right]=0$

Equations solvable for y :

We say that the given differential equation is solvable for y , if it is possible to express y in terms of x and p explicitly. The method of solving is illustrated stepwise.

$$
\mathrm{Y}=\mathrm{f}(\mathrm{x}, \mathrm{p})
$$

We differentiate (1) w.r.t x to obtain

$$
\frac{d y}{d x}=p=F\left(x, y, \frac{d p}{d x}\right)
$$

Here it should be noted that there is no need to have the given equation solvable for y in the explicit form(1).By recognizing that the equation is solvable for y , We can proceed to differentiate the same w.r.t. x. We notice that (2) is a differential equation of first order in p and x . We solve the same to obtain the solution in the form. $\phi(x, p, c \neq 0$

By eliminating p from (1) and (3) we obtain the general solution of the given differential equation in the form $G(x, y, c)=0$

Remark: Suppose we are unable to eliminate p from (1)and (3), we need to solve for x and y from the same to obtain.

$$
x=F_{1}(p, c), \quad y=F_{2}(p, c)
$$

Which constitutes the solution of the given equation regarding p as a parameter.

Equations solvable for x

We say that the given equation is solvable for x , if it is possible to express x in terms of y and p. The method of solving is identical with that of the earlier one and the same is as follows.
$x=f(y, p)$

Differentiate w.r.t.y to obtain

$$
\frac{d x}{d y}=\frac{1}{p}=F\left(x, y, \frac{d p}{d y}\right)
$$

(2) Being iifflerential equation of first order in p and y the solution is of the form. $\phi(y, p, c)=0$

By eliminating p from (1) and (3) we obtain the general solution of the given d.e in the form $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{c})=0$

Note: The content of the remark given in the previous article continue to hold good here also.

1. Solve: $y^{2} p \not \tan ^{-1}\left(x p^{2}\right)$

Sol: By data, $y=2 p x=+\tan ^{-1}\left(x p^{2}\right)$
The equation is of the form $y=f(x, p)$, solvable for y.

Differentiating (1) w.r.t.x,

$$
\begin{aligned}
& p-2 p-2 \frac{d p}{d x} x=\frac{1}{1+{ }_{r^{2} n^{4}}}\left[x .2 p \frac{d p}{d x}+n^{2}\right] \\
& \text { ie., }-p-2 x \frac{d p}{d x}=\frac{1}{1+r^{2} n^{4}}\left[2 x p \frac{d p}{d x}+n^{2}\right] \\
& i e .,-p-\frac{p^{2}}{1+x^{2} p^{4}}=2 x \frac{d p}{d x}\left[\frac{p}{1+x^{2} p^{4}}+1\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { ie., } \log * 2 \log p=k \\
& \text { consider } y=2 p x+\tan ^{-1}\left(x p^{2}\right) \\
& \text { and } x p^{2}=c
\end{aligned}
$$

Using (2) in (1) we have,
$\mathrm{y}=\sqrt{c / x} . \not \tan ^{-1}(c)$
Thus $¥ 2 \sqrt{c} \tan ^{-1} c$, is the general solution.
2. Obtain the general solution and the singular solution of the equation $y+p x=n^{2} r^{4}$

Sol: The given equation is solvable for y only.

$$
y+p x=n^{2} r^{4}
$$

Differentiating w.r.t x,
ie., _ 2 px $\frac{d p}{d x} \frac{o r}{x}=\frac{d x}{2 p} \Rightarrow \int \frac{d x}{x}+\frac{1}{2} \int \frac{d p}{p}$
ie., $\log x+\log \sqrt{p}=k$ or $\log (\sqrt[x]{p} \neq \log \Leftrightarrow x \sqrt{p}=c$
Consider, $y+p x=n_{n}{ }_{x} 4$
$x \sqrt{p}=c$ or $x^{2} \neq c$ or $\neq c / x^{2}$
Using (2) in (1) we have, $y+\left(c / x^{2}\right) x=\left(c^{2} / x^{4}\right) x^{4}$
Thus $x y+c=c^{2} x$ is the general solution.

Now, to obtain the singular solution, we differentiate this relation partially w.r.t c, treating c as a parameter.

That is, $1=2 \mathrm{cx}$ or $\mathrm{c}=1 / 2 \mathrm{x}$.
The general solution now becomes,

$$
x y+\frac{1}{2 x}=\frac{1}{4 x^{2}}
$$

Thus $4 x^{2} y+1=0$, is the singularsolution.
3) Solve $y=p \sin p+\cos p$

Sol: $y=p \sin p+\cos p$
Differentiating w.r.t. x,
$p=p \cos p \frac{d p}{d x}+\sin p \frac{d p}{d x}-\sin p \frac{d p}{d x}$
ie., $\quad 1 \cos p \frac{d p}{d x}$ or $\cos p d p d x$
$\Rightarrow \int \cos p d p=\int d x+c$
ie., $\sin p x+c$ or $\neq \sin p-c$
Thus we can say that $\vDash p \sin p+\cos p$ and $x=\sin p-c$ constitutes the general solution of the given d.e
Note $: \sin p=x+c \Rightarrow p=\sin ^{1}{ }^{1}(* c)$.
We can as well substitute for p in (1) and present the solution in the form,

$$
y=(x+c) \sin ^{-} 1_{\left.(\neq c)+\operatorname{cosin}^{-} 1_{(* c)}\right)}
$$

4) Obtain the general solution and singular solution of the equation

$$
y=2 \quad p^{\frac{1}{x}} p^{2} y .
$$

Sol: The given equation is solvable for x and it can be written as

$$
2 x=\frac{y}{p}-p y .
$$

Differentiating w.r.t y we get

$$
\begin{aligned}
& \frac{2}{p}=\frac{1}{p}-\frac{y}{p^{2}} \frac{d p}{d y}-p-y \frac{d p}{d y} \\
& \Rightarrow\left(\frac{1}{p}+p\right)\left(1+\frac{y}{p} \frac{d}{d y}\right) p=0
\end{aligned}
$$

Ignoring $\left(\frac{1}{p}+p\right)$ whichdoes not contain $\frac{d p}{d y}$, this gives
$1+\frac{y}{p} \frac{d p}{d y}=0 \quad$ or $\quad \frac{d y}{y}+\frac{d p}{p}=0$
Integrating we get

$$
y p=c . \ldots \ldots . .(2) \quad 2 \text { in }(1)
$$

substituting for p from

$$
y^{2}=2 c x+c^{2}
$$

5) Solve $p^{2}+2 p y \cot x y^{2}$.

Sol: Dividing throughout by p^{2}, the equation can be written as

$$
\begin{aligned}
& \frac{y_{2}}{p^{2}}-\frac{2 y}{p} \cot x=1 \text { adding } \cot ^{2} \text { xtob.s } \\
& \frac{v^{2}}{p^{2}}-\frac{2 y}{p} \cot * \cot ^{2} \quad 1+\cot ^{2} x \\
& \text { or }\left(\frac{y}{p}-\cot x\right)^{2}=\cos e c^{2} x
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{y}{p}-\cot x= \pm \operatorname{cosec} x \\
& \Rightarrow \frac{y}{d y / d x}=\cot \pm \operatorname{cosec} x \\
& \Rightarrow \frac{d y}{y}=\frac{\sin x}{\cos x+1} d x \text { and } \frac{d y}{y}=\frac{\sin x}{\cos x-1}
\end{aligned}
$$

Integrating these two equations we get

$$
y(\cos x+1)=c_{1} \quad \text { and } y\left(\cos x-1 \neq c_{2}\right.
$$

general solutionis

$$
y(\cos x+1)-c \quad y(\cos x-1+c=0
$$

6) Solve: $p^{2}-4 x^{5} p-12 x^{4} \mp 0$,obtain the singular solutionalso.

Sol: The given equation is solvable for y only.

$$
\begin{align*}
& n^{2}-4 x^{5} p-12 x^{4} y=0 \ldots \\
& y=\frac{n^{2}+4 x^{5} p}{12 x^{4}}=f(x, p) \tag{1}
\end{align*}
$$

Differentiating (1)w.r.t.x,

$$
\begin{aligned}
& 2 p^{\frac{d p}{d x}+4 x^{5} \frac{d p}{d x}+20 x^{4} p-12 x^{4} p-48 x^{3} \geq 0} \\
& \frac{d p}{d x}\left(2 p+4 x^{5}+8 x^{3}\left(x p-p^{2}+4 x^{5} p_{=0}\right.\right. \\
& \left(\quad x^{4} 2 x^{5}\right) \frac{d p}{d x}=\frac{2 p}{x}\left(p+2 x^{5}\right)
\end{aligned}
$$

$$
\frac{d p}{d x}-\frac{2 p}{x}=0
$$

\Rightarrow Integrating $\quad \log \sqrt{p}-\log k k$

$$
\begin{aligned}
\Rightarrow & p=r^{2} r^{2} \quad \therefore \text { equation (1)becomes } \\
& c^{4}+4 c^{2} x^{3}=12 y
\end{aligned}
$$

Setting $c^{2}=k$ the general solutionbecomes
$k^{2}+4 k x^{3}=12 y$
Differentiating w.r.t k partially we get
$2 k+4 x^{3}=0$
Using $k=-2 x^{3}$ in general solution we get
$x^{6}+3 y=0$ as the singular solution
7) Solve $p^{3}-4 x y p+8 \quad y^{2}=0$ by solving for x .

Sol: The given equation is solvable for x only.

$$
\begin{aligned}
& p^{3}-\underset{3}{3} x y p+8 y_{2} y \stackrel{2}{=} 0 \\
& x=\frac{p^{+}+8 y}{4 y p}=f(y, p)
\end{aligned}
$$

Differentiating (1)w.r.t.y,

$$
\begin{aligned}
& 3 p^{2} \frac{d p}{d y}-4 x y \frac{d p}{d y}-4 y p \cdot \frac{1}{p}-4 p x+16 y=0 \\
& \frac{d p}{d y}\left(3 p^{2}-4 x y\right)=4 p x-12 y \\
& \frac{d p}{d y}\left[3 p^{2} \frac{p^{3}+8 y^{2}}{p}\right]=\left[\frac{p^{3}+8 y^{2}}{y}-12 y\right] \\
& \frac{d p}{d y}\left[\frac{2 p^{3}-8 y^{2}}{p}\right]=\frac{p^{3}-4 y^{2}}{y} \\
& \frac{2}{p} \frac{d p}{d y}\left(p^{3}-4 y^{2}\right)=\frac{\mathbf{c}^{3}-4 y^{2}}{y} \\
& \frac{2}{p} \frac{a p}{d y}=\frac{1}{y} \\
& 2 \log p=\log y+\log c \\
& U \sin g P=\sqrt{c y} \text { in }(1) \text { we have, } \\
& c y \sqrt{c y}-4 x y \sqrt{c y}+8 y \text { 年 }=0
\end{aligned}
$$

Dividingthroughoutby $\sqrt[2]{y}=y^{3 / 2}$ we have,

$$
c \sqrt{ } \epsilon 4 x \sqrt{ }+8 \sqrt{y} y=0
$$

$$
\sqrt{c} \quad(\epsilon-4 x)=-8 \sqrt{y}
$$

Thusthegeneralsolutionisc $(c-4 x)^{2}=64 y$

Clairaut's Equation

The equation of the form $y=p x+f(p)$ is known as Clairaut's equation.

This being in the form $\mathrm{y}=\mathrm{F}(\mathrm{x}, \mathrm{p})$, that is solvable for y , we differentiate (1) w.r.t. x

$$
\therefore \frac{d y}{d x}=p=p+x \frac{d p}{d x}+f(p) \frac{d p}{d x}
$$

This implies that $\frac{d p}{d x}=0$ and hence $\mathrm{p}=\mathrm{c}$
Using F in (1) we obtain the genertal solution of clairaut's equation in the form $y=c x+f(c)$

1. Solve: $y=p x+\frac{a}{p}$

Sol: The given equation is Clairaut's equation of the form $¥ p x+f(p)$, whose general solution is $y=c x+f(c)$

Thus the general solution is $y=c x \frac{a}{c}$

Singular solution

Differentiating partially w.r.t c the above equation we have,

$$
\begin{aligned}
& 0=x-\frac{a}{c^{2}} \\
& c=\sqrt{\frac{a}{x}}
\end{aligned}
$$

$$
\text { Hence } \quad=c x+(a / c) \text { becomes }
$$

$$
y=\sqrt{a /} x . \nRightarrow a \sqrt{x / a}
$$

Thus $y^{2}=4 a x$ is the singular solution.
2. Modify the following equation into Clairaut's form. Hence obtain the associated general

$$
\text { and singular solutions } \quad x p^{2}-p y+k p+a=0
$$

Sol $: x p^{2}-p y+k p+a=0$, by data
ie., $x p^{2}+k p+a=p y$
ie., ${ }^{y}=\frac{p(x p+k+a}{p}$
ie., $y=p x+\left(k+\frac{a}{p}\right)$
Here (1) is in the Clairaut's form $y=p x+f(p)$ whose general solution is $y=c x+f(c)$

Thus the general solution is $y=c x+\left(k+\frac{a}{c}\right)$
Now differentiating partially w.r.t c we have,
$0=x-\frac{a}{c^{2}}$
$c=\sqrt{a / x}$
Hence the general solution becomes,
$\mathrm{y}-\mathrm{k}=2 \sqrt{a x}$
Thus the singular solution is $(\mathrm{y}-\mathrm{k})^{2}=4 a x$.
Remark: We can also obtain the solution in the method: solvable for y .
3. Solve the equation $(p x-y)(p y+x)=2 p$ by reducing into Clairaut's form, taking the substitutions $X=x^{2}, Y=y^{2}$
Sol: $X=x^{2} \Rightarrow \frac{d X}{d x}=2 x$
$Y=y^{2} \Rightarrow \frac{d Y}{d y}=2 y$
Now, $p=\frac{d y}{d x}=\frac{d y}{d Y} \frac{d Y}{d X} \frac{d X}{d x}$ and let $\underline{p} \frac{d Y}{d x}$
ie., $\quad p=\frac{1}{2 y} \cdot P .2 x$
ie., $p=\frac{\sqrt{X}}{\sqrt{Y}} P$
Consider $(p x-y)(p \sharp x)=2 p$
ie., $\left[\frac{\sqrt{X}}{\sqrt{Y}} \quad P X_{-\sqrt{Y}}\right]\left[\frac{\sqrt{X}}{\sqrt{Y}} P \sqrt{Y \sqrt{X}}\right]=2 \frac{\sqrt{X}}{\sqrt{Y}} P$
ie., $(P X-Y) \quad(R 1)=2 P$
ie., $Y=P X-\frac{2 P}{P+1}$ is in the Clairaut's form and hence the associated genertal solution is
$Y=c X-\frac{2 c}{c+1}$
Thus the required general solution of the given equation is $\mathrm{y}^{2}=c x^{2}-\frac{2 c}{c+1}$
4) Solve $p x-y \quad p y+x=a^{2} p$, use the substitution $X=x^{2} \quad, Y=y^{2}$.

Sol: Let $X=x^{2} \Rightarrow \frac{d X}{d x}=2 x$

$$
Y=x^{2} \Rightarrow \frac{d X}{d y}=2 y
$$

Now, $p=\frac{d y}{d x}=\frac{d y}{d Y} \frac{d Y d X}{d X} \frac{d x}{d x}$ and let $P \frac{d Y}{d x}$

$$
\begin{aligned}
P & =\frac{1}{2 y} \cdot p \cdot 2 x \text { or } p \frac{x}{y} P \\
p & =\frac{\sqrt{X}}{\sqrt{Y}} P
\end{aligned}
$$

Consider $(p x y)(p y x)=2 p$

$$
\begin{aligned}
& {\left[\frac{\sqrt{X}}{\sqrt{Y}} P \sqrt{X}-\sqrt{Y}\right]\left[\frac{\sqrt{X}}{\sqrt{Y}} P \sqrt{Y}+\sqrt{X}\right]=2 \frac{\sqrt{X}}{\sqrt{Y}} P} \\
& (P X-Y)(P+1)=2 P \\
& Y=P X-\frac{2 P}{P+1}
\end{aligned}
$$

Is in the Clairaut's form and hence the associated general solution is

$$
Y=c X-\frac{2 c}{c+1}
$$

Thus the required general solution of the given equation is $y^{2}=c x^{2}-\frac{2 c}{c+1}$
5) Obtain the general solution and singular solution of the Clairaut's equation $x p^{3}-y p^{2}+1=0$ Sol: The given equation can be written as

$$
y=\frac{x p^{3}+1}{p^{2}} \Rightarrow y=p x+\frac{1}{p^{2}} i \text { in in the Clairaut 's form } y=p x+f(p)
$$

whose general solutionis $y=c x+f(c)$
Thus general solutionis $¥ c x+\frac{1}{c^{2}}$
Differnetiating partiallyw.r.t.cweget

$$
0=x-\frac{2}{c^{3}} \Rightarrow c=\left(\frac{2}{x}\right)^{1 / 3}
$$

Thus general solutionbecomes

$$
\begin{aligned}
& y=\left(\frac{2}{x}\right)^{1 / 3} x^{+}\left(\frac{x}{2}\right)^{2 / 3} \Rightarrow 2^{2 / 3} y=3 x^{2 / 3} \\
& \text { or } 4 y^{3}=27 x^{2}
\end{aligned}
$$

MODULE - 3

PARTIAL DIFFERENTIAL EQUATIONS

Introduction:
Many problems in vibration of strings, heat conduction, electrostatics involve two or more variables. Analysis of these problems leads to partial derivatives and equations involving them. In this unit we first discuss the formation of PDE analogous to that of formation of ODE. Later we discuss some methods of solving PDE.

Definitions:

An equation involving one or more derivatives of a function of two or more variables is called a partial differential equation.

The order of a PDE is the order of the highest derivative and the degree of the PDE is the degree of highest order derivative after clearing the equation of fractional powers.

A PDE is said to be linear if it is of first degree in the dependent variable and its partial derivative.
In each term of the PDE contains either the dependent variable or one of its partial derivatives, the PDE is said to be homogeneous. Otherwise it is said to be a Non-homogeneous PDE.

- Formation of pde by eliminating the arbitrary constants
- Formation of pde by eliminating the arbitrary functions

Solutions to first order first degree pde of the type

$$
\mathrm{P} p+\mathrm{Q} q=\mathrm{R}
$$

Formation of pde by eliminating the arbitrary constants:
(1) Solve:

$$
2 \mathrm{z}=\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}
$$

Sol: Differentiating (i) partially with respect to x and y ,

$$
2 \frac{\partial z}{\partial x}=\frac{2 x}{a^{2}} \text { or } \frac{1}{a^{2}}=\frac{1}{x} \frac{\partial z}{\partial x}=\frac{p}{x}
$$

$$
\frac{2 \partial z}{\partial y}=\frac{2 y}{h^{2}} \text { or } \frac{1}{h^{2}}=\frac{1}{y} \frac{\partial z}{\partial x}=\frac{q}{y}
$$

Substituting these values of $1 / a^{2}$ and $1 / b^{2}$ in (i), we get

$$
(2)=z\left(x^{2}+a\right)\left(y^{2}+b\right)
$$

Sol: Differentiating the given relation partially

$$
\begin{equation*}
(x-a)^{2}+(y-b)^{2}+z^{2}=k^{2} \tag{i}
\end{equation*}
$$

Differentiating (i) partially w. r. t. x and y,

$$
(x-a)+z \frac{\partial^{z}}{\partial x}=0,(y-b)+z \frac{\partial}{\partial y} \stackrel{z}{=} 0
$$

Substituting for ($\mathrm{x}-\mathrm{a}$) and ($\mathrm{y}-\mathrm{b}$) from these in (i), we get
$\mathrm{z}^{2}\left[+\left(\frac{\partial \mathrm{z}}{\partial_{\mathrm{X}}}\right)^{2}+\left(\frac{\partial_{\mathrm{Z}}}{\partial \mathrm{y}}\right)^{2}\right]=\mathrm{k}^{2}$ This is the required partial differential equation.
(3) $z=a x+b y+c x y$

Sol: Differentiating (i) partially w.r.t. $x y$, we get

$$
\begin{aligned}
& \frac{\partial_{\mathrm{z}}}{\partial_{\mathrm{x}}}=\mathrm{a}+\mathrm{cy} . .(\mathrm{ii}) \\
& \frac{\partial_{\mathrm{z}}}{\partial_{\mathrm{y}}}=\mathrm{b}+\mathrm{cx} . .(\mathrm{iii})
\end{aligned}
$$

It is not possible to eliminate a, b, c from relations (i)-(iii).
Partially differentiating (ii),

$$
\frac{\partial^{2} \mathrm{Z}}{\partial \mathrm{x} \partial \mathrm{y}}=\mathrm{c} \text { Using this in (ii) and (iii) }
$$

$$
\mathrm{a}=\frac{\partial_{\mathrm{Z}}}{\partial \mathrm{x}}-\mathrm{y} \frac{\partial^{2} \mathrm{z}}{\partial \mathrm{x} \partial \mathrm{y}}
$$

$$
\mathrm{b}=\frac{\partial_{\mathrm{Z}}}{\partial \mathrm{y}}-\mathrm{x} \frac{\partial^{2} \mathrm{z}}{\partial \mathrm{x} \partial \mathrm{y}}
$$

Substituting for $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in (i), we get

$$
\begin{gathered}
z=x\left[\frac{\partial z}{\partial x}-y \frac{\partial^{2} z}{\partial x \partial y}\right]+y\left[\frac{\partial z}{\partial x y}-x \frac{\partial^{2} z}{\partial \partial x}\right]+\frac{\partial^{2} z}{\partial x \partial y} \\
z=x \frac{\partial_{Z}}{\partial x}+y \frac{\partial_{\mathrm{Z}}}{\partial y}-x y \frac{\partial^{2} z}{\partial x \partial y} \\
\text { (5) } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{h^{2}}+\frac{z^{2}}{n^{2}}=1
\end{gathered}
$$

Sol: Differentiating partially w.r.t. x,

$$
\frac{2 \mathrm{x}}{\mathrm{a}^{2}}+\frac{2 \mathrm{z}}{\mathrm{c}^{2}} \frac{\partial \mathrm{z}}{\partial \mathrm{x}}=0, \text { or } \frac{\mathrm{x}}{\mathrm{a}^{2}}=-\frac{\mathrm{z}}{\mathrm{~s}^{2}} \frac{\partial \mathrm{z}}{\partial \mathrm{x}}
$$

Differentiating this partially w.r.t. x , we get

$$
\frac{1}{a^{2}}=-\frac{1}{r^{2}}\left\{\left(\frac{\partial \mathrm{z}}{\partial \mathrm{x}}\right)^{2}+\mathrm{Z} \frac{\partial^{2} \mathrm{z}}{\partial_{\mathrm{v}^{2}}}\right\} \text { or } \frac{c^{2}}{a^{2}}=-\left\{\left(\frac{\partial \mathrm{z}}{\partial \mathrm{x}}\right)^{2}+\mathrm{Z} \frac{\partial^{2} \mathrm{z}}{\partial_{\mathrm{v}^{2}}}\right\}
$$

: Differentiating the given equation partially w.r.t. y twice we get

$$
\frac{\mathrm{z}}{\mathrm{y}} \frac{\partial \mathrm{z}}{\partial \mathrm{y}}=\left(\frac{\partial \mathrm{z}}{\partial \mathrm{y}}\right)^{2}+\mathrm{z} \frac{\partial^{2} \mathrm{z}}{\partial \mathrm{v}^{2}} \quad \frac{\mathrm{z}}{\mathrm{x}} \frac{\partial \mathrm{z}}{\partial \mathrm{x}}=\left(\frac{\partial \mathrm{z}}{\partial \mathrm{x}}\right)^{2}+\mathrm{z} \frac{\partial^{2} \mathrm{z}}{\partial \mathrm{x}^{2}}
$$

Is the required p.d.e..

Note:

As another required partial differential equation.
P.D.E. obtained by elimination of arbitrary constants need not be not unique Formation of p d e by eliminating the arbitrary functions:

1) $z=f\left(x^{2}+y^{2}\right)$

Sol: Differentiating z partially w.r.t. x and y ,
$p=\frac{\partial^{z}}{\partial x}=f^{\prime}\left(x^{2}+y^{2}\right) \cdot 2 x, q=\frac{\partial^{z}}{\partial y}=f^{\prime}\left(x^{2}+y^{2}\right) \cdot 2 y$
$\mathrm{p} / \mathrm{q}=\mathrm{x} / \mathrm{y}$ or $\mathrm{yp}-\mathrm{xq} \mathrm{q}=0$ is the required pde
(2) $\mathrm{z}=\mathrm{f}(\mathrm{x}+\mathrm{ct})+\mathrm{g}(\mathrm{x}-\mathrm{ct})$

Sol: Differentiating z partially with respect to x and t,

$$
\frac{\partial_{z}}{\partial_{x}}=f^{\prime}(x+c t)+g^{\prime}(x-c t), \frac{\partial^{2} z}{\partial_{x^{2}}}=f^{\prime \prime}(x+c t)+g^{\prime \prime}(x-c t)
$$

Thus the pde is
$\frac{\partial_{2} z}{\partial_{t^{2}}}+\frac{\partial_{2} z}{\partial_{x^{2}}}=0$
(3) $x+y+z=f\left(x^{2}+y^{2}+z^{2}\right)$

Sol:Differentiating partially w.r.t. x and y
$1_{+} \frac{\partial^{z}}{\partial x}=f^{\prime}\left(x^{2}+y^{2}+z^{2}\right)\left[2 x+2 z \frac{\partial z}{\partial x}\right]$
$1_{+} \frac{\partial^{z}}{\partial y}=f^{\prime}\left(x^{2}+y^{2}+z^{2}\right)\left[2 y+2 z \frac{\partial}{\partial y}\right]$
$2 f^{\prime}\left(x^{2}+y^{2}+z^{2}\right)=\frac{1+\left(\partial_{z} / \partial x\right)}{x+z\left(\partial_{z} / \partial x\right)}=\frac{1+\left(\partial_{z} / \partial y\right)}{y+z\left(\partial_{z} / \partial y\right)}$
$(y z) \frac{\partial z}{\partial x}+(z-x) \frac{\partial z}{\partial y}=x-y$ is the required pde
(4) $z=f(x y / z)$.

Sol: Differentiating partially w.r.t. x and y

$$
\frac{\partial^{z}}{\partial x}=f^{\prime}\left(\frac{x y}{z}\right)\left\{\frac{y}{z}-\frac{x y}{\gamma^{2}} \frac{\partial z}{\partial x}\right\}
$$

$$
\begin{aligned}
& \frac{\partial^{z}}{\partial y}=f^{\prime}\left(\frac{x y}{z}\right)\left\{\frac{x}{z}-\frac{x y}{7^{2}} \frac{\partial z}{\partial x}\right\} \\
& f^{\prime}\left(\frac{x y}{z}\right)=\frac{\partial z / \partial x}{(y / z)\{1(x / z)(\partial z / \partial x\}}=\frac{\partial z / \partial y}{(x / z)\{1(y / z)(\partial z / \partial y\}} \\
& x \frac{\partial}{\partial x} \underline{z} y \frac{\partial z}{\partial y}
\end{aligned}
$$

$$
\text { or } x p=y q \text { is the required pde. }
$$

(5) $z=y^{2}+2 f(1 / x+\log y)$

Sol: $\frac{\partial_{z}}{\partial_{v}}=2$ ty $2 f \quad(1 /+x \log y)\left\{\frac{1}{y}\right\}$
$\frac{\partial_{z}}{\partial_{x}}=2 f^{\prime}(1 / x+\log y)\left\{-\frac{1}{x^{2}}\right\}$
$2 f^{\prime}(1 / x+\log y)=-x^{2} \frac{\partial z}{\partial y} \bar{x}\left(\frac{\partial z}{\partial y}-2 y\right)$
Hence $\quad \frac{x^{2^{2}}}{\partial x}+y \frac{\partial^{z}}{\partial y}=2 y^{2}$
(6) $\mathrm{Z}=x \Phi(\mathrm{y})+\mathrm{y} \mu(\mathrm{x})$

Sol: $\frac{\partial z}{\partial x}=\varphi\left(\quad y \neq y \psi^{\prime}(x) ; \frac{\partial z}{\partial y}=x \varphi^{\prime}(y)+\psi(x)\right.$
Substituting $\quad \phi^{\prime}(y)$ and $\psi^{\prime}(x)$

$$
x y \frac{\partial^{2} z}{\partial x \partial y}=x \frac{\partial z}{\partial x}+y \frac{\partial_{z}}{\partial y}-[x \phi(y)+y \psi(x)]
$$

$x y \frac{\partial^{2} z}{\partial x \partial y}=x \frac{\partial z}{\partial x}+y \frac{\partial_{z}}{\partial y}-z \quad$ is the required pde.
7) Form the partial differential equation by eliminating the arbitrary functions from $z=f(y-2 x)+g(2 y-x) \quad(D e c ~ 2011)$
Sol: By data, $z=f(y-2 x)+g(2 y-x)$

$$
\begin{gather*}
p=\frac{\partial_{z}}{\partial_{x}}=-2 f(y 2 x)-g^{\prime} \quad(2 y x) \\
q=\frac{\partial_{z}}{\partial_{v}}=f^{\prime}(y 2 x)+2 g^{\prime}(2 y x) \\
r=\frac{\partial_{2} z}{\partial_{x^{2}}}=4 f^{\prime \prime}(y 2 x)+g^{\prime \prime}(2 y x) . \tag{1}
\end{gather*}
$$

$$
\begin{equation*}
s=\frac{\partial_{2} z}{\partial x \partial y}=-2 f^{\prime \prime}(y 2 x)-2 g^{\prime \prime}(2 y x) . \tag{2}
\end{equation*}
$$

$t=\frac{\partial^{2} z}{\partial y^{2}}=f^{\prime \prime}(y-2 x)+4 g^{\prime \prime}(2 \quad y x)$. \qquad
(1) $\times z(2) \Rightarrow 2 r+s=6 f^{\prime \prime}(y-2 x)$.
(2) $\times z(3) \Rightarrow 2 s+t=-3 f^{\prime \prime}(y-2 x)$.

Nowdividing(4) by (5) we get
$\frac{2 r+s}{2 s+t}=-2 \quad$ or $2 r+5 s+2 t=0$

Thus $\quad 2 \frac{\partial^{2}}{\partial x^{2}} \neq 5 \frac{\partial^{2}}{\partial x \partial} \underset{y}{z} 2 \frac{\partial^{2} z}{\partial y^{2}}=0$ is the required $P D E$

LAGRANGE'S FIRST ORDER FIRST DEGREE PDE: $\mathrm{Pp}+\mathrm{Oq}=\mathrm{R}$

(1) Solve: $y z p+z x q=x y$.

Sol $:-\frac{d x}{y z} \frac{d y}{z x}=\frac{d z}{x y}$
Subsidiary equations are
From the first two and the last two terms, we get, respectively

$$
\frac{d x}{y}=\frac{d y}{x} \text { or } x d x-y d y=0 \quad \text { and } \frac{d y}{z}=\frac{d z}{y} \text { or } y d y-z d z=0 .
$$

Integrating we get $x^{2}-y^{2}=a, y^{2}-z^{2}=b$.
Hence, a general solution is
$\Phi\left(\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{y}^{2}-\mathrm{z}^{2}\right)=0$
(2) Solve: $y^{2} p-x y q=x(z-2 y)$

Sol $: \frac{d x}{y^{2}}=\frac{d y}{-x y}=\frac{d z}{x(z-2 y)}$
From the first two ratios we get
$x^{2}+y^{2}=a \quad$ from the last ratios two we get
$\frac{d z}{d y}+\frac{z}{y}=2$
from the last ratios two we get
$\frac{d z}{d y}+\frac{z}{y}=2$ ordinary linear differential equation hence
$y z-y^{2}=b$
solution is $\Phi\left(\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{yz}-\mathrm{y}^{2}\right)=0$
(3) Solve: $\mathrm{z}(\mathrm{xp}-\mathrm{yq})=\mathrm{y}^{2}-\mathrm{x}^{2}$

Sol: $\frac{d x}{z x}=\frac{d y}{-z y}=\frac{d z}{v^{2}-v^{2}}$
$\frac{d x}{x}=\frac{d y}{-y}$, or $x d y+y d x=0$ or $\mathrm{d}(\mathrm{xy})=0$,
on integration, yields $\mathrm{xy}=\mathrm{a}$
$x d x+y d y+z d z=0 \quad x^{2}+y^{2}+z^{2}=b$
Hence, a general solution of the given equation $\Phi(\mathrm{xy}, \mathrm{x} 2+\mathrm{y} 2+\mathrm{z} 2)=0$
(4) Solve: $\frac{y-z}{y z} p+\frac{z-x}{z x} q=\frac{x-y}{x y}$

Sol $: \frac{y z}{y-z} d x=\frac{z x}{z-x} d y=\frac{x y}{x-y} d z$
$x d x+y d y+z d z=0$
Integrating (i) we get
$x^{2}+y^{2}+z^{2}=a$
$y z d x+z x d y+x y d z=0 \ldots$ (ii)
Dividing (ii) throughout by xyz and then integrating,
we get $x y z=b$

$$
\Phi\left(x^{2}+y^{2}+z^{2}, x y z\right)=0
$$

(5) $(x+2 z) p+(4 z x-y) q=2 x^{2}+y$

Sol $: \frac{d x}{x+2 z}=\frac{d y}{4 z x-y}=\frac{d z}{2 x^{2}+y} . .(i)$
Using multipliers $2 \mathrm{x},-1,-1$ we obtain $2 \mathrm{xdx}-\mathrm{dy}-\mathrm{dz}=0$
Using multipliers $y, x,-2 z$ in (i), we obtain
$y d x+x d y-2 z d z=0$ which on integration yields
$x y-z^{2}=b$
5) Solve $z_{x y}=\sin x \sin y$ for which $z_{y}=-2 \sin y$ when $x=0$ and $z 0$
when y is an odd multiple $\stackrel{\pi}{\overbrace{F}}{ }_{2}$.

Sol: Here we first find z by integration and apply the given conditions to determine the arbitrary functions occurring as constants of integration.
The given PDF can be written $\frac{a \partial}{\partial x}\left(\frac{\partial^{z}}{\partial y}\right)=\sin x \sin y$
Integrating w.r.t x treating y as constant,
$\frac{\partial z}{\partial y}=\sin y \int \sin x d x+f(y \neq-\sin y \cos \nRightarrow f(y)$
Integrating w.r.t y treating x as constant
$z=-\cos x \int \sin y d \sharp \int f(y) d \# g(x)$
$z=-\cos x \in \cos y+F(y+g(x)$,
where $F(y)=\int f(y) d y$.

Thus $z=\cos x \cos \sharp F(y+g(x)$

Alsoby data, $\frac{\partial^{z}}{\partial y}=-2 \sin y$ when $x=0 . U \sin g$ this in (1)

$$
-2 \sin y=(-\sin y) .1+f(y)(\cos 0=1)
$$

Hence $F(y)=\int f(y) d y=\int-\sin y d y=\cos y$
With this,(2) becomes $z=\cos x \cos y+\cos \# g(x)$
$U \sin g$ theconditionthat $z=0$ if $y=(2 n+1) \frac{\pi}{2}$ in (3)we have
$0=\cos x \cos (2 n+1) \frac{\pi}{2}+\cos x \mathrm{c}(2 n+1) \frac{\pi}{2}+g(x)$
But $\cos (2 n+1) \frac{\pi}{2}=0$.and hence $\theta 0+0+g(x)$
Thus the solution of the PDE is given by
$z=\cos x \cos y+\cos y$
Method of Separation of Variables

1) Solve by the method of variables $3 u_{x}+2 u_{v}=0$, giventhat $u(x, 0)=4 e^{-x}$

Sol: \quad Given $\frac{3 \partial}{\partial_{x}}+{ }^{u} \frac{\partial}{\partial_{x}}=0 \ldots \ldots \ldots \ldots$ (1)

Assume solution of (1) as
$\mathrm{U}=\mathrm{XY}$ where $\mathrm{X}=\mathrm{X}(\mathrm{x}) ; Y=Y(y)$
$3 \frac{\partial u}{\partial x} \quad(x y) 2 \frac{\partial}{\partial x}^{u x} \quad(x y) 0$
$\Rightarrow 3 Y \frac{d X}{d x}+2 X \underset{d y}{d y}=0 \Rightarrow \frac{3}{X} \frac{d X}{d x}=\frac{-2}{Y} \frac{d Y}{d y}$
Let $\frac{3}{X} \frac{d X}{d x}=K \Rightarrow \frac{3 d X}{X}=k d x$
$\Rightarrow 3 \log \quad X=k x+c_{1} \Rightarrow \log X=\frac{K x}{3}+c_{1}$
$\Rightarrow X=e^{\frac{k x}{3}+c_{1}}$
Let $\frac{-2}{Y} \frac{d}{d y} \underline{Y}_{k} \Rightarrow \frac{d Y}{Y}=\frac{-K d y}{2}$
$\Rightarrow \log Y=\frac{-}{K d y}{ }_{2}+{ }_{n_{2}} \Rightarrow Y=e^{\frac{-k y}{2}+c_{2}}$
Substituting (2)\&(3) in (1)
$U=e^{K\left(\frac{x}{3}-\frac{y}{2}\right)+c_{1}+c_{2}}$
Also $u\left(x_{1} o\right)=4 e^{-x}$
i.e., $4 e^{-x}=A e^{k\left(\frac{2 x}{6}\right)} \Rightarrow 4 e^{-x}=A e^{\frac{k x}{3}}$

Comparing we get $A=4 \& K=-3$
$U=4 e^{-3\left(\frac{x}{3}-\frac{y}{2}\right)}$ is required solution.
2) Solve by the method of variables $4 \frac{\partial u}{d x}+\frac{\partial u}{\partial y}=3 u$, giventhatu $(0, y)=\rho_{o^{5 y}}$

Solution: Given $4 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=3 u$
Assume solution of (1) as
$u=X Y \quad$ where $X=X \quad(x) ; Y=Y(y)$

$$
\begin{aligned}
& 4 \frac{\partial}{\partial x}(X Y)+\frac{\partial}{\partial y}(X Y \neq 3 X Y \\
& \Rightarrow 4 Y \frac{d X}{d x}+X \frac{d Y}{d y}=3 X Y \Rightarrow \frac{4}{X} \frac{d X}{d x}+\frac{1}{Y} \frac{d}{d y} \underline{Y}_{3} \\
& \text { Let } \frac{4}{X} \frac{d X}{d x}=k, 3-\frac{1}{Y} \frac{d}{d y} \underline{Y}_{k}
\end{aligned}
$$

Separating var iables and int egrating we get
$\Rightarrow \log X=\frac{k x}{4}+c_{1}, \quad \log \quad \models 3-k \quad \not \quad c_{2}$
$\Rightarrow X=e^{\frac{k x}{4}+c_{1}}$ and $\quad Y=\rho^{3^{-} k y^{+} c^{2}}$
Hence $u=X Y={ }_{\rho}{c_{1}}^{+} c_{2} \rho^{\frac{k x}{4}+3 _k y}=A e^{\frac{k x}{4}+3-k y} \quad$ where $A={ }_{o}{ }^{c_{1}{ }^{+} c_{2}}$
put $x=0$ and $u=7 o^{5 y}$
The general solutionbecomes
$2 e^{5 y}=A e^{3-k y} \Rightarrow A=2$ and $k=-2$
\therefore Particular solutionis

$$
u=2 e^{\frac{-x}{2}+5 y}
$$

APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS:

Various possible solutions of standard p.d.es by the method of separation of variables.

We need to obtain the solution of the ODEs by taking the constant k equal to
i) Zero
ii) positive: $\mathrm{k}=+\mathrm{p}^{2}$
iii) negative: $\mathrm{k}=-\mathrm{p}^{2}$

Thus we obtain three possible solutions for the associated p.d.e
Various possible solutions of the one dimensional heat equation $u_{t}=c^{2} \mathbf{u}_{\underline{x x}}$ by the method of separation of variables.

Consider $\frac{\partial_{u}}{\partial t}=c^{2} \frac{\partial_{2} u}{\partial_{\mathbf{r}^{2}}}$
Let $\mathrm{u}=\mathrm{XT}$ where $\mathrm{X}=\mathrm{X}(\mathrm{x}), \mathrm{T}=\mathrm{T}(\mathrm{t})$ be the solution of the PDE
Hence the PDE becomes

$$
\frac{\partial X T}{\partial t}=c^{2} \frac{\partial^{2} X T}{\partial_{\mathbf{r}^{2}}} \text { or } X \frac{d \Pi}{d t}=c^{2} \frac{d^{2} X}{d x^{2}}
$$

Dividing by c^{2} XT we have $\frac{1}{c^{2} T} \frac{d T}{d t}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}$
Equating both sides to a common constant k we have

$$
\begin{aligned}
& \frac{1}{X} \frac{d^{2} X}{d x^{2}}=\mathrm{k} \quad \text { and } \quad \frac{1}{c^{2} T} \frac{d T}{d t}=\mathrm{k} \\
& \frac{d^{2} X}{d x^{2}}-k X=0 \text { and } \frac{d T}{d t}-c^{2} k T=0 \\
& D^{2}-k \quad X=0 \text { and } D-c^{2} k \quad T=0
\end{aligned}
$$

Where $\mathrm{D}^{2}=\frac{d_{2}}{d x^{2}}$ in the first equation and $\mathrm{D}=\frac{d}{d t}$ in the second equation
Case (i): let $\mathrm{k}=0$
AEs are $\mathrm{m}=0 \mathrm{amd} \mathrm{m}^{2}=0$ amd $\mathrm{m}=0,0$ are the roots
Solutions are given by
$\mathrm{T}=c_{1} e^{0 t}=c_{1}$ and $X=c_{2} \nVdash c_{3} \quad o^{0 x}=c_{2} \nVdash c_{3}$
Hence the solution of the PDE is given by
$\mathrm{U}=\mathrm{XT}=c_{1} c_{2} x+c_{3}$
Or $u(x, t)=A x+B$ where $c_{1} c_{2}=A$ and $c_{1} c_{3}=B$
Case (iii) let k be positive say $\mathrm{k}=+\mathrm{p}^{2}$
AEs are $m-c^{2} p^{2}=0$ and $m^{2}-p^{2}=0$
$m=c^{2} p^{2}$ and $m=+p$
Solutions are given by
$T=r_{1}^{\prime} \delta^{c^{2} p^{2} t}$ and $X=r^{\prime} 2 \rho^{p x}+r_{3} e^{-p x}$

Hence the solution of the PDE is given by
$u=X T=r_{1}^{\prime} \rho^{c^{2}} p^{2} t\left(c^{\prime}{ }_{2} e^{p x}+c_{3}^{\prime} e^{-} p x\right)$
Or $\mathrm{u}(\mathrm{x}, \mathrm{t})=c_{1} e^{c^{2} p^{2} t}\left(\mathrm{~A}^{\prime} e^{p x}+\mathrm{B}^{-} e^{p x}\right)$ where $\mathrm{c}_{1}{ }^{\prime} \mathrm{c}_{2}{ }^{\prime}=\mathrm{A}^{\prime}$ and $\mathrm{c}_{1}{ }^{\prime} \mathrm{c}_{3}{ }^{\prime}=\mathrm{B}^{\prime}$
Case (iii): let k be negative say $\mathrm{k}=-\mathrm{p}^{2}$
AEs are $m+c^{2} p^{2}=0$ and $m^{2}+p^{2}=0$
$m=-c^{2} p^{2}$ and $m=+i p$
solutions are given by

$$
T=r_{11} 0^{-c} p t \text { and } X=r_{2}{ }_{2} \cos p \not{ }^{2} r_{3} \sin p x
$$

Hence the solution of the PDE is given by

$$
\begin{aligned}
& u=X T=r_{11}^{\prime \prime s^{-c} p^{2} t} \cdot\left(c_{2}^{\prime \prime} \cos p \#_{r_{3}} \sin p x\right) \\
& u(x, t)=e^{-c_{c}^{2} p^{2}}\left(A^{\prime \prime} \cos p x+R^{\prime \prime} \sin p x\right)
\end{aligned}
$$

1. Solve the Heat equation $\frac{\partial_{u}}{\partial t}=c^{2} \frac{\partial^{2 u}}{\partial x^{2}}$ given that $\mathbf{u}(0, t)=0, \mathbf{u}(1,0)=0$ and $\mathbf{u}(\mathbf{x}, 0)=100 \mathrm{x} / \mathrm{l}$

Soln: $b_{n}=\frac{2}{l} \int_{0}^{l} \frac{100 x}{l} \sin \frac{n \pi x}{l} d x==\frac{200}{r^{2}} \int_{0}^{l} x \sin \frac{n \pi x}{l} d x$
$b_{n}=\frac{200}{l^{2}}\left[\frac{x \cdot-\cos \frac{n \pi x}{l}}{n \pi / l}-1 \frac{-\sin \frac{n \pi x}{l}}{n \pi / l^{2}}\right]_{0}^{l}$
$b_{n}=\frac{200}{l^{2}} \frac{-1}{n \pi} l \cos n \pi=-{\frac{200-1^{n}}{n \pi}}_{n}^{n}={\frac{200-1^{n+1}}{n \pi}}^{n}$
The required solution is obtained by substituting this value of b_{n}
Thus $u\left(x, t \pm \sum_{n=1}^{\infty} \frac{200-1^{n_{+} 1}}{n \pi} e \frac{-n^{2} \pi 2_{c^{2} t}}{l^{2}} \sin \frac{n \pi x}{l}\right.$
2. Obtain the solution of the heat equation $\frac{\partial^{u}}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ given that $\mathbf{u}(0, t)=0, \mathbf{u}(1, t)$ and

$$
\mathbf{u}(\mathbf{x}, \mathbf{0})=\mathbf{f}(\mathbf{x}) \text { where } f(x)=\left\{\begin{array}{ll}
\frac{2 T x}{l} & \text { in } \hat{\theta} x \leq \frac{l}{2} \\
\frac{2 T}{l} & \text {-lx } \\
\text { in } \frac{l}{2} \leq x \leq l
\end{array}\right\}
$$

Soln: $\quad b_{n}=\frac{2}{l} \int_{0} f(x) \sin \frac{n \pi x}{l} d x$

$$
\begin{aligned}
& b_{n} \\
&=\frac{2}{l}\left[\int_{0}^{\frac{1}{2}} \frac{2 T x}{l} \sin \frac{n \pi x}{l} d x+\int_{\frac{⿺}{2}}^{l} \frac{2 T x}{l}(l-x) \sin \frac{n \pi x}{l} d x\right] \\
&= \frac{4 T}{l}\left[\int_{0}^{\frac{l}{2}} x \sin \frac{n \pi x}{l} d x+\int_{\frac{l}{2}}^{l}(l-x) \sin \frac{n \pi}{l} d x\right] \\
& b_{n=} \frac{8 T}{n^{2} \pi^{2}} \sin \frac{n_{\pi}}{2}
\end{aligned}
$$

The required solution is obtained by substituting this value of b_{n}
Thus $u(x, t)=\frac{8 T}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin \frac{n \pi}{2} e \frac{-n^{2} 2 r^{2} r^{2} t}{l^{2}} \sin \frac{n \pi x}{l}$
3. Solve the heat equatio $\frac{\hat{\mathcal{Q}}^{u}}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ with the boundary conditions $\mathbf{u}(0, t)=0, u(1, t)$ and $\mathbf{u}(\mathrm{x}, 0)=3 \sin \pi \mathrm{x}$

Soln: $u(x, t)=e^{-p^{2} t}(A \cos p * B \sin p x)$
Consider $\mathrm{u}(0, \mathrm{t})=0$ now 1 becomes
$0=e^{-p^{2} t}(\mathrm{~A})$ thus $\mathrm{A}=0$
Consider $\mathrm{u}(1, \mathrm{t})=0$ using $\mathrm{A}=0$ (1) becomes
$0=e^{-p^{2} t}$ (Bsinp)
Since $\mathrm{B} \neq 0$, sinp $=0$ or $\mathrm{p}=\mathrm{n} \boldsymbol{\pi}$
$u(x, t)=e^{-n^{2} \pi^{2} c^{2} t}(B \sin n \pi x)$
In general $u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} c^{2} t} \sin n \pi x$
Consider $\mathrm{u}(\mathrm{x}, 0)=3 \sin n \pi x$ and we have
$3 \sin n \pi x=b_{1} \quad \sin x+b_{2} \sin 2 \pi \quad x b_{3} \sin 3 \pi x$
Comparing both sides we get $b_{1}=3, b_{2}=0, b_{3}=0$
We substitute these values in the expanded form and then get
$u\left(x, t \neq 3 e^{-\pi^{2} t}(\sin \pi x)\right.$
Various possible solutions of the one dimensional wave equation $u_{t \underline{t}}=c^{2} u_{\underline{x x}} \underline{\text { by }}$ the method of separation of variables.

Consider $\frac{\partial^{2} u}{\partial \boldsymbol{t}^{2}}=c^{2} \frac{\partial^{2} u}{\partial_{\mathbf{r}^{2}}}$
Let $\mathrm{u}=\mathrm{XT}$ where $\mathrm{X}=\mathrm{X}(\mathrm{x}), \mathrm{T}=\mathrm{T}(\mathrm{t})$ be the solution of the PDE
Hence the PDE becomes
$\frac{\partial^{2} X T}{\partial_{t^{2}}}=c^{2} \frac{\partial^{2} X T}{\partial_{\boldsymbol{v}^{2}}}$ or $X \frac{d^{2} T}{d t^{2}}=c^{2} \frac{d^{2} X}{d x^{2}}$
Dividing by $\mathrm{c}^{2} \mathrm{XT}$ we have $\frac{1}{c^{2} T} \frac{d^{2} T}{d t^{2}}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}$
Equating both sides to a common constant k we have
$\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\mathrm{k} \quad$ and $\quad \frac{1}{c^{2} T} \frac{d^{2} T}{d t^{2}}=\mathrm{k}$
$\frac{d^{2} X}{d x^{2}}-k X=0$ and $\frac{d^{2} T}{d t^{2}}-c^{2} k T=0$
$D^{2}-k \quad X=0$ and $D^{2}-c^{2} k \quad T=0$

Where $\mathrm{D}^{2}=\frac{d_{2}}{d x^{2}}$ in the first equation and $\mathrm{D}^{2}=\frac{d_{2}}{d t^{2}}$ in the second equation
Case(i): let $\mathrm{k}=0$
AEs are $\mathrm{m}=0$ amd $\mathrm{m}^{2}=0$ amd $\mathrm{m}=0,0$ are the roots
Solutions are given by
$\mathrm{T}=c_{1} e^{0 t}=c_{1}$ and $X=c_{2} \# c_{3} \quad o^{0 x}=c_{2} \# c_{3}$
Hence the solution of the PDE is given by
$\mathrm{U}=\mathrm{XT}=c_{1} c_{2} x+c_{3}$
Or $u(x, t)=A x+B$ where $c_{1} c_{2}=A$ and $c_{1} c_{3}=B$
Case (ii) let k be positive say $\mathrm{k}=+\mathrm{p}^{2}$
AEs are $m-c^{2} p^{2}=0$ and $m^{2}-p^{2}=0$
$m=c^{2} p^{2}$ and $m=+p$
Solutions are given by
$T=r_{1}^{\prime} \rho^{c^{2} p t}$ and $X=r_{2}^{\prime} \rho^{p x}+c^{\prime} e^{-p x}$
Hence the solution of the PDE is given by
$u=X T={r^{\prime} 1 o^{c^{2}}{ }^{2}{ }^{2}\left(c^{\prime}{ }_{2} e^{p x}+c^{\prime} e^{-} p x\right)}$
Or $\mathrm{u}(\mathrm{x}, \mathrm{t})=c_{1} e^{c^{2} p^{2} t}\left(\mathrm{~A}^{\prime} e^{p x}+\mathrm{B}^{-} e^{p x}\right)$ where $\mathrm{c}_{1}{ }^{\prime} \mathrm{c}_{2}{ }^{\prime}=\mathrm{A}^{\prime}$ and $\mathrm{c}_{1}{ }^{\prime} \mathrm{c}_{3}{ }^{\prime}=\mathrm{B}^{\prime}$
Case (iii): let k be negative say $\mathrm{k}=-\mathrm{p}^{2}$
AEs are $m+c^{2} p^{2}=0$ and $m^{2}+p^{2}=0$
$m=-c^{2} p^{2}$ and $m=+i p$
Solutions are given by
$T=r r_{10^{-c} p^{2} t}$ and $X=r_{2} \cos p \not r^{\prime \prime} \sin p x$

Hence the solution of the PDE is given by
$u=X T=r " 1 o^{-c} p^{c} t \cdot\left(c_{2}^{\prime \prime} \cos p \# r_{3} \sin p x\right)$
$u(x, t)=e^{-c_{p t}^{2}}\left(A^{\prime \prime} \cos p x+R^{\prime \prime} \sin p x\right)$

1. Solve the wave equation $\mathbf{u}_{\mathrm{tt}}=\mathbf{c}^{2} \mathbf{u}_{\mathrm{xx}}$ subject to the conditions $\mathbf{u}(\mathbf{t}, \mathbf{0})=\mathbf{0}, \mathbf{u}(1, t)=\mathbf{0}$,

$$
\frac{\partial^{u}}{\partial t} \quad x, \underline{0} 0 \quad \text { and } \mathbf{u}(\mathbf{x}, \mathbf{0})=\mathbf{u}_{0} \sin ^{3}(\pi \mathbf{x} / \mathbf{l})
$$

Soln: $u x, t=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l}$
Consider $\mathrm{u}(\mathrm{x}, 0)=\mathrm{u}_{0} \sin ^{3}(\pi \mathrm{x} / \mathrm{l})$
$u x, 0=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}$
$u_{0} \sin ^{3} \frac{\pi x}{l}=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}$
$u_{0}\left[\frac{3}{4} \sin ^{3} \frac{\pi x}{l}-\frac{1}{4} \sin \frac{{ }^{3} \pi x}{l}\right]=\sum_{n=1}^{\infty} b_{n} \sin \frac{n_{\pi x}}{l}$
$\frac{3 u_{0}}{4} \sin \frac{\pi x}{l}-\frac{u_{0}}{4} \sin \frac{3 \pi x}{l}=b_{1} \sin \frac{\pi x}{l}+b_{2} \sin \frac{2 \pi x}{l}+b_{3} \sin \frac{3 \pi x}{l}$
comparing both sides we get

$$
b=\frac{3 u_{0}}{4}, b_{2}=0, b_{3}=\frac{-u_{0}}{4} \quad b_{4}=0 \quad b=0,
$$

Thus by substituting these values in the expanded form we get
$u(x, t)=\frac{3 u_{0}}{4} \sin \frac{\pi x}{l} \cos \frac{\pi c t}{l}-\frac{u_{0}}{4} \sin \frac{3 \pi x}{l} \cos \frac{3 \pi c t}{l}$
2. Solve the wave equation $\mathbf{u}_{t \mathrm{t}}=\mathbf{c}^{2} \mathbf{u}_{t \mathrm{t}}$ subject to the conditions $\mathbf{u}(\mathbf{t}, \mathbf{0})=\mathbf{0}, \mathbf{u}(1, t)=0$,

$$
\frac{\partial^{u}}{\partial t} \quad x, \underline{0}=0 \quad \text { when } \mathrm{t}=0 \text { and } \mathbf{u}(\mathbf{x}, \mathbf{0})=\mathbf{f}(\mathbf{x})
$$

Soln: $u x, t=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l}$
Consider $u(x, 0)=f(x)$ then we have
Consider $\mathrm{u}(\mathrm{x}, 0)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}$
$\mathrm{F}(\mathrm{x})=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}$
The series in RHS is regarded as the sine half range Fourier series of $f(x)$ in $(0,1)$ and hence
$b_{n}=\frac{9}{l} \int_{0} f(x) \sin \frac{n \pi x}{l} d x$
Thus we have the required solution in the form
$u x, t=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l}$

DOUBLE INTEGRAL

The double integral of a function $f(x, y)$ over a region D in R^{2} is denoted by $\iint_{D} f(x, y) d x d y$
Let $f(x, y)$ be a continuous function in R^{2} defined on a closed rectangle

$$
R=\{(x, y) / a \leq x \leq b \text { and } c \leq y \leq d\}
$$

For any fixed $x \in[a, b]$ consider the integral $\int_{c}^{d} f(x, y) d y$.
The value of this integral depends on x and we get a new function of x. This can be integrated depends on x and, we get $\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x$. This is called an "iterated integral".

Similarly, we can define another

$$
\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y
$$

For continuous function $f(x, y)$, we have

$$
\iint_{R} f(x, y) d x d y=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y
$$

If $f(x, y)$ is continuous on a bounded region S and S is given by
$S=\left\{(x, y) / a \leq x \leq b\right.$ and $\left.\phi_{1}(x) \leq y \leq \phi_{2}(x)\right\}$, where ϕ_{1} and ϕ_{2} are two continuous functions on $[a, b]$ then

$$
\iint_{S} f(x, y) d x d y=\int_{a}^{b}\left[\int_{\phi_{1}(x)}^{\phi_{2}(y)} f(x, y) d y\right] d x
$$

The iterated integral in the R.H.S. is also written in the form

$$
\int_{a}^{b} d x \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y
$$

Similarly, if

$$
\begin{aligned}
S= & \{(x, y) / c \leq y \leq d \\
& \text { and } \left.\phi_{1}(y) \leq x \leq \phi_{2}(y)\right\}
\end{aligned}
$$

Fig. 3.1
then $\quad \iint_{S} f(x, y) d x d y=\int_{c}^{d}\left[\int_{\phi_{1}(y)}^{\phi_{2}(y)} f(x, y) d x\right] d y$
If S cannot be written in neither of the above two forms we divide S into finite number of subregions such that each of the subregions can be represented in one of the above forms and we get the double integral over S by adding the integrals over these subregions.

PROBLEMS:

1. Evaluate: $I=\int_{0}^{1} \int_{0}^{2} x y^{2} d y d x$.

Solution

$$
\begin{aligned}
I & =\int_{0}^{1}\left[\int_{0}^{2} x y^{2} d y\right] d x \\
& =\int_{0}^{1}\left[\frac{x y^{3}}{3}\right]_{0}^{2} d x \quad \text { (Integrating w.r.t. } y \text { keeping } x \text { constant) } \\
& =\frac{1}{3} \int_{0}^{1} 8 x d x \\
& =\frac{1}{3}\left[\frac{8 x^{2}}{2}\right]_{0}^{1}=\frac{4}{3}
\end{aligned}
$$

2. Evaluate: $\int_{0}^{1} \int_{1}^{2} x y d y d x$.

Solution. Let I be the given integral
Then,

$$
\begin{aligned}
I & =\int_{0}^{1} x\left\{\int_{1}^{2} y d y\right\} d x \\
& =\int_{0}^{1} x \cdot\left[\frac{y^{2}}{2}\right]_{1}^{2} d x \cdot=\frac{3}{2} \int_{0}^{1} x d x=\frac{3}{4}
\end{aligned}
$$

5. Evaluate: $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a}\left(x^{2}+y^{2}+z^{2}\right) d z d y d x$.

Solution

$$
I=\int_{x=-c}^{c} \int_{y=-b}^{b} \int_{z=-a}^{a}\left(x^{2}+y^{2}+z^{2}\right) d z d y d x
$$

Integrating w.r.t. z, x and $y-$ constant.

$$
\begin{aligned}
& =\int_{x=-c}^{c} \int_{y=-b}^{b}\left[x^{2} z+y^{2} z+\frac{z^{3}}{3}\right]_{z=-a}^{a} d y d x \\
& =\int_{x=-c}^{c} \int_{y=-b}^{b}\left[x^{2}(a+a)+y^{2}(a+a)+\left(\frac{a^{3}}{3}+\frac{a^{3}}{3}\right)\right] d y d x \\
& =\int_{x=-c}^{c} \int_{y=-b}^{b}\left(2 a x^{2}+2 a y^{2}+\frac{2 a^{3}}{3}\right) d y d x
\end{aligned}
$$

Integrating w.r.t. $y, x-$ constant.

$$
\begin{aligned}
& =\int_{x=-c}^{c}\left[2 a x^{2} y+\frac{2 a y^{3}}{3}+\frac{2 a^{3}}{3} y\right]_{y=-b}^{b} d x \\
& =\int_{x=-c}^{c}\left[2 a x^{2}(b+b)+\frac{2 a}{3}\left(b^{3}+b^{3}\right)+\frac{2 a^{3}}{3}(b+b)\right] d x \\
& =\int_{x=-c}^{c}\left[4 a x^{2} b+\frac{4 a b^{3}}{3}+\frac{4 a^{3} b}{3}\right] d x \\
& =\left[4 a b\left(\frac{x^{3}}{3}\right)+\frac{4 a b^{3}}{3}(x)+\frac{4 a^{3} b}{3}(x)\right]_{-c}^{c} \\
& =4 a b\left(\frac{2 c^{3}}{3}\right)+\frac{4 a b^{3}}{3} \cdot(2 c)+\frac{4 a^{3} b}{3}(2 c) \\
& =\frac{8 a b c^{3}}{3}+\frac{8 a b^{3} c}{3}+\frac{8 a^{3} b c}{3} \\
I & =\frac{8 a b c}{3}\left(a^{2}+b^{2}+c^{2}\right)
\end{aligned}
$$

In the evaluation of the double integrals sometimes we may have to change the order of integration so that evaluation is more convenient. If the limits of integration are variables then change in the order of integration changes the limits of integration. In such cases a rough idea of the region of integration is necessary.

Evaluation of a Double Integral by Change of Variables

Sometimes the double integral can be evaluated easily by changing the variables.
Suppose x and y are functions of two variables u and v.

$$
\text { i.e., } \quad x=x(u, v) \text { and } y=y(u, v) \text { and the Jacobian }
$$

$$
J=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right| \neq 0
$$

Then the region A changes into the region R under the transformations

$$
x=x(u, v) \text { and } y=y(u, v)
$$

Then

$$
\iint_{A} f(x, y) d x d y=\iint_{R} f(u, v) J d u d v
$$

If

$$
x=r \cos \theta, y=r \sin \theta
$$

$$
\begin{align*}
J & =\frac{\partial(x, u)}{\partial(r, \theta)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta-r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r \\
\therefore \quad \iint_{A} f(x, y) d x d y & =\iint_{R} F(r, \theta) r d r d \theta . \tag{1}
\end{align*}
$$

Applications to Area and Volume

1. $\iint_{R} d x d y=$ Area of the region R in the Cartesian form.
2. $\iint_{R} r \cdot d r d \theta=$ Area of the region R in the polar form.
3. $\iiint_{V} d x d y d z=$ Volume of a solid.
4. Volume of a solid (in polars) obtained by the revolution of a curve enclosing an area A about the initial line is given by

$$
V=\iint_{A} 2 \pi r^{2} \sin \theta \cdot d r d \theta
$$

5. If $z=f(x, y)$ be the equation of a surface S then the surface area is given by

$$
\iint_{A} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d x d y
$$

Type 1. Evaluation over a given region

1. Evaluate $\iint_{R} x y d x d y$ where R is the triangular region bounded by the axes of coordinates and the line $\frac{x}{a}+\frac{y}{b}=1$.

Solution. R is the region bounded by $x=0, y=0$ being the coordinates axes and $\frac{x}{a}+\frac{y}{b}=1$ being the straight line through $(0, a)$ and $\left(0, b\left(1-\frac{x}{a}\right)\right)$
when x is held fixed and y varies from 0 to $b\left(1-\frac{x}{a}\right)$

$$
\begin{aligned}
\therefore & \frac{x}{a}+\frac{y}{b} & =1 \\
\Rightarrow & \frac{y}{b} & =1-\frac{x}{a} \\
\Rightarrow & y & =b\left(1-\frac{x}{a}\right)
\end{aligned}
$$

Fig. 3.2
$\therefore \quad \iint_{R} x y d x d y=\int_{x=0}^{a}\left\{\int_{y=0}^{b\left(1-\frac{x}{a}\right)} x y d y\right\} d x$

$$
=\int_{0}^{a} x \cdot\left[\frac{y^{2}}{2}\right]_{0}^{b\left(1-\frac{x}{a}\right)} d x
$$

$$
=\int_{0}^{a}\left\{x \cdot \frac{b^{2}}{2}\left(1-\frac{x}{a}\right)^{2}\right\} d x
$$

$$
=\frac{b^{2}}{2} \int_{0}^{a}\left(x-2 \frac{x^{2}}{a}+\frac{x^{3}}{a^{2}}\right) d x
$$

$$
=\frac{b^{2}}{2}\left[\frac{x^{2}}{2}-\frac{2 x^{3}}{3 a}+\frac{x^{4}}{4 a^{2}}\right]_{0}^{a}
$$

$$
\begin{aligned}
& =\frac{b^{2}}{2}\left[\frac{a^{2}}{2}-\frac{2}{3} a^{2}+\frac{1}{4} a^{2}\right] \\
& =\frac{a^{2} b^{2}}{24}
\end{aligned}
$$

2. Evaluate $\iint x y d x d y$ over the area in the first quadrant bounded by the circle $x^{2}+y^{2}=a^{2}$.

Solution

$$
\begin{aligned}
\iint x y d x d y & =\int_{x=0}^{a}\left[\int_{y=0}^{\sqrt{a^{2}-x^{2}}} x y d y\right] d x \\
& =\int_{0}^{a} x \cdot\left[\frac{y^{2}}{2}\right]_{0}^{\sqrt{a^{2}-x^{2}}} d x \\
& =\int_{0}^{a} x\left(\frac{a^{2}-x^{2}}{2}\right) d x \\
& =\frac{1}{2} \int_{0}^{a}\left(a^{2} x-x^{3}\right) d x \\
& =\frac{1}{2}\left[a^{2} \frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{a} \\
& =\frac{1}{2}\left[\frac{a^{4}}{2}-\frac{a^{4}}{4}\right]=\frac{a^{4}}{8} .
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\because x^{2}+y^{2}=a^{2} \\
\Rightarrow y^{2}=a^{2}-x^{2} \\
y=\sqrt{a^{2}-x^{2}}
\end{array}\right.
$$

Fig. 3.3

Type 2. Evaluation of a double integral by changing the order of integration

1. Change the order of integration and hence evaluate $\int_{0}^{a} \int_{0}^{2 \sqrt{a x}} x^{2} d y d x$.

$$
\begin{array}{ll}
\text { Solution } & y=2 \sqrt{a x} \\
\Rightarrow & y^{2}=4 a x
\end{array}
$$

when $x=a$ on $y^{2}=4 a x, y^{2}=4 a^{2}$

$$
\Rightarrow \quad y= \pm 2 a
$$

So, on $y=2 \sqrt{a x}, y=2 a$ when $x=a$
The integral is over the shaded region.

$$
\begin{aligned}
\int_{0}^{a} \int_{0}^{2 \sqrt{a x}} x^{2} d y d x & =\int_{y=0}^{2 a} \int_{x=\frac{y^{2}}{4 a}}^{a} x^{2} d x d y \\
& =\int_{0}^{2 a}\left[\frac{x^{3}}{3}\right]_{\frac{y^{2}}{4 a}}^{a} d y
\end{aligned}
$$

$$
=\int_{0}^{2 a}\left(\frac{a^{3}}{3}-\frac{y^{6}}{192 a^{3}}\right) d y
$$

$$
=\left[\frac{a^{3}}{3} y-\frac{y^{7}}{192 a^{3} \times 7}\right]_{0}^{2 a}
$$

$$
=\frac{2 a^{4}}{3}-\frac{2^{7} a^{4}}{192 \times 7}
$$

$$
=a^{4}\left(\frac{2}{3}-\frac{2}{21}\right)=\frac{4}{7} a^{4} .
$$

2. Change the order of integration and hence evaluate $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x$.

Solution $\quad y=\sqrt{2-x^{2}}$
$\Rightarrow \quad y^{2}=2-x^{2}$
$\Rightarrow \quad x^{2}+y^{2}=2$
This circle and $y=x$ meet if $x^{2}+x^{2}=2$

$$
\therefore \quad 2 x^{2}=2 \Rightarrow x=1
$$

So, $(1,1)$ is the meeting point.
Now $\quad I=\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x$

$$
=\int_{y=0}^{\sqrt{2}} \int_{x=0}^{\phi(y)} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y
$$

where $\phi(y)=\left\{\begin{array}{cl}y & \text { for } 0 \leq y \leq 1 \\ \sqrt{2-y^{2}} & \text { for } 1 \leq y \leq \sqrt{2}\end{array}\right.$
(Note that $x=\phi(y)$ is the R.H.S. boundary of the shaded region)
So, the required integral is

$$
\begin{aligned}
I & =\int_{y=0}^{1} \int_{x=0}^{y} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y+\int_{y=1}^{\sqrt{2}} \int_{x=0}^{\sqrt{2-y^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y \\
& =\int_{0}^{1}\left[x^{2}+y^{2}\right]_{0}^{y} d y+\int_{1}^{\sqrt{2}}\left[\sqrt{x^{2}+y^{2}}\right]_{0}^{\sqrt{2-y^{2}}} d y \\
& =\int_{0}^{1}(\sqrt{2} y-y) d y+\int_{1}^{\sqrt{2}}(\sqrt{2}-y) d y
\end{aligned}
$$

$$
\begin{aligned}
& =\left[(\sqrt{2}-1) \frac{y^{2}}{2}\right]_{0}^{1}+\left[\sqrt{2} y-\frac{y^{2}}{2}\right]_{1}^{\sqrt{2}} \\
& =\frac{\sqrt{2}-1}{2}+\sqrt{2}(\sqrt{2}-1)-\left(\frac{2}{2}-\frac{1}{2}\right) \\
& =1-\frac{1}{\sqrt{2}}
\end{aligned}
$$

Type 3. Evaluation by changing into polars

1. Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by changing to polar coordinates.

Solution. In polars we have $x=r \cos \theta, y=r \sin \theta$

$$
\therefore \quad x^{2}+y^{2}=r^{2} \text { and } d x d y=r d r d \theta
$$

Since x, y varies from 0 to ∞
r also varies from 0 to ∞
In the first quadrant ' θ '
varies from 0 to $\pi / 2$

Thus

$$
I=\int_{\theta=0}^{\pi / 2} \int_{r=0}^{\infty} e^{-r^{2}} r d r d \theta
$$

Put

$$
r^{2}=t \quad \therefore r d r=\frac{d t}{2}
$$

t also varies from 0 to ∞

$$
\begin{aligned}
I & =\int_{\theta=0}^{\pi / 2} \int_{t=0}^{\infty} e^{-t} \frac{d t}{2} d \theta \\
& =\frac{1}{2} \int_{\theta=0}^{\pi / 2}\left[-e^{-t}\right]_{0}^{\infty} d \theta \\
& =\frac{-1}{2} \int_{0}^{\pi / 2}(0-1) d \theta \\
& =+\frac{1}{2} \int_{0}^{\pi / 2} 1 \cdot d \theta \\
& =\frac{+1}{2}[\theta]_{0}^{\pi / 2}=\frac{+1}{2} \cdot \frac{\pi}{2}=\frac{\pi}{4}
\end{aligned}
$$

2. Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} y \sqrt{x^{2}+y^{2}} d x d y$ by changing into polars.

Solution

$$
I=\int_{y=0}^{a} \int_{x=0}^{\sqrt{a^{2}-y^{2}}} y \sqrt{x^{2}+y^{2}} d x d y
$$

$x=\sqrt{a^{2}-y^{2}}$ or $x^{2}+y^{2}=a^{2}$ is a circle with centre origin and radius a. Since, y varies from 0 to a the region of integration is the first quadrant of the circle.

In polars, we have $x=r \cos \theta, y=r \sin \theta$

$$
\begin{aligned}
\therefore & x^{2}+y^{2} & =r^{2} \\
\text { i.e., } & r^{2} & =a^{2} \\
\Rightarrow & r & =a
\end{aligned}
$$

Also $x=0, y=0$ will give $r=0$ and hence we can say that r varies from 0 to a. In the first quadrant θ varies from 0 to $\pi / 2$, we know that $d x d y=r d r d \theta$

$$
\begin{aligned}
\therefore & =\int_{r=0}^{a} \int_{\theta=0}^{\pi / 2} r \sin \theta r r d r d \theta \\
& =\int_{r=0}^{a} \int_{\theta=0}^{\pi / 2} r^{3} \sin \theta d r d \theta \\
& =\int_{r=0}^{a} r^{3}(-\cos \theta)_{0}^{\pi / 2} d r \\
& =\int_{0}^{a}-r^{3}(0-1) d r=\left[\frac{r^{4}}{4}\right]_{0}^{a}=\frac{a^{4}}{4} \\
I & =\frac{a^{4}}{4} .
\end{aligned}
$$

Triple Integrals:

The treatment of Triple integrals also known as volume integrals in R^{3} is a simple and straight extension of the ideas in respect of double integrals.

Let $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be continuous and single valued function defined over a region V of space. Let V be divided into sub regions $\delta v_{1}, \delta v_{2} \ldots \ldots . \delta v_{n}$ in to n parts. Let $\left(x_{k}, y_{k}, z_{k}\right)$ be any arbitrary point
within or on the boundary of the sub region δv_{k}. From the sum $s=\sum_{k=1}^{n} f\left(x_{k}, y_{k}, z_{k}\right) \delta v_{k}$
\qquad
If as $n \rightarrow \infty$ and the maximum diameter of every.
Sub region approaches zero the sum (1) has a limit then the limit is denoted by $\iint_{V} f(x, y, z) d v$
This is called the triple integral of $f(x, y, z)$ over the region V.
For the purpose of evolution the above triple integral over the region V can be expressed as an iterated integral or repeated integral in the form

$$
\iiint_{V} f(x, y, z) d x d y d z=\int_{a}^{b}\left[\int_{g(x)}^{h(x)}\left\{\int_{\psi(x, y)}^{\phi(x, y)} f(x, y, z) d z\right\} d y\right] d x
$$

Where $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is continuous in the region V bounded by the surfaces $\mathrm{z}=\mathrm{z}=\psi(x, y), \quad z \phi(x, y)$, $y g(x), y h(x), x a, \neq b$. the above integral indicates the three successive integration to be performed in the following order, first w.r.t z , keeping x and y as constant then w.r.t y keeping x as constant and finally w.r.t.x.

Note:

- When an integration is performed w.r.t a variable that variable is eliminated completely from the remaining integral.
- If the limits are not constants the integration should be in the order in which $\mathrm{dx}, \mathrm{dy}, \mathrm{dz}$ is given in the integral.
- Evaluation of the integral may be performed in any order if all the limits are constants.
- If $f(x, y, z)=1$ then the triple integral gives the volume of the region.

1. Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} x y z^{2} d x d y d z$

$$
\text { Sol } \begin{aligned}
\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} x y z^{2} d x d y d z & \left.=\int_{0}^{1} \int_{0}^{2} \frac{x^{2} y z^{2}}{2}\right]_{1}^{2} d y d z \\
& =\iint_{0}^{1}\left[2 y z^{2}-\frac{y^{2}}{2} z\right]_{1}^{2} d y d z
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{1}\left[\frac{2 y^{2} z^{2}}{2}-\frac{y^{2} z^{2}}{4}\right]_{0}^{2} d z \\
& =\int_{0}^{1}\left[v^{2} z^{2}-\frac{y^{2} z^{2}}{4}\right]_{0}^{2} d z \\
& =\int_{0}^{1}\left[\frac{3 y^{2} z^{2}}{4}\right]_{0}^{2} d z \\
& =1
\end{aligned}
$$

2. Evaluate $\int_{0}^{a} \int_{0}^{a} \int_{0}^{a}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$

$$
\begin{aligned}
& \text { Sol: } \int_{0}^{a} \int_{0}^{a} \int_{0}^{a}\left(x^{2}+v^{2}+z^{2}\right) d x d y d z=\int_{0}^{a} \int_{0}^{a}\left[\frac{x^{3}}{3}+y^{2} \nleftarrow z^{2}\right]_{0}^{a} d y d z \\
& =\int_{0}^{a} \int_{0}^{a}\left[\frac{a^{3}}{3}+y^{2} a+z^{2} a\right] d y d z \\
& =\int_{0}^{a}\left[\int_{0}^{a}\left[\frac{a^{3}}{3}+y^{2} a+z^{2} a\right] d y\right] d z \\
& =\int_{0}^{a}\left[\frac{a^{3} y}{3}+\frac{y^{3} a}{3}+z^{2} a y\right]_{0}^{a} d z \\
& =\int_{0}^{a}\left[\frac{a^{4}}{3}+\frac{a^{4}}{3}+a^{2} z^{2}\right] d z \\
& =\left[\frac{a^{4}}{3}+\frac{z a^{4} z}{3}+\frac{a^{2} z^{3}}{3}\right]_{0}^{a} \\
& =\frac{a^{5}}{3}+\frac{a^{5}}{3}+\frac{a^{5}}{3} \\
& =a^{5}
\end{aligned}
$$

3. Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} x y z d x d y d z$

$$
\text { Sol : } \begin{aligned}
I & =\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}}\left\{\int_{0}^{\sqrt{a^{2}-r^{2}-v^{2}}} x y z d z\right\} d y d x \\
& =\int_{0}^{a} \sqrt{n^{2-r^{2}}} \int_{0}^{r^{2}}\left[\frac{x y z^{2}}{2}\right]_{0}^{\sqrt{n^{2}-x^{2}-v^{2}}} d y d x \\
& =\int_{0}^{a} \sqrt{\sqrt{n^{2}}} \int_{0}^{r^{2}} \frac{x y}{2}\left(\mathrm{a}^{2}-\mathrm{x}^{2}-\mathrm{y}^{2}\right) \mathrm{dydx} \\
& =\frac{1}{2} \int_{0}^{a \sqrt{a^{2}-r^{2}}} \int_{0}^{\mathrm{x}^{2}}\left(\mathrm{xya}^{2}-\mathrm{x}^{3} y-x \mathrm{y}^{3}\right) d y d x \\
& =\frac{1}{2} \int_{0}^{a}\left[\frac{\mathrm{xy}^{2} \mathrm{a}^{2}}{2}-\frac{\mathrm{x}^{3} y^{2}}{2}-\frac{x \mathrm{y}^{2}}{2}\right]_{0}^{\sqrt{n^{2-x^{2}}}} d x \\
& =\frac{1}{8} \int_{0}^{a}\left(\mathrm{a}^{4} \mathrm{x}+\mathrm{x}^{5}-2 \mathrm{a}^{2} \mathrm{x}^{3}\right) \\
& =\frac{1}{8}\left[a^{4} \frac{x^{2}}{2}+\frac{x^{6}}{6}-\frac{2 a^{2} x^{4}}{4}\right]_{0}^{a}=\frac{a^{6}}{48}
\end{aligned}
$$

4. Evaluate $\iiint_{R} x y z d x d y d z$ over the region R enclosed by the coordinate planes and the

$$
\text { plane } \mathrm{x}+\mathrm{y}+\mathrm{z}=1
$$

Sol: In the given region, z varies from 0 to $1-\mathrm{x}-\mathrm{y}$
For $\mathrm{z}-=0$, y varies from 0 to $1-\mathrm{x}$. For $\mathrm{y}=0, \mathrm{x}$ varies from 0 to 1 .

$$
\begin{aligned}
\therefore \iiint_{R} x y z d x d y d z & =\int_{x=0}^{1} \int_{y=0}^{1-x} \int_{z=0}^{1-x} x y z d x d y d z \\
& =\int_{0}^{1} x\left\{\int_{0}^{1-x} y\left[\frac{1}{2}(1-\mathrm{x}-\mathrm{y})^{2}\right] d y\right\} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{1} x\left\{\int_{0}^{1-x}\left[(1-\mathrm{x})^{2}-y 2(1-\mathrm{x}) \mathrm{y}^{2}+, v^{3}\right] d y\right\} d x \\
& =\frac{1}{2} \int_{0}^{1} x\left\{\left[\frac{1}{2}(1-\mathrm{x})^{2} \quad(1 \mathrm{x})^{2}-\frac{2}{3}(1-\mathrm{x})(1-\mathrm{x})^{3}+\frac{1}{4}(1-\mathrm{x})^{4}\right]\right\} d x \\
& =\frac{1}{24} \int_{0}^{1} x(1-\mathrm{x})^{4} d x=\frac{1}{24}\left[-\frac{(1-\mathrm{x})^{6}}{30}\right]_{0}^{1} \\
& =\frac{1}{720}
\end{aligned}
$$

Change of variable in triple integrals

Computational work can often be reduced while evaluating triple integrals by changing the variables $\mathrm{x}, \mathrm{y}, \mathrm{z}$ to some new variables $\mathrm{u}, \mathrm{v}, \mathrm{w}$, which related to $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and which are such that the

Jacobian $J=\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}\end{array}\right| \neq 0$
It can be proved that

$$
\begin{align*}
& \iiint_{R} f(x, y, z) d x d y d z \\
& =\iiint_{R} \phi(u, v, w) J d u d v d w . \tag{1}
\end{align*}
$$

R is the region in which ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) vary and R^{*} is the corresponding region in which $(\mathrm{u}, \mathrm{v}, \mathrm{w})$ vary $\operatorname{and} \phi(u, v, w \neq f x(u, v, w), y(u, v, w), z(u, v, w)$

Once the triple integral wrt ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) is changed to triple integral wrt (u, v, w) by using the formula(1), the later integral may be evaluated by expressing it in terms of repeated integrals with appropriate limit of integration

Triple integral in cylindrical polar coordinates

Suppose (x,y,z) are related to three variables $(R, \phi z)$ through the the relation $x=R \cos \phi, y R \sin \phi, z z$ then $R, \phi z$ are called cylindriocal polar coordinates;

In this case,
$J=\frac{\partial(x, y, z)}{\partial(R, \phi, z)}=\left|\begin{array}{lll}\frac{\partial x}{\partial R} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial R} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial R} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial z}\end{array}\right|=R$
Hence dxdydz has to be changed to $\mathrm{R} \mathrm{dR} d \boldsymbol{d} \mathrm{dz}$
Thus we have

$$
\begin{aligned}
& \iiint_{R} f(x, y, z) d x d y d z \\
& =\iiint_{R} \phi(R, \phi, z) R d R d \phi d z
\end{aligned}
$$

R^{*} is the region in which (R, ϕ, z) vary, as (x,y,z) vary in R
$\phi(R, \phi, z) f(R \cos \phi, R \sin \phi, z)$

Triple integral in spherical polar coordinates

Suppose ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) are related to three variables (r, θ, ϕ) through the relations $x=r \sin \theta \cos , y r \sin \theta \sin \phi, z r \cos \theta$. Then (r, θ, ϕ) are called spherical polar coordinates.

PROBLEMS:

1) If R is the region bounded by the planes $x=0, y=0, z=0, z=1$ and the cylinder $x^{2}+v^{2}=1$.Evaluate the integral $\iiint_{R} x y z d x d y d z$ by changing it to cylindrical polar coordinates. Sol: Let $(R, \phi z)$ be cylindrical polar coordinates. In thegiven region, R varies from 0 to $1, \phi$ varies from $0 \frac{\text { t }}{2}$ and z varies from 0 to 1 .

$$
\iiint_{R} x y z d x d y d z=\int_{R=0}^{1} \int_{\phi=0}^{\frac{\pi}{2}} \int_{z=0}^{1}(R \cos \phi)(R \sin \phi) z R d R d \phi d x
$$

$$
\begin{aligned}
& =\int_{0}^{1} R^{3} d R \int_{0}^{\frac{\pi}{2}} \sin \phi \cos \phi \int_{0}^{1} z d z \\
& =\frac{1}{4} \int_{0}^{1} R^{3} d R\left[\frac{-\cos 2 \phi}{2}\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{1}{4} \int_{0}^{1} R^{3} d R \\
& =\frac{1}{16}
\end{aligned}
$$

2) Evaluate $\iiint_{R} x y z d x d y d z$ over the positive octant of the sphere by changing it to spherical polar coordinates.

Sol: In the region, r varies from 0 to a, θ varies from 0 to $\frac{\pi}{2}$ and ϕ varies from 0 to.
The relations between Cartesian and spherical polar coordinates are $x=r \sin \theta \cos , y r \sin \theta \sin \phi, z r \cos \theta \ldots .$. (1)

Also $d x d y d z=r^{2} \sin \theta d r d \theta d \phi$
We have $x^{2}+y^{2}+z^{2}=a^{2}$.

$$
\begin{align*}
& \therefore \iiint_{R} x y z d x d y d z=\int_{\theta=0}^{\frac{\pi}{2}} \int_{\phi=0}^{\frac{\pi}{2}} \int_{r=0}^{a} r \operatorname{si} \vartheta \cos \phi r \sin \theta \sin \phi r \cos r^{2} \operatorname{si} \theta d r d \theta d \phi \tag{2}\\
& =\int_{\theta=0}^{\frac{\pi}{2}} r^{5} \sin ^{3} \theta \cos \theta \sin \phi d r d \theta d \phi \\
& =-\frac{a^{6}}{96} \cos \pi-\cos 0 \\
& =\frac{a^{6}}{48}
\end{align*}
$$

MODULE-4

INTEGRAL CALCULUS

Application of double integrals:

Introduction: we now consider the use of double integrals for computing areas of plane and curved surfaces and volumes, which occur quite in science and engineering.

Computation of plane Areas:

Recall expression

$$
\begin{align*}
& \int_{A} f(x, y) d A=\iint_{R} f(x, y) d x d y=\int_{a}^{b} \int_{y_{1}(x)}^{y_{2}(x)} f(x, y) d y d x=\int_{c}^{d} \int_{x_{1}(y)}^{x_{2}(y)} f(x, y) d x d y \\
& \int_{A} d A=\iint_{R} d x d y=\int_{a}^{b} \int_{y_{1}(x)}^{y_{2}(x)} d y d x=\int_{c}^{d} \int_{x_{1}(y)}^{x_{2}(y)} d x d y \ldots \ldots . . .(1) \tag{1}
\end{align*}
$$

The integral $\int_{A} d A$ represents the total area of the plane region R over which the iterated integral are taken. Thus (1) may be used to compute the area A. nNote that dx dy is the plane area element dA in the Cartesian form.

Also $\iint_{R} d x d y=\iint_{R} r d r d \theta, r d r d \theta$ is the plane area element in polar form.

Area in Cartesian form

Let the curves AB and CD be $y_{1}=f_{1}(x) a n d y_{2}=f_{2}(x)$. Let the ordinates AC and BD be $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$. So the area enclosed by the two curves and $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$ is ABCD . Let $\mathrm{p}(\mathrm{x}, \mathrm{y})$ and be $\mathrm{Q}(\mathrm{x}+\delta \mathrm{x}, \forall \delta \mathrm{y})$ two neighbouring points, then the area of the small rectangle $\mathrm{PQ}=\delta \mathrm{x} \delta \mathrm{y}$

Area of the vertical strip $=\lim _{y_{\mathrm{y}} \rightarrow 0} \sum_{y_{1}}^{y_{2}} \delta \mathrm{x} \delta \mathrm{y}=\delta \mathrm{x} \int_{y_{1}}^{y_{2}} \mathrm{dy}$
Since $\delta \mathrm{x}$ the width of the strip is constant throughout, if we add all the strips from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$ we get

The area $\mathrm{ABCD}=\lim _{x_{1}} \sum_{a}^{h} \delta \mathrm{x} \int_{y_{1}}^{y_{2}} \mathrm{~d} y \int_{a}^{b} \mathrm{dx} \int_{y_{1}}^{y_{2}} \mathrm{dy}$

Area $=\int_{a}^{b} \int_{y_{1}}^{y_{2}} \mathrm{dxdy}$

Area in Polar form:

1. Find the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ by double integration .

Soln: For the vertical strip PQ, y varies from $\mathrm{y}=0$ to $\mathrm{y}=\frac{b}{a} \sqrt{a{ }_{-}^{2} x^{2}}$ when the strip is slided from CB to A, x varies from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{a}$

$$
\begin{aligned}
& \text { Therefore Area of the ellipse=4 Area of } \mathrm{CAB}=4 \int_{x=0}^{a} \int_{y=0}^{\frac{b}{a} \sqrt{a^{2}-x^{2}}} d y d x \\
& =4 \int_{0}^{a}\left\{\int_{0}^{\frac{b}{a} \sqrt{a^{2}-x^{2}}} d y\right\} d x 4 \int_{0}^{a} \frac{y_{0}}{a_{d}^{a} \sqrt{a^{2}-x^{2}}} d x \\
& =4 \int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} d x=4 \frac{b}{a}\left[\frac{\sqrt{2^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \sin -1\left(\frac{x}{2}\right)\right]_{0}^{a} \\
& =4 \frac{b}{a}\left[\frac{a^{2}}{2} \sin ^{-1} 1\right]=4 \frac{b}{a} \cdot \frac{a}{2} \frac{\pi}{2}=\pi^{a b}
\end{aligned}
$$

2. Find the area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$

Soln: We have $y^{2}=4 a x$
(1) and $x^{2}=4 a y$

Solving (1) and (2) we get the point of intersections $(0,0)$ and (4a, 4a) . The shaded portion in the figure is the required area divide the arc into horizontal strips of width ∂y

$$
\mathrm{x} \text { varies from } \mathrm{p} \frac{y^{2}}{4 a} \text { to } Q \sqrt{4 a y} \quad \text { and then } \mathrm{y} \text { varies from } \mathrm{O}, \mathrm{y}=0 \text { to } \mathrm{A}, \mathrm{y}=4 \mathrm{a} .
$$

Therefore the required area is

$$
\int_{0}^{4 a} d y \int_{\frac{y^{2}}{4 a}}^{\sqrt{4 a y}} d x=\int_{0}^{4 a} d y x_{\frac{y^{2}}{4 a}}^{\sqrt{4 a y}}
$$

$$
\begin{aligned}
& =\int_{0}^{4 a}\left[\sqrt{4 a y}-\frac{y^{2}}{4 a}\right] d y=\left[\sqrt{4 a \cdot} \frac{y^{\frac{3}{2}}}{\frac{3}{2}}-\frac{1}{4 a} \frac{v^{3}}{3}\right]_{0}^{4 a} \\
& =\left[\frac{4 \sqrt{a}}{3} 4 a^{\frac{3}{2}}-\frac{1}{12 a} 4 a^{3}\right] \\
& =\frac{32}{3} a^{2}-\frac{16}{3} a^{2}=\frac{16}{3} a^{2}
\end{aligned}
$$

Computation of surface area (using double integral):

The double integral can made use in evaluating the surface area of a surface.
Consider a surface S in space .let the equation of the surface S be $z=f(x, y)$. it can be that surface area of this surface is

Given by $s=\iint_{A}\left[1+\left(\frac{\partial^{z}}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}\right]^{\frac{1}{2}} d x d y$
Where A the region representing the projection of S on the xy-plane.
Note that (x, y) vary over A as ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) vary over S .
Similarly if B and C projection of S on the yz-plane and zx - plane respectively, then

$$
s=\iint_{A}\left[1+\left(\frac{\partial z}{\partial z}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}\right]^{\frac{1}{2}} d y d z
$$

and

$$
s=\iint_{A}\left[1+\left(\frac{\partial^{z}}{\partial z}\right)^{2}+\left(\frac{\partial z}{\partial x}\right)^{2}\right]^{\frac{1}{2}} d z d x
$$

1) Find the surface area of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.

Soln: the required surface arc is twice the surface are of the upper part of the given sphere, whose equation is

$$
\begin{aligned}
& z=a^{2}-r^{2}-v^{2} \\
& \text { this, gives, } \frac{\partial z}{\partial x}=a^{2}-r^{2}-v^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-x}{a^{2}-r^{2}-v^{2}}{ }^{\frac{1}{2}} \\
& \text { similarly }, \frac{\partial z}{\partial x}=\frac{y}{a^{2}-r^{2}-v^{2}}{ }^{\frac{1}{2}} \\
& \therefore 1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial x}\right)^{2}=\frac{a^{2}}{a^{2}-r^{2}-v^{2}} \\
& \text { hence, the, required, surface, area, is } \\
& s=2 \iint_{A}\left[1+\left(\frac{\partial^{z}}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}\right]^{\frac{1}{2}} d x d y=2 \iint_{A}\left\{\frac{a^{2}}{a^{2}-x^{2}-y^{2}}\right\}^{\frac{1}{2}} d x d y
\end{aligned}
$$

Where A the projection of the sphere on the xy-plane . we note that this projication is the area bounded by circle $x^{2}+y^{2}=a^{2}$.hence in A, θ varies from 0 to 2π

And r varies from 0 to a, where (r, θ) are the polar coordinates. put $x=\cos \theta, y=\sin \theta d x d y=r d r d \theta$

$$
\begin{aligned}
& \therefore s=2 \int_{\theta=0}^{2 \pi} \int_{r=0}^{a} \frac{a}{\sqrt{a^{2} r^{2}}} r d r d \theta=2 \int_{0}^{2 \pi} d \theta \times \int_{0}^{a} \frac{r}{\sqrt{a^{2}-r^{2}}} r d r \\
& =2 a \int_{0}^{2 \pi} d \theta-\sqrt{a^{2} r^{2}}{ }_{0}^{a}=2 a \int_{0}^{2 \pi} \theta \frac{a^{2}}{\xi} \boldsymbol{p}_{0}^{2 \tau}=4 \pi a_{2}
\end{aligned}
$$

2) Find the surface area of the portion of the cylinder $x^{2}+z^{2}=a^{2}$ which lies inside the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}+=\mathrm{a}^{2}$.

Soln: Let s_{1} be the cylinder $x^{2}+z^{2}=a^{2}$ and s_{2} be the cylinder $x^{2}+z^{2}=a^{2}$ for the cylinder $s_{1}=\frac{\partial z}{\partial x}=-\frac{x}{z}, \frac{\partial_{z}}{\partial y}=0$ so that, $1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=1+\frac{x^{2}}{\gamma^{2}}+0=\frac{\gamma^{2}+r^{2}}{\gamma^{2}}=\frac{\pi^{2}}{\pi^{2}-r^{2}}$

The required surface area is twice the surface area of the upper part of the cylinder S_{1} which lies inside the cylinder $x^{2}+y^{2}=a^{2}$. Hence the required surface area is

$$
s=2 \iint_{A}\left[1+\left(\frac{\partial^{z}}{\partial x}\right)^{2}+\left(\frac{\partial_{z}}{\partial y}\right)^{2}\right]^{\frac{1}{2}} d A=2 \iint_{a} \frac{a}{\sqrt{a^{2}-r^{2}}} d A
$$

Where A is the projection of the cylinder S_{1} on the x y plane that llies with in the cylinder $S_{2}: x^{2}+y^{2}=a^{2}$ ．In Ax varies from－a toa and for each x, y varies from－$\sqrt{I_{\pi} z^{2}} t o \sqrt{I^{z} r^{2}}$

$$
\begin{aligned}
& s=2 \int_{x=-a}^{a} \int_{y=-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \frac{a}{\sqrt{a^{2}-x^{2}}} d y d x \\
& =2 a \int_{-a}^{a} \frac{1}{\sqrt{a^{2}-x^{2}}} \mathbf{\}_{=\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} d x \\
& =2 a \int_{-a}^{a} \frac{1}{\sqrt{a^{2}-r^{2}}} \int \sqrt{a^{2}-r^{2}} d x \\
& \left.=4 a \int_{-a}^{a} \operatorname{Ax} 4 a 【_{=a}^{\bar{a}}=4 a 【-<a\right\rangle=8 a^{2}
\end{aligned}
$$

Volume underneath a surface：

Let $\mathrm{Z}=(\mathrm{x}, \mathrm{y})$ be the equation of the surface S ．let P be a point on the surface S ．let A denote the orthogonal projection of S on the xy －plane ．divide it into area elements by drawing thre lines parallel to the axes of x and y on the elements $\partial x \partial y$ as base ，erect a cylinder having generators parallel to QZ and meeting the surface S in an element of area $\widehat{\omega}$ ．the volume underneath the surface bounded by S ，its projection A on xy plane and the cylinder with generator through the boundary curve of A on the xy plane and parallel to OZ is given by，
$v=\iint_{A} f \mathbf{\}, y d x d y=\iint_{A} Z d x d y$
1）Find the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
Sol：Let S denote the surface of the ellipsoid above the xy－plane ．the equation of this surface is $\begin{aligned} & \left.\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}={ }^{1}\right\rangle^{0} \\ & \text { or，} z=c\left(-\frac{x^{2} y^{2}}{a^{2} b^{2}}\right)^{\frac{1}{2}}=f, y^{-}\end{aligned}$

The volume of the region bounded by this surface and the $x y$－plane gives the volume v_{1} of the upper half of the full ellipsoid ．this volume is given by $v_{1}=\iint_{A} \mathbb{\&}, y \underset{d}{ } x d y$

Where A is the area of the projection of S on the xy plane．

Note that A is the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\therefore v_{1}=\iint_{A}\left(1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)^{\frac{1}{2}} d x d y=c\left(\frac{2}{3} \pi^{a b}\right)$
$=\frac{2}{3} \pi a c$
The volume of the full ellipsoid is $2 \mathrm{v}_{1}$.thus the required volume is $v=2 \cdot \frac{2}{3} \pi a b c=\frac{4}{3} \pi a b c$

Volume of revolution using double integrals:

Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be a simples closed plane curves enclosing an area A. suppose this curve is revolved about the x -axis. Then it can be proved that the volume of the solid generated is given by the formula.
$v=\iint_{A} 2 \pi y d A=\iint 2 \pi y d x d y$
In polar form this formula becomes $v=\iint_{A} r^{2} \sin \theta d \theta d r$

1) Find the volume generated by the revolution of the cardioids $r=a(1+\cos \theta)$ about the intial line.

Sol: The given cardioids is symmetrical about the initial line $\theta=0$.therfore the volume generated by revolving the upper part of the curve about the initial line is same as the volume generated by revolving the whole the curve .for the upper part of the curve θ varies form 0 to π and for each θ, r varies from 0 to $\mathrm{a}(1+\cos \theta)$,therefore the required volume is

$$
\begin{aligned}
& v=\int_{\theta=0}^{\pi} \int_{r=0}^{a(1+\cos \theta)} 2 \pi r^{2} \operatorname{si\theta } \theta d r d \theta \\
& =2 \pi \int_{0}^{\pi} \sin \theta\left\{\left[\frac{r^{3}}{3}\right]_{0}^{a \gamma+\cos \theta)}\right\} d \theta \\
& =\frac{2 \pi a^{3}}{3} \int_{0}^{\pi}+\cos \theta^{-3} \sin \theta d \theta \\
& =\frac{2 \pi a^{3}}{3}\left[\frac{1+\cos \theta^{7}}{4}\right]_{0}^{\pi}=\frac{8}{3} \pi a^{3}
\end{aligned}
$$

Computation of volume by triple integrals:

Recall the expression,

As a particular case, where $f(x, y, z)=1$, this expression becomes

$$
\begin{equation*}
\int_{v} d v=\iiint_{R} d x d y d z=\int_{a}^{b} \int_{g}^{h} \int_{(x, y)} d z d y d x . \tag{1}
\end{equation*}
$$

The integral $\int_{v} d v$ represents the volume V of the region R . thus expression (1)may be used to compute V .

If $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ are changed to $(\mathrm{u}, \mathrm{v}, \mathrm{w})$ we obtained the following expression for the volume,
$\iint_{v} d v=\iiint_{R} d x d y d z=\iiint_{R^{*}} j d u d v d w$.
Taking $(u, v, w)=(R, \varphi, z)$ in (2)
We obtained $\int=\iiint_{R} R d R d \phi d z \ldots \ldots \ldots \ldots$. (3) an expression for volume in terms of $d v$
cylindrical polar coordinates.
Similarly $\int=\iiint_{R} r^{2} \sin \theta d r d \theta d \phi$ an expression for volume in terms of spherical polar $d v$
coordinates.
PROBLEMS:

1) Find the volume common to the cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$

Soln: In the given region z varies from $-\sqrt{I^{z} x^{2}}$ to $+\sqrt{a z^{2}}$ and y varies from $-\sqrt{\Omega^{z} r^{2}}$ to $+\sqrt{\sigma^{z} r^{2}}$.for $\mathrm{z}=0, \mathrm{y}=0 \mathrm{x}$ varies from -a to a

Therefore, required volume is

$$
=\int_{x=-a}^{a} \int_{y=-a \sqrt[2]{ } \sqrt{x^{2}-z}}^{=-\sqrt{a^{2}-x^{2}}} \int_{a^{x^{2}}}^{\sqrt{a^{2}}} \int^{x^{2}} d z d y d x
$$

$$
=\int_{-a-\sqrt{a^{2}-}}^{a} \int_{x^{2}}^{\sqrt{a^{2}-x^{2}}} z \underbrace{\sqrt{a^{2}-x^{2}}}_{-\sqrt{a^{2}-x^{2}}} d y d x
$$

$$
=\int_{-a-\sqrt{a^{2}-x^{2}}}^{a} \int_{a^{2}-x^{2}}^{\sqrt{a^{2}}} d y d x
$$

$$
=2 \int_{-a}^{a}\left\{\int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \sqrt{a^{2}-x^{2}} d y d x\right.
$$

$$
=2 \int_{-a}^{a}\left[\sqrt{a^{2}-x^{2} y}\right]_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} d x
$$

$$
=2 \int_{-a}^{a} \sqrt{a^{2}-x^{2}} \sqrt[2]{a^{2}-x^{2}} d x
$$

$$
=4 \int_{-a}^{a} a^{2}-x^{2} \quad d x=4\left[a^{2} x \frac{x^{3}}{3}\right]_{-a}^{a}
$$

$$
=4\left[\left(a^{3}-\frac{a^{3}}{3}\right)-\left(-n^{3}+\frac{a^{3}}{3}\right)\right]
$$

$$
=4\left[2 a^{3}-\frac{2 a^{3}}{3}\right]=\frac{16 a^{3}}{4}
$$

2) Find the volume bounded by the cylinder $X^{2}+Y^{2}=4$ and the planes $y+z=3$ and $z=0$

Soln: Here z varies from 0 to $3-\mathrm{y}$, y varies from () to () and x varies from -2 to 2
\therefore Required volume

$$
\begin{aligned}
V & =\int_{x=-2}^{2} \int_{y=-\sqrt{4-r^{2}}}^{\sqrt{4-r^{2}}} \int_{z=0}^{3-y} d z d y d x \\
& =\int_{-2}^{2} d x \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} d y \int_{0}^{3-y} d z=\int_{-2}^{2} d x \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} d y z \\
& =\int_{-2}^{2} d x \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} 3-y \quad d y \int_{-2}^{2} d x\left(3-\frac{y^{2}}{2}\right)_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-2}^{2}\left[3 \sqrt{4-r^{2}}-\frac{4-x^{2}}{2}+3 \sqrt{4-x^{2}}+\frac{4-x^{2}}{2}\right] d x \\
& =6 \int_{-2}^{2} \sqrt{4-x^{2}} \quad d x 6\left[\frac{x}{2} \sqrt{4-r^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{-2}^{2} \\
& =6\left[2 \sin ^{-1} \frac{2}{2}-2 \sin ^{-1}\left(-\frac{2}{2}\right)\right]=12\left[\frac{\pi}{2}+\frac{\pi}{2}\right]=12 \pi
\end{aligned}
$$

Curvilinear coordinates:

Introduction: the cartesian co-ordinate system is not always convenient to solve all sorts of problems. Many a time we come across a problem having certain symmetries which decide the choice of a co ordinates systems .our experience with the cylindrical and spherical polar coordinates systems places us in a good position to analyse general co-ordinates systems or curvilinear coordinates. Any suitable set of three curved surface can be used as reference surface and their intersection as the reference axes. Such a system is called curvilinear system.

Definition:

The position of a point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ in Cartesian co-ordinates system is determined by intersection of three mutually perpendicular planes $\mathrm{x}=\mathrm{k}_{1}, \mathrm{y}=\mathrm{k}_{2}$, and $\mathrm{z}=\mathrm{k}_{3}$ where $\mathrm{k}_{\mathrm{i}}(\mathrm{i}=1,2,3)$

Are constants in curvilinear system, the axes will in general be curved. Let us the denote the curved coordinate axis by and respectively.

It should be noted that axis is the intersection of two surfaces $u_{1}=$ constant and $u_{2}=$ constant and so on.

Cartesian coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) are related to $\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$ by the relations which can be expressed as $x=x\left(u_{1}, u_{2}, u_{3}\right) ; \quad y=y\left(u_{1}, u_{2}, u_{3}\right): z=z\left(u_{1}, u_{2}, u_{3}\right) \ldots \ldots(1)$

Equation (1) gives the transformation equation from 1 coordinates system to another.
The inverse transformation equation can be written as $\mathrm{u}_{1}=\mathrm{u}_{1}(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{u}_{2}=\mathrm{u}_{2}(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{u}_{3}=\mathrm{u}_{3}$ ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) $\ldots \ldots$. (2).
(1) And (2) are called transformation of coordinates.

Each point $\mathrm{p}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ in space determine a unique triplet of numbers $\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$ and conversely to each such triplet there is a unique point in space. The trial $\left(u_{1}, u_{2}, u_{3}\right)$ are called curvilinear coordinates of the point p .

Unit vectors and scale factors:

Let $\hat{r}=x \hat{i}+\hat{y j}+z_{k}$ be the position vector of the point p . then the set of equation $\mathrm{x}=\mathrm{x}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$,

$$
\left.\mathrm{y}=\mathrm{y}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right), \mathrm{z}=\mathrm{z}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right) \text { can be written as } \boldsymbol{F} \stackrel{\Downarrow}{r} \mathbf{l}_{1}, u_{2}, u_{3}\right)
$$

A tangent vector to the u curve at p (for which u and u are constant) is $\frac{\partial \square}{\partial u_{1}}$
The unit tangent vector in this direction is

$$
\left.I_{2}=\frac{\frac{\partial \rrbracket}{\partial}}{\frac{\partial u_{1}}{\left\lvert\, \frac{\partial \rrbracket}{r}\right.}} \right\rvert\,=\frac{\left.\frac{\partial \square}{\partial u_{1}} \right\rvert\,}{\frac{\partial u_{1}}{h_{1}}}
$$

So that \quad where $h_{1}=\left|\frac{\partial r_{r}}{\partial u_{1}}\right|$

$$
h_{1} \hat{e}_{1}=\frac{\partial \rrbracket}{\partial u_{1 \square}}
$$

Similarly if e_{2} ande $_{3}$ and are unit tangent vector to the u and u curves at p respectively.
Than

$$
\mathcal{I}_{2}=\frac{\frac{\partial \square}{\partial u_{2}}}{\left|\frac{\partial \square}{\partial u_{2}}\right|}=\frac{\frac{\partial \square}{\partial u_{2}}}{h_{2}}
$$

So that

$$
h_{2} \hat{e}_{2}=\frac{\partial \rrbracket}{\partial u_{2}}
$$

And $\quad h_{3} \hat{e}_{3}=\frac{\partial \square}{\partial u_{3}}\left(\quad\right.$ where $\left.h_{3}=\left|\frac{\partial \square}{\frac{r}{r}}\right|\right)$
The quantities h_{1}, h_{2} and h_{3} are called scale factors. The unit vectors are in the directions of increasing $\mathrm{u}_{1}, \mathrm{u} 2$, and u_{3} respectively.

Relation between base vectors and normal vectors:

We have:

$$
\frac{\partial_{r}^{\square}}{\partial u_{1}}=h_{1} \hat{e}_{1} ; \frac{\partial \square}{\partial u_{2}}=h_{2} \hat{e}_{2} ; \frac{\partial \square}{\partial u_{3}}=h_{3} \hat{e}_{3} ;
$$

$$
\Rightarrow \square_{\Omega 1}=\frac{1}{h_{1}} \frac{\partial r}{\partial u_{1}} ; e_{2}=\frac{1}{h_{2}} \frac{\partial r}{\partial u_{2}} ; e_{3}=\frac{1}{h_{3}} \frac{\partial r}{\partial u_{3}}
$$

$$
\begin{aligned}
& i . e ; ; \vec{e}_{1}=\frac{1}{h_{1}}\left[\frac{\partial x}{\partial u_{1}} \hat{i}+\frac{\partial y}{\partial u_{1}} \hat{i}+\frac{\partial \bar{r}}{\partial u_{1}} \hat{k}\right] \\
& \overbrace{2}=\frac{1}{h_{2}}\left[\frac{\partial x}{\partial u_{2}} \hat{i}+\frac{\partial y}{\partial u_{2}} \hat{\imath}+\frac{\partial \bar{r}}{\partial u_{2}} \hat{k}\right] \\
& { }_{r_{3}}=\frac{1}{h_{3}}\left[\frac{\partial x}{\partial u_{3}} \hat{i}+\frac{\partial y}{\partial u_{3}} \hat{\jmath}+\frac{\partial \bar{r}}{\partial u_{3}} \hat{k}\right] \\
& \square r=x \hat{i}+\hat{j}+z \hat{k} \\
& \stackrel{\rightharpoonup}{e}_{1}^{[} \hat{i}=\frac{1}{h_{1}} \frac{\partial^{x}}{\partial u_{1}} ; \vec{e}_{2} \hat{i}=\frac{1}{h_{2}} \frac{\partial x}{\partial u_{2}} ; \bar{e}_{3} \cdot \hat{i}=\frac{1}{h_{3}} \frac{\partial x}{\partial u_{3}} \\
& { }_{e}^{e} \cdot \hat{j}=\frac{1}{h_{1}} \frac{\partial^{y}}{\partial u_{1}} ;{ }_{e}{ }_{2} \cdot \hat{j}=\frac{1}{h_{2}} \frac{\partial y}{\partial u_{2}} ;{ }_{3}{ }_{3} \hat{j}=\frac{1}{h_{3}} \frac{\partial y}{\partial u_{3}} \\
& { }_{e_{1}}^{[} \cdot \hat{k}=\frac{1}{h_{1}} \frac{\partial z}{\partial u_{1}} ;{ }_{e}^{e} \cdot \hat{k}=\frac{1}{h_{2}} \frac{\partial z}{\partial u_{2}} ;{ }_{3}^{[} \cdot \hat{k}=\frac{1}{h_{3}} \frac{\partial z}{\partial u_{3}}
\end{aligned}
$$

Elementary arc length:

$$
\begin{aligned}
& \text { Let } r= \\
& \therefore d^{r}=\frac{\partial^{r}}{\partial u_{1}} d u_{1}+\frac{\partial^{r}}{\partial u_{2}} d u_{2}+\frac{\partial^{r}}{\partial u_{3}} d u_{3}
\end{aligned}
$$

$i . e ; d \vec{r}=\hat{e}_{1} h_{1} d u_{1}+\hat{e}_{2} h_{2} d u_{2}+\hat{e}_{3} h_{3} d u_{3}$
If ds represents the differential arc distance between two neighbouring points

$$
\begin{aligned}
& \mathbb{4}_{1}, u_{2}, u_{3} \text { ă } n d \mathbf{4}_{1-}+d u_{1}, u_{2}+d u_{2}, u_{3}+d u_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { or, ,,,, } d s^{2}=h_{1}^{2} d u_{1}^{2}+h_{2}^{2} d u_{2}^{2}+h_{3}^{2} d u_{3}^{2}
\end{aligned}
$$

On the curve u_{1} cure u_{2} and u_{3} are constants $\quad \therefore d u_{2}=d u_{3}=0 \therefore d s=h_{1} d u_{1}=\frac{\partial \square}{\partial u_{1}} d u_{1}$
Similarly $d s=h_{2} d u_{2}, d s=h_{3} d u_{3}$

Elementary volume element:

Let p be one of the vertices of an infinitesimal parallelepiped. The length of the edges of the parallelepiped are $h_{1} d u_{1}, h_{2} d u_{2}, h_{3} d u_{3}$

Volume of the parallelepiped $=d v=h_{1} h_{2} h_{3} d u_{1}{d u_{2}}_{2} \mathrm{du}_{3}$ is called the volume element.
$\mathrm{dv}=\left[\left(\hat{e}_{1} h_{1} d u_{1}\right)\left(\hat{e}_{2} h_{2} d u_{2}\right)\right] \times \hat{e}_{3} h_{3} d u_{3}$
$\mathrm{v}=\frac{\partial(x, y, z)}{\partial\left(u_{1}, u_{2}, u_{3}\right)}=\mathrm{du}_{1} \mathrm{du}_{2} \mathrm{du}_{3}$
$=\left(j \frac{x y z}{u_{1} u_{2} u_{3}}\right) \mathrm{du}_{1} \mathrm{du}_{2} \mathrm{du}_{3}$
Jacobian is positive since each h_{1}, h_{2}, h_{3} of are positive.

Expression for $\nabla \phi, \operatorname{div} F, \operatorname{curlFan} \nabla^{2} \phi$ in orthogonal curvilinear coordinates:

Suppose the transformations from Cartesian coordinates $\mathrm{x}, \mathrm{y}, \mathrm{z}$ to curvilinear coordinates u_{1}, u_{2}, u_{3} be $\mathrm{x}=\mathrm{f}\left(u_{1}, u_{2}, u_{3}\right), \mathrm{y}=\mathrm{g}\left(u_{1}, u_{2}, u_{3}\right), \mathrm{z}=\mathrm{h}\left(u_{1}, u_{2}, u_{3}\right)$ where $\mathrm{f}, \mathrm{g}, \mathrm{h}$ are single valued function with continuous first partial derivatives in some given region. The condition for the function $\mathrm{f}, \mathrm{g}, \mathrm{h}$ to be independent is if the jacobian

$$
\frac{\partial(x, y, z)}{\partial\left(u_{1}, u_{2}, u_{3}\right)}=\left|\begin{array}{ccc}
\frac{\partial_{x}}{} & \frac{\partial_{x}}{\partial_{u_{1}}} & \frac{\partial_{x}}{\partial_{u_{2}}} \\
\frac{\partial_{u_{3}}}{\partial_{y}} & \frac{\partial_{y}}{\partial_{u_{1}}} & \frac{\partial_{y}}{\partial_{u_{2}}} \\
\frac{\partial_{u_{3}}}{\partial_{z}} & \partial_{z} & \partial_{z} \\
\frac{\partial_{u_{1}}}{\partial_{u_{2}}} & \frac{\partial_{u_{3}}}{\partial_{0}}
\end{array}\right| \neq 0
$$

When this condition is satisfied, u_{1}, u_{2}, u_{3} can be solved as single valued functions odf x, y and z with continuous partial derivatives of the first order.
Let p be a point with position vector $\quad \stackrel{\square}{\square}=x \hat{i}+\hat{y j}+z k$ in the Cartesian form. The change of coordinates to u_{1}, u_{2}, u_{3} makes r a function of u_{1}, u_{2}, u_{3}. The vector $\frac{\partial \square}{\partial u_{1}}, \frac{\partial_{r}}{\partial u_{2}}, \frac{\partial_{r}}{\partial u_{3}}$ are along
tangent to coordinate curves $u_{1}=c_{2}, u_{2}=c_{2}, u_{3}=c_{3}$. Let $\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}$ denote unit vector along these tangents. Then $\frac{\partial r_{r}}{\partial u_{1}}=\hat{e}_{11} h \frac{\partial^{r}}{\partial u_{2}}=\hat{e}_{2} h \frac{\partial^{r}}{\partial u_{3}}=\hat{e_{3}} h$

Where $\mathrm{h}_{1}=\frac{\partial_{r}^{\square}}{\partial u_{1}}, \mathrm{~h}_{2}=\frac{\partial_{r}^{\square}}{\partial u_{2}}, \mathrm{~h}_{3}=\frac{\partial_{r}}{\partial u_{3}}$
If $\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}$ are such that $\hat{e}_{1}, \hat{e}_{2}=0, \hat{e}_{2}, \hat{e}_{3}=0, \hat{e}_{3} . \hat{e}_{1}=0$
Then the curvilinear coordinates will be orthogonal and $\hat{e}_{1}=\hat{e}_{2} \times \hat{e}_{3}, \hat{e}_{2}=\hat{e}_{3} \times \hat{e}_{1} \hat{e}_{3}=\hat{e}_{1} \times \hat{e}_{2}$
Now $\stackrel{\square}{r}=r\left(u_{\mathrm{p}} u_{2}, u_{3}\right) \Rightarrow d r=\frac{\partial_{r}}{\partial u_{1}} d u_{1}+\frac{\partial \rrbracket}{\partial u_{2}} d u_{2}+\frac{\partial_{r}}{\partial u_{3}} d u_{3}$

Gradient in orthogonal curvilinear coordinates:

Let $\Phi(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be a scalar point function in orthogonal curvilinear coordinates.

$$
\text { letgrad } \phi=\phi \hat{e}_{1}+\phi \hat{e}_{2}+\phi \hat{e}_{3} \text { where } \phi_{1} \phi_{2}, \phi_{3} \text { are functions of } u_{1}, u_{2}, u_{3}
$$

$$
\begin{align*}
& d \phi=\frac{\partial \phi}{\partial u_{1}} d u_{1}+\frac{\partial \phi}{\partial u_{2}} d u_{2}+\frac{\partial \phi}{\partial u_{3}} d u_{3} \ldots \ldots . . .(1) \tag{1}\\
& d r=\$_{1} h_{1} d u_{1}+\hat{e}_{2} h_{2} d u_{2}+\hat{e}_{3} h_{3} d u_{3} \\
& \text { alsod } \phi=\operatorname{grad} \phi \cdot d r \Rightarrow \boldsymbol{\phi}_{1} \hat{e}_{1}+\phi_{2} \hat{e}_{2}+\phi_{3} \hat{e}_{3} ; h_{1} h_{1} d u_{1}+\hat{e}_{2} h_{2} d u_{2}+\hat{e}_{3} h_{3} d u_{3} \\
& \text { i.e, } d \phi=\phi_{1} h_{1} d u_{1}+\phi_{2} h_{2} d u_{2}+\phi_{3} h_{3} d u_{3} \ldots \ldots \ldots \ldots(2)
\end{align*}
$$

$$
\text { comparing(1)...and....(2), wehave } \phi_{1} h_{1}=\frac{\partial \phi}{\partial u_{1}}, \phi_{2} h_{2}=\frac{\partial \phi}{\partial u_{2}}, \phi_{3} h_{3}=\frac{\partial \phi}{\partial u_{3}}
$$

$$
\therefore \phi_{1}=\frac{1}{h_{1}} \frac{\partial \phi}{\partial u_{1}} \hat{e}_{1}, \phi_{2}=\frac{1}{h_{2}} \frac{\partial \phi}{\partial u_{2}} \hat{e}_{2}, \phi_{3}=\frac{1}{h_{3}} \frac{\partial \phi}{\partial u_{3}} \hat{e}_{3}
$$

$$
\therefore \operatorname{grad} \varphi=\nabla \varphi=\frac{1}{h_{1}} \frac{\partial \varphi}{\partial u_{1}} d u_{1} \hat{e}_{1}+\frac{1}{h_{2}} \frac{\partial \varphi}{\partial u_{2}} d u_{2} \hat{e}_{2}+\frac{1}{h_{3}} \frac{\partial \varphi}{\partial u_{3}} d u_{3} \hat{e}_{3} .
$$

$$
\begin{equation*}
\nabla=\frac{\hat{e}_{1}}{h_{1}} \frac{\partial}{\partial u_{1}}+\frac{\hat{e}_{2}}{h_{2}} \frac{\partial}{\partial u_{2}}+\frac{\hat{e}_{3}}{h_{3}} \frac{\partial}{\partial u_{3}} \tag{4}
\end{equation*}
$$

$$
\text { from..(3) } \nabla u_{1}=\frac{\hat{e}_{+}}{h_{1}}, \nabla u_{2}=\frac{\hat{e}_{2}}{h_{2}}, \nabla u_{3}=\frac{\hat{e}_{3}}{h_{3}} .
$$

here.. $\nabla u_{1}, \nabla u_{2} \quad \nabla u_{3}$

Are vectors along normal to the coordinates surfaces $\mathrm{u}_{1}=\mathrm{c}_{1}, \mathrm{u}_{2}=\mathrm{c}_{2}, \mathrm{u}_{3}=\mathrm{c}_{3}$
Using (4) in (3)we get $\nabla=\nabla u_{1} \frac{\hat{e}_{1}}{h_{1}} \frac{\partial}{\partial u_{1}}+\nabla u_{2} \frac{\hat{e}_{2}}{h_{2}} \frac{\partial}{\partial u_{2}}+\nabla{ }^{u}{ }_{3} h_{3} \frac{\hat{e}_{3}}{\partial u_{3}}-\partial$.
Expression for divergence of a vector functions in orthogonal curvilinear coordinates.
Let $f=u_{1}, u_{2}, u_{3}$ be a vector point function such that $\underset{=f_{1}}{\square} \quad+f_{2} \hat{e}_{2}+f_{3} \hat{e}_{3}$ where $\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}$ are components f along $\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}$ respectively.

$$
\begin{aligned}
& f=\nabla \cdot f=\nabla \cdot\left(f_{1} \hat{e}_{1}\right)+\nabla \cdot\left(f_{2} \hat{e}_{2}\right)+\nabla \cdot\left(f_{3} \hat{e}_{3}\right) \\
& \text { consider, }, \nabla \cdot\left(f_{1} \hat{e}_{1}\right)=\nabla \cdot\left(f_{1} \hat{e}_{2} \times \hat{e}_{3}\right)=\nabla \cdot\left(f_{1} h_{2} h_{3} \nabla u_{2} \times \nabla u_{3}\right)(u \sin g . . \\
& \therefore \nabla \cdot\left(f_{1} \hat{e}_{1}\right)=\nabla \cdot\left(f_{1} h_{2} h_{3}\right) \cdot\left(\nabla u_{2} \times \nabla u_{3}\right)+f_{1} h_{2} h_{3} \nabla \cdot\left(\nabla u_{2} \times \nabla u_{3}\right) \\
& (u \sin g\rangle \cdot(\phi A)=\nabla \phi \cdot A+\phi \nabla \cdot A) \\
& \text { also.. } \nabla \times \nabla u_{2}=0=. \nabla \times \nabla u_{3} \sin \text { ce..curl..grad } \phi=0
\end{aligned}
$$

$$
\begin{aligned}
& =\nabla \cdot\left(f_{1} h_{2} h_{3}\right) \cdot \frac{\hat{e_{1}}}{h_{2} h_{3}} \\
& \therefore \nabla \cdot\left(f_{1} \hat{e_{1}}\right) \frac{1}{h_{1} h_{2}} \frac{\partial}{h \hat{\partial}_{3} u_{1}}\left(f f_{1} h_{2} h_{3}\right) \\
& \operatorname{similarly}_{\nabla} \cdot\left(\underset{1}{2} \hat{e}_{2}\right)=\frac{1}{h_{1} h_{2}} h \frac{\partial}{\hat{\partial} u_{2}}\left(f_{2} h_{3} h_{1}\right) \\
& \nabla \cdot\left(f_{1} \hat{e}_{3}\right) \frac{1}{h_{1} h_{2}} \frac{\partial}{h} \frac{\partial}{\partial u_{3}}\left(f_{3} h h_{2}\right) \\
& \stackrel{\|}{\|}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(f h_{1} h_{3}\right)^{4}+\frac{\partial}{\partial u_{2}}\left(f_{2} h_{3} h_{1}\right)+\frac{\partial}{\partial u_{3}}\left(f_{3} h_{1} h_{2}\right)\right]
\end{aligned}
$$

Expression for curlF in orthogonal curvilinear coordinates

Let $\stackrel{\square}{F}=\left(u_{1}, u_{2}, u_{3}\right)$ be a vector point function such that $f=f_{1} \hat{e}_{1}+f_{2} \hat{e}_{2}+f_{3} \hat{e}_{3}$
[
$\operatorname{curl} F=\operatorname{curl}\left(f_{1} \hat{e}_{1}\right)+\operatorname{curl}\left(f_{2} \hat{e}_{2}\right)+\operatorname{curl}\left(f_{3} \hat{e}_{3}\right)$
Consider $\operatorname{curl}\left(f_{1} \hat{e}_{1}\right)=\operatorname{curl}\left(f_{1} h_{1} \nabla u_{1}\right)=f_{1} h_{1} \operatorname{curl}\left(\nabla u_{1}\right)+\operatorname{grad}_{1} h_{1} \times \nabla u_{1}$
$=\operatorname{grad} f_{1} h_{1} \times \nabla_{u_{1}}$
$=\left[\frac{1}{h_{1}} \frac{\partial}{\partial u_{1}}\left(f f_{1}\right) \hat{e_{1}}+\frac{1}{h_{2}} \frac{\partial}{\partial u_{2}}\left(f_{1} h\right) \hat{e}_{2}+\frac{1}{h_{3}} \frac{\partial}{\partial u_{3}}\left(f f_{1} h\right) \hat{e}_{3}^{\wedge}\right]_{\times} \frac{\hat{e}_{1}}{h_{1}} u \sin g(3) \operatorname{and}(5)$
$=\frac{1}{h_{1} h_{2} h_{2}}\left[\left\{\frac{\partial}{\partial u_{3}}\left(f_{1} h_{1}\right)\right\} \hat{e}_{2} h_{2}-\left\{\frac{\partial}{\partial u_{2}}\left(f_{1} h_{1}\right)\right\} \hat{e}_{3} h_{3}\right]$
similarly
$\operatorname{curl}\left(f_{2} \hat{e_{2}}\right)=\frac{1}{h_{1} h_{2} h_{3}}\left[\left\{\frac{\partial}{\partial u_{1}}\left(f_{2} h_{2}\right)\right\} \hat{e}_{3} h_{3}-\left\{\frac{\partial}{\partial u_{3}}\left(f_{2} h_{2}\right)\right\} \hat{e}_{1} h_{1}\right]$
$\operatorname{curl}\left(f_{3} \hat{e}_{3}\right)=\frac{1}{h_{1} h_{2} h_{3}}\left[\left\{\frac{\partial}{\partial u_{2}}\left(f_{3} h_{3}\right)\right\} \hat{e}_{1} h_{1}-\left\{\frac{\partial}{\partial u_{1}}\left(f_{3} h_{3}\right)\right\} \hat{e}_{2} h_{2}\right]$
\therefore curlf $=h_{1} h_{2} h_{3}\left[\begin{array}{l}\left\{\frac{\partial}{\partial u_{2}}\left(f_{3} h_{3}\right)-\frac{\partial}{\partial u_{3}}\left(f_{2} h_{2}\right)\right\} \hat{e}_{1} h+\left\{\frac{\partial}{\partial u_{3}}\left(f_{1} h_{1}\right)-\frac{\partial}{\partial u_{1}}\left(f_{3} h_{3}\right)\right\} \hat{e}_{2} h_{2} \\ \left.+\left\{\begin{array}{l}\frac{\partial}{u_{1}}\left(f_{2} h\right)-\frac{\partial}{\partial u_{2}}\left(f_{1} h\right)_{1}\end{array}\right\} \hat{e}_{3}\right\}_{3}\end{array}\right]$
Thus curlf $=\frac{1}{h_{1} h_{2}}\left|\begin{array}{ccc}\hat{e}_{1} h_{1} & \hat{e}_{2} h_{2} & \hat{e}_{3} h_{3} \\ \frac{\partial}{\partial u_{1}} & \frac{\partial}{\partial u_{2}} & \frac{\partial}{\partial u_{3}} \\ f_{1} h_{1} & f_{2} h_{2} & f_{3} h_{3}\end{array}\right|$ is the expression for curlf in orthogonal curvilinear coordinates.

Expression for $\nabla^{2} \varphi$ in orthogonal curvilinear coordinates

Let $\phi=\phi\left(u_{1}, u_{2}, u_{3}\right)$ be a scalar function of $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}$
We know
$\nabla \phi=\frac{1}{h_{1}} \frac{\partial \phi}{\partial u_{1}} \dot{e}_{1}+\frac{1}{h_{2}} \frac{\partial \phi}{\partial u_{2}} \dot{e}_{2}+\frac{1}{h_{3}} \frac{\partial \phi}{\partial u_{3}} \hat{e}_{3}$
$\nabla^{2} \phi=\nabla\left\{\frac{1}{h_{1}} \frac{\partial \phi}{\partial u_{1}} \hat{e}_{1}+\frac{1}{h_{2}} \frac{\partial \phi}{\partial u_{2}} \hat{e}_{2}+\frac{1}{h_{3}} \frac{\partial \phi}{\partial u_{3}} \hat{e}_{3}\right\}$
$\nabla^{2} \varphi=\frac{1}{h_{1} h_{2}}\left[\frac{\partial}{h_{3} u_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial \varphi}{\partial u_{1}}\right)+\frac{\partial}{\partial u_{2}}\left(\frac{h_{1} h_{3}}{h_{2}} \frac{\partial \varphi}{\partial u_{2}}\right)+\frac{\partial}{\partial u_{3}}\left(\frac{h_{2} h_{1}}{h_{3}} \frac{\partial \varphi}{\partial u_{3}}\right)\right]$
This is the expression for $\nabla^{2} \varphi$ in orthogonal curvilinear coordinates.

BETA AND GAMMA FUNCTIONS

In this topic we define two special functions of improper integrals known as Beta function and Gamma function. These functions play important role in applied mathematics.

Definitions

1. The Beta function denoted by $\mathrm{B}(m, n)$ or $\beta(m, n)$ is defined by

$$
\begin{equation*}
\beta(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x,(m, n>0) \tag{1}
\end{equation*}
$$

2. The Gamma function denoted by $\Gamma(n)$ is defined by

$$
\begin{equation*}
\Gamma(n)=\int_{0}^{\infty} x^{n-1} \cdot e^{-x} d x \tag{2}
\end{equation*}
$$

Properties of Beta and Gamma Functions

1. $\quad \beta(m, n)=\beta(n, m)$
2. $\beta(m, n)=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x=\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} d x$
3. $\quad \beta(m, n)=2 \int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta$

$$
=2 \int_{0}^{\pi / 2} \sin ^{2 n-1} \theta \cos ^{2 m-1} \theta d \theta
$$

4. $\beta\left[\frac{p+1}{2}, \frac{q+1}{2}\right]=2 \int_{0}^{\pi / 2} \sin ^{p} \theta \cos ^{q} \theta d \theta$

$$
\begin{equation*}
=2 \int_{0}^{\pi / 2} \sin ^{q} \theta \cos ^{p} \theta d \theta \tag{5}
\end{equation*}
$$

5. $\quad \Gamma(n+1)=n \Gamma(n)$
6. $\quad \Gamma(n+1)=n!$, if n is a $+v e$ real number.

Proof 1. We have

$$
\begin{aligned}
\beta(m, n) & =\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x \\
& =\int_{0}^{1}(1-x)^{m-1}[1-(1-x)]^{n-1} d x
\end{aligned}
$$

Since $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$

$$
\begin{aligned}
& =\int_{0}^{1}(1-x)^{m-1}(1-1+x)^{n-1} d x \\
& =\int_{0}^{1} x^{n-1}(1-x)^{m-1} d x \\
& =\beta(n, m)
\end{aligned}
$$

Thus, $\beta(m, n)=\beta(n, m)$
Hence (1) is proved.
(2) By definition of Beta function,

$$
\beta(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x
$$

Substituting $x=\frac{1}{1+t}$ then $d x=\frac{-1}{(1+t)^{2}} d t$ when $x=0, t=\infty$ and when $x=1, t=0$.
Therefore,

$$
\beta(m, n)=\int_{\infty}^{0}\left[\frac{1}{1+t}\right]^{m-1}\left[1-\frac{1}{1+t}\right]^{n-1}\left\{\frac{-1}{(1+t)^{2}} d t\right\}
$$

$$
\begin{aligned}
& =\int_{\infty}^{0}\left(\frac{1}{1+t}\right)^{m-1}\left(\frac{t}{1+t}\right)^{n-1}\left\{\frac{-1}{(1+t)^{2}} d t\right\} \\
& =\int_{0}^{\infty} \frac{t^{n-1}}{(1+t)^{m-1+n-1+2}} d t \\
\beta(m, n) & =\int_{0}^{\infty} \frac{t^{n-1}}{(1+t)^{m+n}} d t=\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} d x
\end{aligned}
$$

Similarly, $\beta(n, m)=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x$
Since, $\quad \beta(m, n)=\beta(n, m)$, we get

$$
\beta(m, n)=\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+1}} d x=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x
$$

(3) By definition of Beta functions

$$
\beta(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x
$$

Substitute

$$
x=\sin ^{2} \theta \text { then } d x=2 \sin \theta \cos \theta d \theta
$$

Also when

$$
x=0, \theta=0
$$

when

$$
\begin{aligned}
x & =1, \theta=\frac{\pi}{2} \\
\therefore \quad \beta(m, n) & =\int_{0}^{\pi / 2}\left(\sin ^{2} \theta\right)^{m-1} \cdot\left(1-\sin ^{2} \theta\right)^{n-1} \cdot 2 \sin \theta \cos \theta d \theta \\
& =2 \int_{0}^{\pi / 2} \sin ^{2 m-2} \theta\left(\cos ^{2} \theta\right)^{n-1} \cdot \sin \theta \cos \theta d \theta \\
& =2 \int_{0}^{\pi / 2} \sin ^{2 m-2} \theta \cos ^{2 n-2} \theta \sin \theta \cos \theta d \theta \\
& =2 \int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta
\end{aligned}
$$

Since, $\quad \beta(m, n)=\beta(n, m)$, we have

$$
\begin{aligned}
\beta(m, n) & =2 \int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta \\
& =2 \int_{0}^{\pi / 2} \sin ^{2 n-1} \theta \cos ^{2 m-1} \theta d \theta
\end{aligned}
$$

(4) Substituting $2 m-1=p$ and $2 n-1=q$

So that $\quad m=\frac{p+1}{2}, n=\frac{q+1}{2}$ in the above result, we have

$$
\begin{aligned}
\beta\left(\frac{p+1}{2}, \frac{q+1}{2}\right) & =2 \int_{0}^{\pi / 2} \sin ^{p} \theta \cos ^{q} \theta d \theta \\
& =2 \int_{0}^{\pi / 2} \sin ^{q} \theta \cos ^{p} \theta d \theta
\end{aligned}
$$

(1) Substituting $q=0$ in the above result, we get

$$
\beta\left[\frac{p+1}{2}, \frac{1}{2}\right]=2 \int_{0}^{\pi / 2} \sin ^{p} \theta d \theta=2 \int_{0}^{\pi / 2} \cos ^{p} \theta d \theta
$$

(2) Substituting $p=0$ and $q=0$ in the above result

$$
\beta\left(\frac{1}{2}, \frac{1}{2}\right)=2 \int_{0}^{\pi / 2} d \theta=\pi
$$

(5) Replacing n by $(n+1)$ in the definition of gamma function.

$$
\Gamma(n)=\int_{0}^{\infty} x^{n-1} \cdot e^{-x} d x
$$

where $n=(n+1)$

$$
\Gamma(n+1)=\int_{0}^{\infty} x^{n} \cdot e^{-x} d x
$$

On integrating by parts, we get

$$
\begin{aligned}
\Gamma(n+1) & =\left[x^{n} \cdot\left(-e^{-x}\right)\right]_{0}^{\infty}-\int_{0}^{\infty}\left(-e^{-x}\right) \cdot n x^{n-1} d x \\
& =0+n \int_{0}^{\infty} e^{-x} x^{n-1} d x=n \Gamma(n)
\end{aligned}
$$

$$
\left[\text { since } \lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=0 \text {, if } n>0\right]
$$

Thus,

$$
\Gamma(n+1)=n \Gamma(n), \text { for } n>0
$$

This is called the recurrence formula, for the gamma function.
(6) If n is a positive integer then by repeated application of the above formula, we get

$$
\begin{aligned}
& \Gamma(n+1)=n \Gamma(n) \\
& =n \Gamma(n-1+1) \\
& =n(n-1) \Gamma(n-1) \text { (using above result) } \\
& =n(n-1)(n-2) \Gamma(n-2) \\
& \text {.. } \\
& =n(n-1)(n-2) \ldots \ldots . . .1 \Gamma(1) \\
& =n!\Gamma(1) \\
& =-\left[e^{-x}\right]_{0}^{\infty}=-(0-1)=1
\end{aligned}
$$

Hence $\quad \Gamma(n+1)=n!$, if n is a positive integer.
For example

$$
\Gamma(2)=1!=1, \Gamma(3)=2!=2, \Gamma(4)=3!=6
$$

If n is a positive fraction then using the recurrence formula $\Gamma(n+1)=n \Gamma(n)$ can be evaluated as follows.
(1) $\Gamma\left(\frac{3}{2}\right)=\Gamma\left(1+\frac{1}{2}\right)=\frac{1}{2} \Gamma\left(\frac{1}{2}\right)$
(2) $\Gamma\left(\frac{5}{2}\right)=\Gamma\left(\frac{3}{2}+1\right)=\frac{3}{2} \Gamma\left(\frac{3}{2}\right)$
(3) $\Gamma\left(\frac{7}{2}\right)=\Gamma\left(\frac{5}{2}+1\right)=\frac{5}{2} \Gamma\left(\frac{5}{2}\right)$

$$
\begin{aligned}
& =\frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \Gamma\left(\frac{1}{2}\right) \\
& =\frac{15}{8} \Gamma\left(\frac{1}{2}\right) .
\end{aligned}
$$

Relationship between Beta and Gamma Functions

The Beta and Gamma functions are related by

$$
\begin{equation*}
\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)} \tag{7}
\end{equation*}
$$

Proof. We have $\quad \Gamma(n)=\int_{0}^{\infty} x^{n-1} \cdot e^{-x} d x$
Substituting $x=t^{2}, \quad d x=2 t d t$, we get

$$
\begin{align*}
\Gamma(n) & =\int_{0}^{\infty}\left(t^{2}\right)^{n-1} e^{-t^{2}} \cdot 2 t d t \\
& =2 \int_{0}^{\infty} t^{2 n-1} \cdot e^{-t^{2}} d t \\
\Gamma(n) & =2 \int_{0}^{\infty} x^{2 n-1} e^{-x^{2}} d x \tag{i}
\end{align*}
$$

Replacing n by m, and ' x ' by ' y ', we have

$$
\begin{equation*}
\Gamma(m)=2 \int_{0}^{\infty} y^{2 m-1} e^{-y^{2}} d y \tag{ii}
\end{equation*}
$$

Hence

$$
\begin{align*}
\Gamma(m) \cdot \Gamma(n) & =\left\{2 \int_{0}^{\infty} x^{2 n-1} e^{-x^{2}} d x\right\}\left\{2 \int_{0}^{\infty} y^{2 m-1} e^{-y^{2}} d y\right\} \\
& =4 \int_{0}^{\infty} \int_{0}^{\infty} x^{2 n-1} e^{-x^{2}} y^{2 m-1} \cdot e^{-y^{2}} d x d y \\
& =4 \int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} x^{2 n-1} y^{2 m-1} d x d y \tag{iii}
\end{align*}
$$

We shall transform the double integral into polar coordinates.
Substitute $x=r \cos \theta, y=r \sin \theta$ then we have $d x d y=r d r d \theta$
As x and y varies from 0 to ∞, the region of integration entire first quadrant. Hence, θ varies from 0 to $\frac{\pi}{2}$ and r varies from 0 to ∞ and also $x^{2}+y^{2}=r^{2}$

Hence (iii) becomes,

$$
\begin{align*}
\Gamma(m) \Gamma(n) & =4 \int_{r=0}^{\infty} \int_{\theta=0}^{\pi / 2} e^{-r^{2}}(r \cos \theta)^{2 n-1}(r \sin \theta)^{2 m-1} \cdot r d \theta d r \\
& =4 \int_{r=0}^{\infty} r^{2(m+n)-1} e^{-r^{2}} d r \times \int_{0}^{\frac{\pi}{2}} \sin ^{2 n-1} \theta \cos ^{2 n-1} \theta d \theta \tag{iv}
\end{align*}
$$

Substituting $\quad r^{2}=t$, in the first integral. We get,

$$
\begin{aligned}
\int_{r=0}^{\infty} r^{2(m+n)-1} e^{-r^{2}} d r & =\frac{1}{2} \int_{0}^{\infty} t^{m+n-1} e^{-t} d t \\
& =\frac{1}{2} \Gamma(m+n)
\end{aligned}
$$

and from (iv), $\int_{0}^{\frac{\pi}{2}} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta=\frac{1}{2} \beta(m, n)$
Therefore (iv) reduces to $\Gamma(m) \Gamma(n)=\Gamma(m+n) \beta(m, n)$
Thus, $\quad \beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$. Hence proved.
Corollary. To show that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$
Putting $m=n=\frac{1}{2}$ in this result, we get

$$
\begin{array}{rlrl}
\text { But } & & \beta\left[\frac{1}{2}, \frac{1}{2}\right] & =\frac{\Gamma\left[\frac{1}{2}\right] \cdot \Gamma\left[\frac{1}{2}\right]}{\Gamma[1]} \\
\therefore & \beta(1) & =1 \\
\therefore\left[\frac{1}{2}, \frac{1}{2}\right] & =\left\{\Gamma\left(\frac{1}{2}\right)\right\}^{2}
\end{array}
$$

Now consider $\beta(m, n)=2 \int_{0}^{\frac{\pi}{2}} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta$
Now we have from (8), L.H.S.

$$
\begin{aligned}
\beta\left[\frac{1}{2}, \frac{1}{2}\right] & =2 \int_{0}^{\frac{\pi}{2}} \sin ^{0} \theta \cos ^{0} \theta d \theta=2[\theta]_{0}^{\frac{\pi}{2}}=\pi \\
\pi & =\Gamma\left\{\frac{1}{2}\right\}^{2} \quad \therefore \Gamma\left[\frac{1}{2}\right]=\sqrt{\pi} .
\end{aligned}
$$

Prove that $\int_{0}^{\infty} a^{-b x^{2}} d x=\frac{\sqrt{\pi}}{2 \sqrt{b \log a}}$ where a and b are positive constants. 1.

Sol:
Now,

$$
\begin{aligned}
\int_{0}^{\infty} a^{-b x^{2}} d x & =\int_{0}^{\infty}\left\{e^{\log a}\right\}^{-b x^{2}} \text { since } a=e^{\log a} \\
& =\int_{0}^{\infty} e^{-(b \log a)^{2}} d x
\end{aligned}
$$

Substitute $(b \log a) x^{2}=t, d x=\frac{d t}{(b \log a) \cdot 2 x}$

So that,

$$
\begin{aligned}
& \text { So that, } \\
& \qquad \begin{aligned}
x & =\frac{\sqrt{t}}{\sqrt{b \log a}} \\
\therefore \quad d x & =\frac{d t}{2 \sqrt{t} \sqrt{b \log a}} \\
\int_{0}^{\infty} e^{-b x^{2}} d x & =\int_{0}^{\infty} e^{-t} \cdot \frac{d t}{2 \sqrt{t} \sqrt{b \log a}} \\
& =\frac{1}{2 \sqrt{b \log a}} \int_{0}^{\infty} t^{\frac{-1}{2}} e^{-t} d t \\
& =\frac{1}{2 \sqrt{b \log a}} \int_{0}^{\infty} t^{\frac{1}{2}-1} e^{-t} d t \\
& =\frac{1}{2 \sqrt{b \log a}} \Gamma\left(\frac{1}{2}\right) \\
& =\frac{\sqrt{\pi}}{2 \sqrt{b \log a}} .
\end{aligned}
\end{aligned}
$$

Prove that $\int_{0}^{\infty} x^{m} e^{-a x^{n}} d x=\frac{1}{n a^{\frac{(m+1)}{n}}} \Gamma\left(\frac{m+1}{n}\right)$, where m and n are positive constants. 2.

$$
a x^{n}=t \text { so that } x=\left(\frac{t}{a}\right)^{\frac{1}{n}}
$$

Then $\quad d x=\frac{1}{n a^{\frac{1}{n}}} \cdot t^{\frac{1}{n}-1} d t$
Therefore,

$$
\begin{aligned}
\int_{0}^{\infty} x^{m} e^{-a x^{n}} d x & =\int_{0}^{\infty}\left[\left(\frac{t}{a}\right)^{\frac{1}{n}}\right]^{m} e^{-t} \cdot \frac{t^{\frac{1}{n}}-1}{n a^{\frac{1}{n}}} d t \\
& =\frac{1}{n a^{(m+1) / n}} \int_{0}^{\infty} t^{\frac{(m+1)}{n-1}} e^{-t} d t \\
& =\frac{1}{n a^{(m+1) / n}} \Gamma\left[\frac{m+1}{n}\right]
\end{aligned}
$$

Specialization to Cartesian coordinates:

For Cartesian system, we have $u_{1}=x, u_{2}=y, u_{3}=z ; \stackrel{e}{e}_{1}=i, \stackrel{\rightharpoonup}{e}_{2}=j, \stackrel{\rightharpoonup}{e}_{3}=k$ and $h_{1}=h_{2}=h_{3}=1$
The elementary arc length is given by $d s^{2}=d x^{2}+d y^{2}+d z^{2}$
$d A_{1}=d x d y, d A_{2}=d y d z, d A_{3}=d z d x$ the elementary volume element is given by $d v=d x d y d z$

Specialization to cylindrical Polar coordinates:

In this case $u_{1}=\rho, u_{2}=\phi, u_{3}=z$
Also $x=\rho \cos \phi, y=\rho \sin \phi, z z$. The unit vectors e_{1}, e_{2}, e_{3} are denoted by $e_{\rho}, e_{\phi}, e_{z}$ respectively in this system.

Let $\hat{r}=\rho \cos \phi \hat{i}+\rho \sin \phi \hat{\jmath}+z \hat{k} \Rightarrow \frac{\partial \hat{r}}{\partial \rho}=\cos \phi \hat{i}+\sin \phi \hat{j}, \frac{\partial r}{\partial \phi}=-\rho \sin \phi \hat{i}+\rho \cos \phi \hat{j} \hat{j}, \frac{\partial r}{\partial z}=\hat{k}$

The elementary arc length is given by $(d s)^{2}=h_{1}^{2}\left(d u_{1}\right)^{2}+h_{2}^{2}\left(d u_{2}+h_{3}^{2}\left(d u_{3}\right)^{2}\right.$
i.e; $(d s)^{2}=\left(d \rho_{१^{2}}+\rho^{2}\left(d \phi_{)^{2}}+(d z)^{2}\right.\right.$

The volume element dv is given by $d v=h_{1} h_{2} h_{2} d u_{1} d u_{2} d u_{3}$ i.e; $d v=\rho d \rho d \phi d z$

Show that the cylindrical coordinate system is orthogonal curvilinear coordinate system

Proof: Let $\stackrel{\square}{r}=\rho \cos \phi \hat{i}+\rho \sin \phi \hat{j}+z \hat{k}$ be the position vector of any point P. If $\stackrel{\square}{e}_{\rho},{ }^{\square} e_{\phi}, e_{z}$ are the unit vectors at P in the direction of the tangents to ρ, ϕ and z curves respectively, then we have $h_{1} \hat{e}_{\rho}=\frac{\partial_{\square}^{\square}}{\partial \rho}, h_{2} \hat{e}_{\phi}=\frac{\partial_{\underline{r}}^{\square}}{\partial \phi}, h_{3} \hat{e}_{z}=\frac{\partial_{\underline{r}}^{\square}}{\partial z}$

For cylindrical coordinate system $h_{1}=1, h_{2}=\rho, \quad h_{\overline{3}} 1$
$\hat{e}_{\rho}=\frac{\partial \rrbracket}{\partial \rho}, \hat{e}_{\phi}=\frac{1}{\rho} \frac{\partial \rrbracket}{\partial \phi}, \hat{e}_{z}=\frac{\partial \rrbracket}{\partial z} \Rightarrow \hat{e}_{\rho}=\cos \phi \hat{i}+\sin \phi \hat{j} ; \hat{e}_{\phi}=-\sin \phi \hat{i}+\cos \phi \hat{j} ; \hat{e}_{z}=\hat{k}$
Now $\hat{\mathcal{g}} \cdot \hat{e_{\phi}}=-\cos \phi \quad \operatorname{si} \phi+\sin \phi \quad \cos =0 ; \hat{e}_{\phi} \cdot \hat{e}_{z}=0$ and $\hat{e}_{z} \cdot \hat{e}_{\rho}=0$
Hence the unit vectors $\stackrel{\square}{e},{ }_{\rho},{ }_{e} e_{\phi} e_{z}$ are mutually perpendicular, which shows that the cylindrical polar coordinate system is orthogonal curvilinear coordinate system.

Specialization to spherical Polar coordinates
In this case $u_{1}=r, u_{2}=\theta, u_{3}=\phi$. Also $r \operatorname{si\theta } \cos \phi, \neq r \operatorname{si\theta } \cos \phi, z r \cos \theta$. In this system unit vectors e_{1}, e_{2}, e_{3} are denoted by $e_{\rho}, e_{\phi}, e_{z}$ respectively. These unit vectots are extended respectively in the directions of r increasing, θ increasing and ϕ increasing.
Let ${ }^{\square}$ be the position vector of the point P . Then
$\vec{r}=\left(\begin{array}{lll}r & \operatorname{si} \theta \cos \phi\end{array}\right) \hat{\dot{t}}(r \quad \operatorname{si} \theta \sin \phi) \hat{\dot{j}}(r \cos \theta) \hat{k}$
$\frac{\partial]_{r}}{\partial r}=\sin \phi \cos \phi \hat{i}+\sin \theta \sin \phi \hat{\jmath}+\cos \theta \hat{k} ; \frac{\partial \bar{\square}}{\partial \theta}=r \cos \cos \phi \hat{i}+r \cos \sin \phi \hat{\jmath}-r \sin \theta \hat{k}$

$$
\frac{\partial \rrbracket}{\partial \phi}=-r \sin \theta \quad \operatorname{si\phi \hat {\imath }}+r \sin \theta \cos \phi \hat{\jmath}
$$

The scalar factors are $h_{1}=\left|\frac{\partial}{\partial r}\right|=1, h_{2}=\left|\frac{\partial r}{\partial \theta}\right|=r, h_{3}=\left|\frac{\partial_{r}}{\partial z}\right|=r \sin \theta$
The elementary arc length is given by $(d s)^{2}=h_{1}^{2}\left(d u_{1}\right)^{2}+h_{2}^{2}\left(d \underline{u_{2}}+h_{3}^{2}\left(d u_{3}\right)^{2}\right.$
i.e $(d s)^{2}=(d r)^{2}+r^{2} \rho^{2}(d \theta)^{2}+r^{2} \sin ^{2} \theta\left(d \phi_{\Upsilon^{2}}\right.$

The volume element is given by $d v=h_{1} h_{2} h f_{2} d u_{1} d u_{2} d u_{3} \quad i . e ; d \neq r^{2} \sin \theta d r d \theta d \phi$
Show that the spherical coordinate system is orthogonal curvilinear coordinate system and also prove that $\left(e_{\rho} e_{e} e_{f}\right)_{f}$ form a right handed basis.

Proof: We have for spherical Polar coordinate system
$\hat{r}=\left(\begin{array}{lll}r & \sin \theta \cos \phi\end{array}\right) \hat{\dot{f}}(r \quad \operatorname{si} \sin \phi) \hat{\dot{j}}(r \cos \theta) \hat{k}$
Let ${ }_{e}{ }_{r}, e_{\theta}{ }_{\theta}{ }_{\phi}$ be the base vectors at P in the directions of the tangents to r, θ, ϕ curves respectively then we have

$$
\begin{array}{r}
\quad h_{1} \hat{e}_{1}=\frac{\partial \square}{\partial r} ;=1, h_{2} \hat{e}_{2}=\frac{\partial \square}{\partial \theta}=r, h_{3} \hat{e}_{3}=\frac{\partial \square}{\partial \phi} \\
\text { i.e } h_{1} \hat{e}_{r}=\frac{\partial_{r}}{\partial r} ;=1, h_{2} \hat{e}_{\theta}=\frac{\partial \square}{\partial \theta}=r, h_{3} \hat{e}_{\phi}=\frac{\partial \square}{\partial \phi}
\end{array}
$$

We know that for spherical polar coordinate the scalar factors $h_{1}=1, h_{2}=2, h_{3}=r \sin \theta$

$$
\begin{aligned}
& \therefore \hat{e}_{r}=\frac{\partial r}{\partial r}=\sin \theta \quad \operatorname{co\phi } \hat{i}+\sin \theta \quad \operatorname{si\phi } \phi \hat{\jmath}+\cos \theta \hat{k} \quad r \hat{e_{\theta}}=\frac{\partial r}{\partial \theta}=r \cos \theta \quad \operatorname{co\phi } \phi \hat{i}+r \cos \theta \quad \sin \phi \hat{\jmath}-r \sin \theta \hat{k} \\
& r \sin \theta \hat{e}_{\phi}=-r \sin \theta \quad \sin \phi \hat{i}+r \sin \theta \cos \phi \hat{i} \\
& \text { Now } \quad \hat{e}_{r} \cdot \hat{e}_{\theta}=\sin \theta \cos \theta\left(\cos ^{2} \phi+\sin ^{2} \phi\right)-\sin \theta \cos \theta=0 \\
& \hat{e}_{\theta} \cdot \hat{e_{\phi}}=-\cos \theta \cos \phi \quad \sin \phi+\cos \theta \cos \phi \quad \operatorname{si} \phi=0 \\
& \hat{e}_{\phi} \cdot \hat{e}_{r}=-\sin \theta \cos \phi \quad \sin \phi+\sin \theta \cos \phi \quad \operatorname{si\phi } \phi=0
\end{aligned}
$$

This shows that $\hat{e}_{r}, \hat{e}_{\theta}$ and $\hat{e_{\phi}}$ are mutually perpendicular. Hence spherical polar coordinates are also orthogonal curvilinear coordinates.

Further $\hat{e}_{r} \times \hat{e}_{\theta}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \sin \theta & \cos \phi & \sin \theta \sin \phi \\ \cos \theta \\ \cos \theta & \operatorname{co\phi } & \cos \theta \sin \phi\end{array}-\sin \theta\right|=-\sin \phi \hat{i}+\cos \phi \hat{i}=\hat{e}_{\phi}$
Similarly we can show that $\hat{\theta} \hat{e} \times \hat{e}_{\phi}=\hat{e}_{r}$ and $\hat{e}_{\rho} \times \hat{e}_{r}=\hat{e}_{\theta}$ which shows that $\left(\hat{e}_{r},{ }_{e} e_{\theta}{ }_{e}\right)$ form a right handed basis.

Coordinate transformation with a change of basis:

To express the base vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, e_{3}$ in terms of \mathbf{i}, j, k
We can use from matrix algebra, if $\mathrm{Y}=\mathrm{AX}$ then $\mathrm{X}=\mathrm{A}^{-1} \mathrm{Y}$ provided A is non singular.

1) Cylindrical polar coordinates ($\mathrm{e}_{0,}, \mathrm{e}_{\varrho}, \mathrm{e}_{z}$)

We have for cylindrical coordinate system
$e_{\rho}=\cos \varphi i+\sin \varphi j, e_{\varphi}=-\sin \varphi j+\cos \varphi i ; e_{2}=k$.
This gives the transformation of the base vectors in terms of ($\mathrm{i}, \mathrm{j}, \mathrm{k}$)

1) Can be written in matrix for $\left[\begin{array}{c}e_{\rho} \\ \mathrm{m}_{\varphi} \\ e_{z}\end{array}\right]=\left[\begin{array}{ccc}\cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \varphi & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}i \\ j \\ k\end{array}\right]$

On inverting, we get $\left[\begin{array}{l}i \\ j \\ k\end{array}\right]=\left[\begin{array}{ccc}\cos ^{\phi} & -\sin \phi & 0 \\ \sin & \cos ^{\phi} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}e_{\rho} \\ e_{\varphi} \\ e_{Z}\end{array}\right] \ldots \ldots \ldots \ldots$
$\mathrm{i}=\cos \varphi \mathrm{e}_{\rho^{-}}-\sin \varphi \mathrm{e}_{\rho} ; \mathrm{j}=\sin \varphi \mathrm{e}_{\rho^{+}} \cos \varphi \mathrm{e}_{\varphi}, \mathrm{k}=\mathrm{e}_{\mathrm{z}}$
This gives the transformation of ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) in terms of the base vectors $\left(\mathrm{e}_{\rho}, \mathrm{e}_{\varphi}, \mathrm{e}_{\mathrm{z}}\right)$.

2) Spherical polar coordinates:

We have $\mathrm{e}_{\mathrm{r}}=\sin \theta \cos \varphi \mathrm{i}+\sin \theta \sin \varphi \mathrm{j}+\cos \theta \mathrm{k}$

$$
\begin{aligned}
& \mathrm{e}_{\theta}=\cos \theta \cos \varphi i+\cos \theta \sin \varphi \mathrm{j}+\sin \theta \mathrm{k} \\
& \mathrm{e}_{\varphi}=-\sin \varphi \mathrm{i}+\cos \varphi \mathrm{j}
\end{aligned}
$$

This gives the transformation of the base vectors in terms of (i,j,k)
Writing in matrix form $\left[\begin{array}{c}e_{r} \\ \underset{\theta}{\boldsymbol{g}} \\ e_{\phi}\end{array}\right]=\left[\begin{array}{cccc}\sin \theta \cos \phi & \sin \theta & \operatorname{si\phi } \phi & \cos \theta \\ \sin \theta \operatorname{in} \phi & \cos \theta & \sin \phi & \cos \varphi \\ -\sin \varphi & \cos \varphi & 0\end{array}\right]\left[\begin{array}{l}i \\ j \\ k\end{array}\right]$
Inverting the coefficient matrix,
we get $\left[\begin{array}{l}i \\ j \\ k\end{array}\right]=\left[\begin{array}{ccc}\sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\ \sin \theta \sin \phi & \cos \theta \sin \varphi & \cos \varphi \\ \cos \theta & -\sin \theta & 0\end{array}\right]\left[\begin{array}{l}e_{r} \\ e_{\theta} \\ e_{\phi}\end{array}\right]$
$i \quad \sin \theta \cos \phi \quad \cos \theta \cos \phi \quad-\sin \phi$
$j=\sin \theta \sin \phi \quad \cos \theta \sin \varphi \quad \cos \varphi$
$\begin{array}{lll}k & \cos \theta & -\sin \theta\end{array}$
This gives the transformation of ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) in terms of the base vectors $\left(\mathrm{e}_{\mathrm{r}} \mathrm{e}_{\theta,}, \mathrm{e}_{\varphi}\right)$.

3) Relation between cylindrical and spherical coordinates

Now from (a) and (b)
$\left[\begin{array}{ccc}\cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \varphi & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}e_{\rho} \\ e_{\varphi} \\ e_{Z}\end{array}\right]=\left[\begin{array}{ccc}\sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\ \sin \theta \sin \phi & \cos \theta \sin \varphi & \cos \varphi \\ \cos \theta & -\sin \theta & 0\end{array}\right]\left[\begin{array}{l}e_{r} \\ e_{\theta} \\ e_{\phi}\end{array}\right]$

Each of the matrices are invertible, therefore we get

$$
\begin{aligned}
& {\left[\begin{array}{l}
e_{\rho} \\
e_{\varphi} \\
e_{Z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\
\sin \theta \sin \phi & \cos \theta \sin \varphi & \cos \varphi \\
\cos \theta & -\sin \theta & 0
\end{array}\right]\left[\begin{array}{l}
e_{r} \\
e_{\theta} \\
e_{\phi}
\end{array}\right]} \\
& {\left[\begin{array}{l}
e_{\rho} \\
e_{\varphi} \\
e_{Z}
\end{array}\right]=\left[\begin{array}{ccc}
\theta & \cos \theta & 0 \\
0 & 0 & 1 \\
\cos \theta & -\sin \theta & 0
\end{array}\right]\left[\begin{array}{l}
e_{r} \\
e_{\theta} \\
e_{\phi}
\end{array}\right]}
\end{aligned}
$$

similarly $\left[\begin{array}{c}e_{r} \\ \mathcal{\theta} \\ e_{\phi}\end{array}\right]=\left[\begin{array}{ccc}\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \sin \theta \operatorname{in} \phi & \cos \theta \sin \varphi & \cos \varphi \\ -\sin \varphi & \cos \varphi & 0\end{array}\right]\left[\begin{array}{ccc}\cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \varphi & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}e_{\rho} \\ e_{\varphi} \\ e_{\text {L }}\end{array}\right]$

$$
=\left[\begin{array}{ccc}
\sin \theta & 0 & \cos \theta \\
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
e_{\rho} \\
e_{\varphi} \\
e_{\zeta}
\end{array}\right]
$$

This gives $e_{r}=\theta e+{ }_{\rho} \theta e, \quad z$

$$
e_{0}=\theta e \quad \rho-\theta e \text { and } e=e
$$

These two results give us the relation between cylindrical and spherical coordinates bases and vice versa.

PROBLEMS:

1. Express vector $f=2 y i-z j+3 x k$ in cylindrical coordinates and find $f_{\rho}, f_{\varphi} f_{z}$.

Sol:The relation between the Cartesian and cylindrical coordinates given by

$$
\begin{aligned}
& X=\rho \cos \varphi, y=\rho \sin \varphi, z=z \\
& i=\cos \varphi e_{\rho}-\sin \varphi e_{\rho} ; j=\operatorname{sine}_{\rho+} \cos \varphi e_{\varphi,}, k=e_{z .} .
\end{aligned}
$$

We have $\mathrm{f}=2 \mathrm{yi}-\mathrm{zj}+3 \mathrm{xk}$

$$
f=2 y\left(\cos \varphi e_{\rho}-\sin \varphi e_{\rho}\right)-z\left(\sin \varphi e_{\rho}+\cos \varphi e_{\varphi}\right)+3 x\left(e_{z}\right)
$$

$$
f=2 \rho \sin \varphi\left(\cos \varphi e_{\rho}-\sin \varphi e_{\rho}\right)-z\left(\sin \varphi e_{\rho}+\cos \varphi e_{\varphi}\right)+3 \rho \cos \varphi\left(e_{z}\right)
$$

$\mathrm{f}=(2 \rho \sin \varphi \cos \varphi-\mathrm{z} \sin \varphi) \mathrm{e}_{\rho}-\left(2 \rho \sin ^{2} \varphi+\mathrm{z} \cos \varphi\right) \mathrm{e}_{\varphi}+3 \rho \cos \varphi \mathrm{e}_{\mathrm{z}}$
Therefore

$$
f_{\rho}=2 \rho \sin \varphi \cos \varphi-z \sin \varphi ; f_{\varphi}=-2 \rho \sin ^{2} \varphi+z \cos \varphi ; f_{z}=3 \rho \cos \varphi .
$$

2) Express the vector $f=z i-2 x j+y k$ in terms of spherical polar coordinates and find $f_{r}, f_{\theta}, f_{\varphi}$,

Sol: In spherical coordinates, we have
$\mathrm{e}_{\mathrm{r}}=\operatorname{Sin} \theta \cos \varphi \mathrm{i}+\sin \theta \sin \varphi j+\cos \theta \mathrm{k}$ \qquad
$\mathrm{e}_{\theta}=\operatorname{Cos} \theta \cos \varphi \mathrm{i}+\cos \theta \sin \varphi \mathrm{j}-\sin \theta \mathrm{k}$ \qquad
$\mathrm{e}_{\varphi}=-\operatorname{Sin} \varphi i+\cos \varphi j$ \qquad
The relation between Cartesian and spherical coordinates

MODULE - 5

LAPLACE TRANSFORM

INTRODUCTION

- Laplace transform is an integral transform employed in solving physical problems.
- Many physical problems when analysed assumes the form of a differential equation subjected to a set of initial conditions or boundary conditions.
- By initial conditions we mean that the conditions on the dependent variable are specified at a single value of the independent variable.
- If the conditions of the dependent variable are specified at two different values of the independent variable, the conditions are called boundary conditions.
- The problem with initial conditions is referred to as the Initial value problem.
- The problem with boundary conditions is referred to as the Boundary value problem.

Example 1: The problem of solving the equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=x$ with conditions $y(0)=$, $(0)=1$ is an initial value problem.

Example 2: The problem of solving the equation $3 \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=\cos x \quad$ with $\mathrm{y}(1)=1$, $y(2)=3$ is called Boundary value problem.

Laplace transform is essentially employed to solve initial value problems. This technique is of great utility in applications dealing with mechanical systems and electric circuits. Besides the technique may also be employed to find certain integral values also. The transform is named after the French Mathematician P.S. de' Laplace (1749 - 1827).

The subject is divided into the following sub topics.

Definition:

Let $f(t)$ be a real-valued function defined for all $£ 0$ and s be a parameter, real or complex. Suppose the integral $\int_{0}^{\infty} e^{-s t} f(t) d t$ exists (converges). Then this integral is called the Laplace transform of $\mathrm{f}(\mathrm{t})$ and is denoted by $\mathrm{L}[\mathrm{f}(\mathrm{t})]$.

$$
\begin{equation*}
\text { Thus, } \mathrm{L}[\mathrm{f}(\mathrm{t})]=\int_{0}^{\infty} e^{-s t} f(t) d t \tag{1}
\end{equation*}
$$

We note that the value of the integral on the right hand side of (1) depends on s. Hence $\mathrm{L}[\mathrm{f}(\mathrm{t})]$ is a function of s denoted by $\mathrm{F}(\mathrm{s})$ or $\bar{f}(s)$.

Thus,

$$
\begin{equation*}
\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{F}(\mathrm{~s}) \tag{2}
\end{equation*}
$$

Consider relation (2). Here $f(t)$ is called the Inverse Laplace transform of $F(s)$ and is denoted by $\mathrm{L}^{-1}[\mathrm{~F}(\mathrm{~s})]$.

Thus, $\quad L^{-1}[F(s)]=f(t)$
Suppose $f(t)$ is defined as follows :

$$
\mathrm{f}(\mathrm{t})=\left\{\begin{array}{l}
\mathrm{f}_{1}(\mathrm{t}), \quad 0<\mathrm{t}<\mathrm{a} \\
\mathrm{f}_{2}(\mathrm{t}), \quad \mathrm{a}<\mathrm{t}<\mathrm{b} \\
\mathrm{f}_{3}(\mathrm{tt})>\mathrm{b}
\end{array}\right.
$$

Note that $f(t)$ is piecewise contlnuous. The Laplace transform of $f(t)$ is defined as

$$
\begin{aligned}
\mathrm{L}[\mathrm{f}(\mathrm{t})] & =\int_{0}^{\infty} e^{-s t} f(t) \\
& =\int_{0}^{a} e^{-s t} f_{1}(t) d t+\int_{a}^{b} e^{-s t} f_{2}(t) d t+\int_{b}^{\infty} e^{-s t} f_{3}(t) d t
\end{aligned}
$$

NOTE: In a practical situation, the variable t represents the time and s represents frequency.
Hence the Laplace transform converts the time domain into the frequency domain.

Basic properties

The following are some basic properties of Laplace transforms:

1. Linearity property: For any two functions $f(t)$ and $\not t)$ (whose Laplace transforms exist) and any two constants a and b, we have

$$
\mathrm{L}[\mathrm{af}(\mathrm{t})+\mathrm{b}(\mathrm{t})]=\mathrm{a} \mathrm{~L}[\mathrm{f}(\mathrm{t})]+\mathrm{bL}[(\mathrm{t})]
$$

Proof :- By definition, we have

$$
\begin{gathered}
\mathrm{L}[\mathrm{af}(\mathrm{t})+\mathrm{b} \phi(\mathrm{t})]=\int_{0}^{\infty} e^{-s t} f(t)+b \phi(t)-\bar{d} d t=a \int_{0}^{\infty} e^{-s t} f(t) d t+b \int_{0}^{\infty} e^{-s t} \phi(t) d t \\
=\mathrm{a} \mathrm{~L}[\mathrm{f}(\mathrm{t})]+\mathrm{b} \mathrm{~L}[\phi(\mathrm{t})]
\end{gathered}
$$

This is the desired property.
In particular, for $\mathrm{a}=\mathrm{b}=1$, we have

$$
\mathrm{L}[\mathrm{f}(\mathrm{t})+\phi(\mathrm{t})]=\mathrm{L}[\mathrm{f}(\mathrm{t})]+\mathrm{L}[\phi(\mathrm{t})]
$$

and for $\mathrm{a}=-\mathrm{b}=1$, we have $\mathrm{L}[\mathrm{f}(\mathrm{t})-\phi(\mathrm{t})]=\mathrm{L}[\mathrm{f}(\mathrm{t})]-\mathrm{L}[\phi(\mathrm{t})]$
2. Change of scale property: If $\mathrm{L} \mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{F}(\mathrm{s})$, then $\mathrm{L}[\mathrm{f}(\mathrm{at})]=\frac{1}{a} F\left(\frac{s}{a}\right)$, where a is a positive constant.

Proof: - By definition, we have

$$
\begin{equation*}
\mathrm{L}[\mathrm{f}(\mathrm{at})]=\int_{0}^{\infty} e^{-s t} f(a t) d t \tag{1}
\end{equation*}
$$

Let us set at $=x$. Then expression (1) becomes,

$$
\begin{aligned}
\mathrm{Lf}(\mathrm{at})= & \frac{1}{a} \int_{0}^{\infty} e^{-\left(\frac{s}{a}\right) x} f(x) d x \\
& =\frac{1}{a} F\left(\frac{s}{a}\right)
\end{aligned}
$$

This is the desired property.
3. Shifting property: - Let a be any real constant. Then

$$
\mathrm{L}\left[\mathrm{e}^{\mathrm{at}} \mathrm{f}(\mathrm{t})\right]=\mathrm{F}(\mathrm{~s}-\mathrm{a})
$$

Proof :- By definition, we have

$$
\begin{aligned}
\mathrm{L}\left[\mathrm{e}^{\mathrm{at}} \mathrm{f}(\mathrm{t})\right] & =\int_{0}^{\infty} e^{-s t}[a t
\end{aligned}(t) d t t
$$

This is the desired property. Here we note that the Laplace transform of $e^{a t} f(t)$ can be written down directly by changing s to s-a in the Laplace transform of $f(t)$.

LAPLACE TRANSFORMS OF STANDARD FUNCTIONS

1. Let a be a constant. Then

$$
\begin{aligned}
& \mathrm{L}\left[\left(\mathrm{e}^{\mathrm{at}}\right)\right]= \int_{0}^{\infty} e^{-s t} e^{a t} d t \\
&=\int_{0}^{\infty} e^{-(s-a) t} d t \\
&=\left.\frac{e^{-(s-a) t}}{-(s-a)}\right|_{0} ^{\infty}=\frac{1}{s-a}, \quad \mathrm{~s}>\mathrm{a}
\end{aligned}
$$

Thus,

$$
\mathrm{L}\left[\left(\mathrm{e}^{\mathrm{at}}\right)\right] \frac{1}{\overline{s-a}}
$$

In particular, when $\mathrm{a}=0$, we get

$$
\mathrm{L}(1)=\frac{1}{s} \quad, \quad \mathrm{~s}>0
$$

By inversion formula, we have

$$
L^{-1} \frac{1}{s-a}=e^{a t} L^{-1} \frac{1}{s}=e^{a t}
$$

2. $\mathrm{L}($ cosh at $)=\left(\frac{\sum^{a t}+e^{-a t}}{2}\right) \quad=\frac{1}{2} \int_{0}^{\infty} e^{-s t} \boldsymbol{\}^{a t}+e^{-a t}-\underline{d} t$

$$
=\frac{1}{2} \int_{0}^{\infty} \boldsymbol{X}^{-(s-a) t}+e^{-(s+a) t} d t_{-}^{-}
$$

Let $s>|a|$. Then,

$$
L(\cosh a t)=\frac{1}{2}\left[\frac{e^{-(s-a) t}}{-(s-a)}+\frac{e^{-(s+a) t}}{-(s+a)}\right]_{0}^{\infty}=\frac{s}{s^{2}-a^{2}}
$$

Thus, $\quad \mathrm{L}($ cosh at $)=\frac{s}{s \frac{2}{-} a^{2}}, \quad \mathrm{~s}>|\mathrm{a}|$
and so

$$
L^{-}\left(\frac{s}{s} \frac{{ }^{2}-a^{2}}{1}\right)=\cosh a t
$$

3. L (sinh at $)=\left(\frac{o^{a t}-e^{-a t}}{2}\right)=\frac{a}{\mathbf{v}^{2}-a^{2}}, \quad \mathrm{~s}>|\mathrm{a}|$

Thus,

$$
\mathrm{L}(\sinh \mathrm{at})=\frac{a}{s \frac{2}{2} a^{2}}, \quad \mathrm{~s}>|\mathrm{a}|
$$

and so,

$$
L^{-1}\left(\frac{1}{z_{a^{2}}}\right)=\frac{\sinh a t}{a}
$$

4. $\mathrm{L}(\sin \mathrm{at})=\int_{0}^{\infty} e^{-s t} \sin a t \mathrm{dt}$

Here we suppose that $\mathrm{s}>0$ and then integrate by using the formula

$$
\int e^{a x} \sin b x d x=\frac{e^{a x}}{a^{2}+b^{2}} \sin b x-b \cos b x_{-}^{-}
$$

Thus,
$\mathrm{L}(\sinh \mathrm{at})=\frac{a}{s^{2}+a^{2}}, \mathrm{~s}>0$
and so

$$
I^{-1}\left(\frac{1}{\mathbf{v}^{2}+\sigma^{2}}\right)=\frac{\sinh a t}{a}
$$

5. $\mathrm{L}(\cos a t)=\int_{0}^{\infty} e^{-s t} \cos a t d t$

Here we suppose that $\mathrm{s}>0$ and integrate by using the formula

$$
\int e^{a x} \cos b x d x=\frac{e^{a x}}{a^{2}+b^{2}} \quad \cos b x+b \sin b x_{-}^{-}
$$

Thus, $\mathrm{L}(\cos \mathrm{at})=\frac{s}{s^{2}+a^{2}}, \quad \mathrm{~s}>0$
and so

$$
L^{-1} \frac{s}{c a^{2}}=\cos a t
$$

6. Let n be a constant, which is a non-negative real number or a negative non-integer. Then

$$
\mathrm{L}\left(\mathrm{t}^{\mathrm{n}}\right) \quad \int_{0}^{\infty} e^{-s t} t^{n} d t
$$

Let $\mathrm{s}>0$ and set $\mathrm{st}=\mathrm{x}$, then

$$
L\left(t^{n} \neq \int_{0}^{\infty} e^{-x}\left(\frac{x}{s}\right)^{n} \frac{d x}{s}=\frac{1}{s^{n+1}} \int_{0}^{\infty} e^{-x} x^{n} d x\right.
$$

The integral $\int_{0}^{\infty} e^{-x} x^{n} d x$ is called gamma function of $(\mathrm{n}+1)$ denoted by $\Gamma(n+1)$. Thus $L\left(t^{n}\right)=\frac{\Gamma(n+1)}{\mathrm{s}^{n^{+}}{ }^{1}}$

In particular, if n is a non-negative integer then $\Gamma(n+1)=\mathrm{n}!$. Hence

$$
L\left(t^{n}\right)=\frac{n!}{\mathbf{c}^{n^{+}+1}}
$$

and so

$$
L-1 \frac{1}{\mathbf{c}^{n^{+1}}}=\frac{t^{n}}{\Gamma(n+1)} \text { or } \frac{t^{n}}{n!} \text { as the case may be }
$$

Application of shifting property:-

The shifting property is
If $L f(t)=F(s)$, then $L\left[e^{a t} f(t)\right]=F(s-a)$
Application of this property leads to the following results :

1. $L\left(e^{a t} \quad \cosh b t \neq[\cosh b t)_{s \rightarrow s-a}=\left(\frac{s}{v^{z} h^{2}}\right)_{s \rightarrow s-a}=\frac{s-a}{(s-a)^{2}-h^{2}}\right.$ Thus,
$\mathrm{L}\left(\mathrm{e}^{\mathrm{at}}\right.$ coshbt $)=\frac{s-a}{(s-a)^{2}-h^{2}}$
and
$L^{-1} \frac{s-a}{(s-a)^{2}-h^{2}}=e^{a t} \cosh b t$
2. $L\left(e^{a t} \sinh b t\right)=\frac{a}{(s-a)^{2}-h^{2}}$
and
$L^{-1} \frac{1}{(s-a)^{2}-h^{2}}=e^{a t} \sinh b t$
3. $L\left(e^{a t} \cos b t\right)=\frac{s-a}{(s-a)^{2}+h^{2}}$
and
$L^{-1} \frac{s-a}{(s-a)^{2}+h^{2}}=e^{a t} \cos b t$
4. $L\left(e^{a t} \sin b t\right)=\frac{b}{(s-a)^{2}-h^{2}}$
and
$L^{-1} \frac{1}{(s-a)^{2}-h^{2}}=\frac{e^{a t} \sin b t}{b}$
5. $L\left(e^{a t} t^{n}\right)=\frac{\Gamma(n+1)}{(s-a)^{n+1}}$ or $\frac{n!}{(s-a)^{n+1}}$ as the case may be

Hence
$L^{-1} \frac{1}{(s-a)^{n+1}}=\frac{e^{a t} t^{n}}{\Gamma(n+1)} \quad$ or $\frac{n!}{(s-a)^{n+1}}$ as the case may be

Examples :-

1. Find $L[f(t)]$ given $f(t)=t,\left\{\begin{array}{c}0<t<3 \\ 4, \quad t>3\end{array}\right.$

Here

$$
\mathrm{L}[\mathrm{f}(\mathrm{t})]=\int_{0}^{\infty} e^{-s t} f(t) d t=\int_{0}^{3} e^{-s t} t d t+\int_{3}^{\infty} 4 e^{-s t} d t
$$

Integrating the terms on the RHS, we get

$$
\mathrm{L}[\mathrm{f}(\mathrm{t})]={ }_{s}^{1} e^{-3 s}+\frac{1}{\mathrm{~s}^{2}}\left(1-e^{-3 s}\right)
$$

This is the desired result.
2. Find $L[f(t)]$ given $L[f(t)]=\sin \left\{t, \quad 0<t \leq \pi ~ 子 \begin{array}{rr}0, & t>\pi\end{array}\right.$

Here

$$
\mathrm{L}[\mathrm{f}(\mathrm{t})]=\int_{0}^{\pi} e^{-s t} f(t) d t+\int_{\pi}^{\infty} e^{-s t} f(t) d t \quad=\int_{0}^{\pi} e^{-s t} \sin 2 t d t
$$

$$
\left.=\left[\frac{e^{-s t}}{s^{2}+4}\right\} s \sin \quad 2 \neq 2 \quad \cos 2 t\right]_{0}^{\pi}=\frac{2}{\mathbf{s}^{2}+4}-e^{-\pi s}-
$$

This is the desired result.
3. Evaluate: (i) $\mathrm{L}(\sin 3 \mathrm{t} \sin 4 \mathrm{t})$
(ii) $\mathrm{L}\left(\cos ^{2} 4 \mathrm{t}\right)$
(iii) $\mathrm{L}\left(\sin ^{3} 2 \mathrm{t}\right)$
(i) Here $\mathrm{L}(\sin 3 \mathrm{t} \sin 4 \mathrm{t})=\mathrm{L}\left[\frac{1}{2}(\cos t-\cos 7 t)\right]$

$$
\begin{aligned}
& =\frac{1}{2} \mathbf{L}(\cos t)-L(\cos 7 t)-\text { by using linearity property } \\
& =\frac{1}{2}\left[\frac{s}{s^{2}+1}-\frac{s}{s^{2}+49}\right]=\frac{24 s}{\left(s^{2}+1\right)\left(s^{2}+49\right)}
\end{aligned}
$$

(ii) Here

$$
\mathrm{L}\left(\cos ^{2} 4 \mathrm{t}\right)=L\left[\frac{1}{2}(1+\cos 8 t)\right]=\frac{1}{2}\left[\frac{1}{s}+\frac{s}{\mathrm{~s}^{2}+64}\right]
$$

(iii) We have

$$
\sin ^{3} \theta=\frac{4}{3} \ll
$$

For $\theta=2 \mathrm{t}$, we get

$$
\sin ^{3} 2 t=\frac{1}{4}(\sin 2 t-\sin 6 t)
$$

so that

$$
L\left(\sin ^{3} 2 t\right)=\frac{1}{4}\left[\frac{6}{s^{2}+4}-\frac{6}{s^{2}+36}\right]=\frac{48}{\left(s^{2}+4\right)\left(s^{2}+36\right)}
$$

This is the desired result.
4. Find $L(\cos t \cos 2 t \cos 3 t)$

Here $\quad \cos 2 t \cos 3 t=\frac{1}{2}[\cos 5 t+\cos t]$
so that

$$
\begin{aligned}
\operatorname{cost} \cos 2 t \cos 3 t & =\frac{1}{2}\left[\cos 5 t \cos t+\cos ^{2} t\right] \\
& =\frac{1}{4}[\cos 6 t+\cos 4 t+1+\cos 2 t]
\end{aligned}
$$

Thus $L(\cos t \cos 2 t \cos 3 t)=\frac{1}{4}\left[\frac{s}{c^{2}+36}+\frac{s}{\mathrm{~s}^{2}+16}+\frac{1}{s}+\frac{s}{\mathrm{~s}^{2}+4}\right]$
5. Find $L\left(\cosh ^{2} 2 t\right)$

We have

$$
\cosh ^{2} \theta=\frac{1+\cosh 2 \theta}{2}
$$

For $\theta=2 \mathrm{t}$, we get

$$
\cosh ^{2} 2 t=\frac{1+\cosh 4 t}{2}
$$

Thus,

$$
L\left(\cosh ^{2} 2 t\right)=\frac{1}{2}\left[\frac{1}{s}+\frac{s}{\mathrm{~s}^{2}-16}\right]
$$

6. Evaluate (i) $\mathrm{L}(\sqrt{t})$ (ii) $\left(\frac{1}{\sqrt{t}}\right)$ (iii) $\mathrm{L}\left(\mathrm{t}^{-3 / 2}\right)$

We have $\mathrm{L}\left(\mathrm{t}^{\mathrm{n}}\right)=\frac{\Gamma(n+1)}{s^{n+1}}$
(i) For $\mathrm{n}=\frac{1}{2}$, we get

$$
\mathrm{L}\left(\mathrm{t}^{1 / 2}\right)=\frac{\left.\Gamma^{(} \overline{2}^{1}+1\right)}{s^{3 / 2}}
$$

Since $\Gamma(n+1)=n \Gamma(n)$, we have $\Gamma\left(\frac{1}{2}+1\right)=\frac{1}{2} \Gamma\binom{1}{2}=\frac{\sqrt{\pi}}{2}$
Thus, $\quad L(\sqrt{t})=\frac{\sqrt{\pi}}{2 s^{3 / 2}}$
(ii) For $\mathrm{n}=-\frac{1}{2}$, we get

$$
L\left(t^{-1 / 2}\right)=\frac{\Gamma\left(\frac{1}{2}\right)}{s^{1 / 2}}=\frac{\sqrt{\pi}}{\sqrt{s}}
$$

(iii) For $\mathrm{n}=-\frac{3}{2}$, we get

$$
L\left(t^{-3 / 2}\right)=\frac{\Gamma\left(-\frac{1}{2}\right)}{s^{-1 / 2}}=\frac{-2 \sqrt{\pi}}{s^{-1 / 2}}=-2 \sqrt{\pi s}
$$

7. Evaluate: (i) $\mathrm{L}\left(\mathrm{t}^{2}\right)$ (ii) $\mathrm{L}\left(\mathrm{t}^{3}\right)$ We have,

$$
\mathrm{L}\left(\mathrm{t}^{\mathrm{n}}\right)=\frac{n!}{s^{n+1}}
$$

(i) For $\mathrm{n}=2$, we get
$\mathrm{L}\left(\mathrm{t}^{2}\right)=\underset{s^{3}}{=} \frac{2!}{s^{3}}$
(ii) For $\mathrm{n}=3$, we get

$$
\mathrm{L}\left(\mathrm{t}^{3}\right)=\underset{s^{4}}{=} \stackrel{3!}{=} \frac{6}{s^{4}}
$$

8. Find $L\left[e^{-3 t}(2 \cos 5 t-3 \sin 5 t)\right]$

Given =

$$
\begin{aligned}
& 2 \mathrm{~L}\left(\mathrm{e}^{-3 \mathrm{t}} \cos 5 \mathrm{t}\right)-3 \mathrm{~L}\left(\mathrm{e}^{-3 \mathrm{t}} \sin 5 \mathrm{t}\right) \\
= & \frac{2(+3)}{(s+3)^{2}+25}-\frac{15}{(s+3)^{2}+25}, \text { by using shifting property } \\
= & \frac{2 s-9}{s^{2}+6 s+34}, \text { on simplification }
\end{aligned}
$$

9. Find L [coshat sinhat]

Here

$$
\begin{aligned}
& \mathrm{L} \text { [coshat sinat] }=L\left[\frac{\left.\boldsymbol{\rho}^{a t}+e^{-a t}-\sin a t\right]}{2}+\frac{a}{2}\left[\frac{a}{(s-a)^{2}+a^{2}}+\frac{a}{(s+a)^{2}+a^{2}}\right]\right. \\
& \quad=\frac{a\left(s^{2}+2 a^{2}\right)}{\left[(s-a)^{2}+a^{2}\right]\left[(\pm a)^{2}+a^{2}\right]}, \text { on simplification }
\end{aligned}
$$

10. Find L (cosht $\left.\sin ^{3} 2 t\right)$

Given

$$
\begin{aligned}
& L\left[\left(\frac{s^{t}+e^{-t}}{2}\right)\left(\frac{3 \sin 2 t-\sin 6 t}{4}\right)\right] \\
= & \left.\frac{1}{8}: L \cdot t \sin 2 t-L\left(e^{t} \sin 6 t\right)+3 L\left(e^{-t} \sin 2 t\right)-L\left(e^{-t} \sin 6 t\right)\right] \\
= & \frac{1}{8}\left[\frac{6}{(s-1)^{2}+4}-\frac{6}{(s-1)^{2}+36}+\frac{6}{(s+1)^{2}+4}-\frac{6}{(s+1)^{2}+36}\right] \\
= & \frac{3}{4}\left[\frac{1}{(s-1)^{2}+4}-\frac{1}{(s-1)^{2}+36}+\frac{1}{(s+1)^{2}+24}-\frac{1}{(s+1)^{2}+36}\right]
\end{aligned}
$$

11. Find $L\left(e^{-}{ }_{4 t} t^{-5}{ }^{2}\right)$

We have
$\mathrm{L}\left(\mathrm{t}^{\mathrm{n}}\right)=\frac{\Gamma(n+1)}{s^{n+1}} \quad$ Put $\mathrm{n}=-5 / 2$. Hence
$\mathrm{L}\left(\mathrm{t}^{-5 / 2}\right)=\frac{\Gamma(-3 / 2)}{s^{3 / 2}}=\frac{4 \sqrt{\pi}}{3 s^{-3 / 2}}$ Change s to $s+4$.
Therefore, $\quad L\left(e^{-4 t} t^{-5 / 2}\right)=\frac{4 \sqrt{\pi}}{3(s+4)^{-3 / 2}}$

Transform of $t^{n} f(t)$

Here we suppose that n is a positive integer. By definition, we have

$$
\mathrm{F}(\mathrm{~s})=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

Differentiating ' n ' times on both sides w.r.t. s, we get

$$
\frac{d^{n}}{d s^{n}} F(s)=\frac{\partial^{n}}{\partial_{S}{ }^{n}} \int_{0}^{\infty} e^{-s t} f(t) d t
$$

Performing differentiation under the integral sign, we get

$$
\frac{d^{n}}{d s^{n}} F(s)=\int_{0}^{\infty}(-t)^{n} e^{-^{s t}} f(t) d t
$$

Multiplying on both sides by $(-1)^{\mathrm{n}}$, we get

$$
(-1)^{n} \frac{d^{n}}{d s^{n}} F(s)=\int_{0}^{\infty}\left(t^{n} f(t) e^{-s t} d t=L\left[t^{n} f(t)\right],\right. \text { by definition }
$$

Thus,

$$
\mathrm{L}\left[\mathrm{t}^{\mathrm{n}} \mathrm{f}(\mathrm{t})\right]=\left(_1\right)^{n} \frac{d_{n}}{d s^{n}} F(s)
$$

This is the transform of $\mathrm{t}^{\mathrm{n}} \mathrm{f}(\mathrm{t})$.

Also,

$$
L^{-1}\left[\frac{d^{n}}{d s^{n}} F(s)\right]=(-1)^{n} t^{n} f(t)
$$

In particular, we have

$$
\begin{aligned}
& \mathrm{L}[\mathrm{t}(\mathrm{t})]=-\frac{d}{d s} F(s), \text { for } \mathrm{n}=1 \\
& \mathrm{~L}\left[\mathrm{t}^{2} \mathrm{f}(\mathrm{t})\right]=\frac{d_{2}}{d s^{2}} F(s), \text { for } \mathrm{n}=2 \text {, etc. }
\end{aligned}
$$

Also, $\quad-\left[\frac{1}{1} \frac{d}{d s} F(s)\right]=-t f(t) \quad$ and

$$
L^{-1}\left[\frac{d^{2}}{d s^{2}} F(s)\right]=t^{2} f(t)
$$

Transform of $\frac{f(t)}{t}$

We have, $\mathrm{F}(\mathrm{s})=\int_{0}^{\infty} e^{-s t} f(t) d t$
Therefore,

$$
\begin{aligned}
\int_{S}^{\infty} F(s) d s & =\int_{S}^{\infty}\left[\int_{0}^{\infty} e^{-s t} f(t) d t\right] d s \\
& =\int_{0}^{\infty} f(t)\left[\int_{s}^{\infty} e^{-s t} d s\right] d t \\
& =\int_{0}^{\infty} f(t)\left[\frac{e^{-s t}}{-t}\right]_{s}^{\infty} d t
\end{aligned}
$$

$$
=\int_{0}^{\infty} e^{-s t}\left[\frac{f(t)}{t}\right] d t L\left(\frac{f(t)}{t}\right)
$$

\quad Thus, $\quad L\left(\frac{f(t)}{t}\right)=\int_{s}^{\infty} F(s) d s$

This is the transform of $\frac{f(t)}{t}$

Also, $L^{-1} \int_{s}^{\infty} F(s) d s=\frac{f(t)}{t}$

Examples :

1. Find $L\left[t e^{-t} \sin 4 t\right]$

We have, $L\left[e^{-t} \sin 4 t\right]=\frac{4}{(s+1)^{2}+16}$
So that,

$$
\begin{aligned}
\mathrm{L}\left[\mathrm{te}^{-\mathrm{t}} \sin 4 \mathrm{t}\right] & =4\left[-\frac{d}{d s}\left\{\frac{1}{s^{2}+2 s+17}\right\}\right] \\
& =\frac{8(s+1)}{(s+2 s+17)^{2}}
\end{aligned}
$$

2. Find $L\left(t^{2} \sin 3 t\right)$

We have $L(\sin 3 \mathrm{t})=\frac{3}{s^{2}+9}$
So that,

$$
\begin{aligned}
\mathrm{L}\left(\mathrm{t}^{2} \sin 3 \mathrm{t}\right) & =\frac{d_{2}}{d s^{2}}\left(\frac{3}{s^{2}+9}\right) \\
& =-6 \frac{d}{d s} \frac{s}{\left(s^{2}+9\right)^{2}} \\
& =\frac{18\left(s^{2}-3\right)}{\left(s^{2}+9\right)^{3}}
\end{aligned}
$$

3. Find $L\left(\frac{e^{-t} \sin t}{t}\right)$

We have

$$
L\left(e^{-t} \sin t\right)=\frac{1}{(s+1)^{2}+1}
$$

Hence $L\left(\frac{e^{-t} \sin t}{t}\right)=\int_{0}^{\infty} \frac{d s}{(s+1)^{2}+1}=\operatorname{an}^{-1}(s+1)_{s}^{\infty}$

$$
=\frac{\pi}{2}-\tan ^{-1} \quad(s t 1)=\cot ^{-1}(s+1)
$$

4. Find $\left(\frac{\sin t}{t}\right)$. Using this, evaluate $\mathrm{L}\left(\frac{\sin a t}{t}\right)$

We have $L(\sin t)=\frac{1}{s^{2}+1}$
So that $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\left(\frac{\sin t}{t}\right)=\int_{s}^{\infty} \frac{d s}{s^{2}+1}=\mathrm{an}^{-1} s_{\underline{s}}^{\infty}$

$$
=\frac{\pi}{2}-\tan ^{-1} s=\cot ^{-1} s=F(s)
$$

Consider

$$
\begin{aligned}
\mathrm{L}\left(\frac{\sin a t}{t}\right) & =\mathrm{a} \mathrm{~L}\left(\frac{\sin a t}{a t}\right)=a L f(a t) \\
& =a\left[\frac{1}{a} F\left(\frac{s}{a}\right)\right], \text { in view of the change of scale property } \\
& =\cot ^{-1}\left(\frac{s}{a}\right)
\end{aligned}
$$

5. Find $\mathrm{L}\left[\frac{\cos a t-\cos b t}{t}\right]$

We have $\mathrm{L}[$ cosat $-\cos \mathrm{b}]=\frac{s}{\operatorname{sta}^{2} \cdot{ }^{2} h^{2}}$
So that $\mathrm{L}\left[\frac{\cos a t-\cos b t}{t}\right]=\int_{s}^{\infty}\left[\frac{s}{s^{2}+a^{2}}-\frac{s}{s^{2} b^{2}}\right] d s$

$$
\begin{aligned}
& =\frac{1}{2}\left[\log \left(\frac{s^{2}+a^{2}}{s^{2}+h^{2}}\right)\right]_{s}^{\infty} \\
& \quad=\frac{1}{2}\left[\operatorname{Lt~}_{s \rightarrow \infty} \log _{s}\left(\frac{s^{2}+a^{2}}{s^{2}+h^{2}}\right)-\log \left(\frac{s{ }^{2}+a^{2}}{s{ }^{2}+b^{2}}\right)\right] \\
& \quad=\frac{1}{2}\left[\quad \rho 1_{\mathrm{og}}\left(\frac{s^{2}+b^{2}}{s^{2}+a^{2}}\right)\right] \\
& =\frac{1}{2} \log \left(\frac{s+b^{2}}{s^{2}+a^{2}}\right)
\end{aligned}
$$

6. Prove that $\int_{0}^{\infty} e^{-3^{t} t} \sin t d t \frac{3}{50}$

We have

$$
\begin{aligned}
\int_{0}^{\infty} e^{-s t} t \sin t d t=L(t \quad \sin t) & =-\frac{d}{d s} \quad L(\sin t)=-\frac{d}{d s}\left[\frac{1}{s^{2}+1}\right] \\
& =\frac{2 s}{\left(s^{2}+1\right)^{2}}
\end{aligned}
$$

Putting $\mathrm{s}=3$ in this result, we get

$$
\int_{0}^{\infty} e^{-3 t} t \quad \sin t t t \frac{3}{50}
$$

This is the result as required.

Consider

$$
\begin{aligned}
\mathrm{L} f^{\prime}(t) & =\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t \\
& =\int^{-s t} f(t)_{\llcorner }^{\bar{\infty}}-\int_{0}^{\infty}(-s) e^{-s t} f(t) d t, \text { by using integration by parts } \\
& =\boldsymbol{L}_{\rightarrow \infty} t\left(e^{-s t} f(t)-f(0)+s L f(t)\right. \\
& =0-\mathrm{f}(0)+\mathrm{sL}[\mathrm{f}(\mathrm{t})]
\end{aligned}
$$

Thus

$$
\mathrm{L} f^{\prime}(t)=\mathrm{s} L[\mathrm{f}(\mathrm{t})]-\mathrm{f}(0)
$$

Similarly,
$\mathrm{L} f^{\prime \prime}(t)=\mathrm{s}^{2} \mathrm{~L}[\mathrm{f}(\mathrm{t})]-\mathrm{s}(0)-f^{\prime}(0)$

In general, we have

$$
L f^{n}(t)=s^{n} L f(t)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots \ldots . .-f^{n-1}(0)
$$

Transform of $\int_{0}^{t} f(t) d t$

Let $\phi(\mathrm{t})=\int_{0}^{t} f(t) d t$. Then $\phi(0)=0 \quad$ and $\phi^{\prime}(\mathrm{t})=\mathrm{f}(\mathrm{t})$
Now, $\mathrm{L} \phi(\mathrm{t})=\int_{0}^{\infty} e^{-s t} \phi(t) d t$

$$
=\left[\phi(t) \frac{e^{-s t}}{-s}\right]_{0}^{\infty}-\int_{0}^{\infty} \phi^{\prime}(t) \frac{e^{-s t}}{-s} d t
$$

$$
=(\theta 0)+\frac{1}{s} \int_{0}^{\infty} f(t) e^{-s t} d t
$$

Thus, $L \int^{t} f=\frac{1}{s} L[f(t)]$
$(t) d t$

Also, $\quad L^{-1}\left[\frac{1}{s} L[f(t)]\right]=\int_{0}^{t} f(t) d t$

Examples:

1. By using the Laplace transform of sinat, find the Laplace transforms of cosat.

Let $\mathrm{f}(\mathrm{t})=\sin$ at, then $\operatorname{Lf}(\mathrm{t})=\frac{a}{\mathrm{c}^{2 t} a^{2}}$
We note that

$$
f^{\prime} \quad(t \neq a \cos a t
$$

Taking Laplace transforms, we get

$$
\begin{aligned}
L f^{\prime}(t) & =L(a \cos a t)=a L(\cos a t) \\
\text { or } L(\cos a t) & \left.=\frac{1}{a} L f^{\prime}(t)=\frac{1}{a} \right\rvert\, L f(t)-f(0)_{-}^{-} \\
& =\frac{1}{a}\left[\frac{s a}{s^{2}+a^{2}}-0\right]
\end{aligned}
$$

Thus

$$
\mathrm{L}(\text { cosat })=\frac{s}{s^{2 t} a^{2}}
$$

This is the desired result.
2. Given $\left[L 2 \sqrt{\frac{t}{\pi}}\right]=\frac{1}{\mathbf{s}^{3 / 2}}$, show that $L\left[\frac{1}{\sqrt{\pi t}}\right]=\frac{1}{\sqrt{s}}$

Let $\mathrm{f}(\mathrm{t})=2 \sqrt{\frac{t}{\pi}}, \quad$ given $\mathrm{L}[\mathrm{f}(\mathrm{t})] \xlongequal[\mathrm{c}^{3 / 2}]{=}$

We note that, $f^{\prime}(t)=\frac{2}{\sqrt{\pi}} \frac{1}{2 \sqrt{t}}=\frac{1}{\sqrt{\pi t}}$
Taking Laplace transforms, we get

$$
L f^{\prime} \quad\left(t \neq L\left[\frac{1}{\sqrt{\pi t}}\right]\right.
$$

Hence

$$
\begin{aligned}
L\left[\frac{1}{\sqrt{\pi t}}\right]=L f^{\prime}(t) & =s L f(t)-f(0) \\
& =s\left(\frac{1}{\mathbf{s}^{3 / 2}}\right)-0
\end{aligned}
$$

Thus $\quad L\left[\frac{1}{\sqrt{\pi t}}\right]=\frac{1}{\sqrt{s}}$
This is the result as required.
3. Find $\quad \int_{0}^{t}\left(\frac{\cos a t-\cos b t}{t}\right) d t$

Here $\quad \mathrm{L}[\mathrm{f}(\mathrm{t})]=\left(\frac{\cos a t-\cos b t}{t}\right)=\frac{1}{2} \log \left(\frac{s^{2}+b^{2}}{s^{2}+a^{2}}\right)$

Using the result $\mathrm{L} \int_{0}^{t} f(t) d t=\frac{1}{s} L f(t)$
We get, $\quad L \int_{0}^{t}\left(\frac{\cos a t-\cos b t}{t}\right) d t=\frac{1}{2 s} \log \left(\frac{s^{2}+b^{2}}{s^{2}+a^{2}}\right)$
4. Find $L \int_{0}^{t} t e^{-t} \sin 4 t d t$

Here

$$
L \mathbf{T}^{-t} \sin 4 t \neq \frac{8(s+1)}{(s \quad+2 s+17)^{2}}
$$

Thus

$$
L \int_{0}^{t} t e^{-t} \sin 4 t d t=\frac{8(s+1)}{s(s+2 s+17)^{2}}
$$

Laplace Transform of a periodic function

Formula: Let $f(t)$ be a periodic function of period T. Then

$$
L f(t)=\frac{1}{1^{-} e^{-} s T} \int_{0}^{T} e^{-s t} f(t) d t
$$

Proof :By definition, we have

$$
\begin{aligned}
\mathrm{Lf}(\mathrm{t}) & =\int_{0}^{\infty} e^{-s t} f(t) d t=\int_{0}^{\infty} e^{-s u} f(u) d u \\
& =\int_{0}^{T} e^{-s u} f(u) d u+\int_{T}^{2 T} e^{-s u} f(u) d u+\ldots \ldots .+\int_{n T}^{(n+1) T} e^{-s u} f(u) d u+\ldots .+\infty \\
& =\sum_{n=0}^{\infty} \int_{n T}^{(n+1) T} e^{-s u} f(u) d u
\end{aligned}
$$

Let us set $\mathrm{u}=\mathrm{t}+\mathrm{nT}$, then

$$
\mathrm{Lf}(\mathrm{t})=\sum_{n=0}^{\infty} \int_{t=0}^{T} e^{-s(t+n T)} f(t+n T) d t
$$

Here

$$
\mathrm{f}(\mathrm{t}+\mathrm{nT})=\mathrm{f}(\mathrm{t}) \text {, by periodic property }
$$

Hence

$$
L f(t)=\sum_{n=0}^{\infty}\left(e^{-s T}\right)^{T} \int_{0}^{T} e^{-s t} f(t) d t
$$

$$
=\left[\frac{1}{1-e^{-S T}}\right]_{0}^{T} e^{-s t} f(t) d t \text {, identifying the above series as a geometric series. }
$$

Thus $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\left[\frac{1}{1-e^{-s T}}\right]_{0}^{T} e^{-s t} f(t) d t$
This is the desired result.

Examples:-

1. For the periodic function $f(t)$ of period 4 , defined by $f(t)=\left\{\begin{aligned} 3 t, & 0<t<2 \\ 6, & 2<t<4\end{aligned}\right.$
find $L[f(t)]$
Here, period of $f(t)=T=4$
We have,

$$
\begin{aligned}
\mathrm{Lf}(\mathrm{t}) & =\left[\frac{1}{1-e^{-s T}}\right]_{0}^{T} e^{-s t} f(t) d t \\
& =\left[\frac{1}{1-e^{-4 s}}\right]_{0}^{4} \int_{0}^{-s t} f(t) d t \\
& =\frac{1}{1 e^{-4 s}}\left[\int_{0}^{2} 3 t e^{-s t} d t+\int_{2}^{4} 6 e^{-s t} d t\right] \\
& \left.\left.=\frac{1}{1-e^{-4 s}}\left[3\left\{t\left(\frac{e^{-s t}}{-s}\right)\right]_{0}^{2}-\int_{0}^{2} 1 \frac{e^{-s t}}{-s} d t\right\}+{ }^{-s} e^{-s t}\right)_{2}^{4}\right] \\
& =\frac{1}{1-e^{-4 s}}\left[\frac{\left.31-e^{-2 s}-2 s e^{-4 s}\right]}{s^{2}}\right]
\end{aligned}
$$

Thus,

$$
\mathrm{L}[\mathrm{f}(\mathrm{t})]=\frac{3\left(1-e^{-2 s}-2 s e^{-} 4 s\right)}{s^{2}\left(1-e^{-}{ }_{4 s}\right)}
$$

3. A periodic function of period $\frac{2 \pi}{\omega}$ is defined by
$f(\mathrm{t})=\left\{\begin{array}{cl}E \sin \omega \mathrm{t}, & \quad \propto \mathrm{t}<\frac{\pi}{\omega} \\ 0, & \frac{\pi}{\omega} \leq \mathrm{t} \leq \frac{2 \pi}{\omega}\end{array}\right.$
where E ando are positive constants. Show that $\mathrm{L} f(\mathrm{t})=\frac{E \omega}{\left(s^{2}+w^{2}\right)\left(4 e^{-\pi_{s / w}}\right)}$
Sol: Here $\mathrm{T}=\frac{2 \pi}{\omega}$. Therefore

$$
\begin{aligned}
\mathrm{Lf}(\mathrm{t}) & =\frac{1}{1-e^{-s(2 \pi / \omega)}} \int_{0}^{2 \pi / \omega} e^{-s t} f(t) d t \\
& =\frac{1}{1-e^{-s(2 \pi / \omega)}} \int_{0}^{\pi / \omega} E e^{-s t} \sin \omega t d t \\
& =\frac{E}{1-e^{-} s\left(2^{\pi \varphi} \omega\right.}\left[\frac{e^{-s t}}{s^{2}+\omega^{2}}\{s \sin \omega t-\omega \cos \omega t]_{0}^{\pi / \omega}\right. \\
& =\frac{E}{1-e^{-s(2 \pi / \omega)}} \frac{\omega\left(e^{-s \pi / \omega}+1\right)}{s^{2}+\omega^{2}} \\
& =\frac{E \omega\left(1+e^{-s \pi / \omega}\right)}{\left(1-e^{-s \pi / \omega}\right)\left(1+e^{-s \pi / \omega}\right)\left(s^{2}+\omega^{2}\right)} \\
& =\frac{E \omega}{\left(1-e^{-s \pi / \omega}\right)\left(s^{2}+\omega^{2}\right)}
\end{aligned}
$$

This is the desired result.
3. A periodic function $f(t)$ of period $2 a, a>0$ is defined by

$$
-\mathrm{E}, \mathrm{a}<太 2 \mathrm{a}
$$

show that $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\frac{E}{s} \tanh \left(\frac{a s}{2}\right)$

Sol: Here $\mathrm{T}=2 \mathrm{a}$. Therefore $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\frac{1}{1-e^{-2 a s}} \int_{0}^{2 a} e^{-s t} f(t) d t$

$$
\begin{aligned}
& =\frac{1}{4 e^{-2 a s}}\left[\int_{0}^{a} E e^{-s t} d t+\int_{a}^{2 a}-E e^{-s t} d t\right] \\
& \left.=\frac{E}{s\left(1-e^{-} 2 a s\right)}\left[-e^{-s a}\right)\left(e^{-2 a s}-e^{-a s}\right)\right] \\
& \left.=\frac{E}{s\left(1-e^{-} 2 a s\right)}\left(-e^{-a s}\right)^{2}\right] \\
& =\frac{E\left(1-e^{-} a s\right)^{2}}{s\left(1-e^{-a s}\right)\left(4 e^{-} a s\right)} \\
& =\frac{E}{s}\left[\frac{e^{a s / 2}-e^{-a s / 2}}{e^{a s / 2}+e^{-a s / 2}}\right] \\
& =\frac{E}{s} \tanh \left(\frac{a s}{2}\right)
\end{aligned}
$$

This is the result as desired.

Step Function:

In many Engineering applications, we deal with an important discontinuous function H ($t-a$) defined as follows:

$$
\mathrm{H}(\mathrm{t}-\mathrm{a})=\left\{\begin{array}{lr}
0, & \mathrm{Ka} \\
1, & \mathrm{t}>\mathrm{a}
\end{array}\right.
$$

where a is a non-negative constant.

This function is known as the unit step function or the Heaviside function. The function is named after the British electrical engineer Oliver Heaviside. The function is also denoted by $\mathrm{u}(\mathrm{t}-\mathrm{a})$. The graph of the function is shown below:
$\mathrm{H}(\mathrm{t}-1)$ \qquad
Note that the value of the function suddenly jumps from value zero to the value 1 as $t \rightarrow a$ from the left and retains the value 1 for all $\mathrm{t}>\mathrm{a}$. Hence the function $\mathrm{H}(\mathrm{t}-\mathrm{a})$ is called the unit step function.

In particular, when $\mathrm{a}=0$, the function $\mathrm{H}(\mathrm{t}-\mathrm{a})$ become $\mathrm{H}(\mathrm{t})$, where

$$
\mathrm{H}(\mathrm{t})=\left\{\begin{array}{l}
0, \quad \mathrm{~K} 0 \\
1, \mathrm{t}>0
\end{array}\right.
$$

Transform of step function

By definition, we have $\mathrm{L}[\mathrm{H}(\mathrm{t}-\mathrm{a})]=\int_{0}^{\infty} e^{-s t} H(t-a) d t$

$$
\begin{aligned}
& =\int_{0}^{a} e^{-s t} 0 d t+\int_{a}^{\infty} e^{-s t}(1) d t \\
& =\frac{e^{-a s}}{S}
\end{aligned}
$$

In particular, we have $L H(t)=\frac{1}{s}$
Also, $\quad L^{-1}\left[\frac{e^{-a s}}{s}\right]=H \quad(\neq a) \quad$ and $\quad L^{-1}\left(\frac{1}{s}\right)=H(t)$

Unit step function (Heaviside function)

Statement: - L [f (t-a) H (t-a)]= $\mathrm{e}^{-\mathrm{as}} \operatorname{Lf}(\mathrm{t})$

$$
\begin{aligned}
\mathrm{L}[\mathrm{f}(\mathrm{t}-\mathrm{a}) \mathrm{H}(\mathrm{t}-\mathrm{a})] & =\int_{0}^{\infty} f(t-a) H(t-a) e^{-s t} d t \\
& =\int_{a}^{\infty} e^{-s t} f(t-a) d t
\end{aligned}
$$

Setting $\mathrm{t}-\mathrm{a}=\mathrm{u}$, we get

$$
\begin{aligned}
\mathrm{L}[\mathrm{f}(\mathrm{t}-\mathrm{a}) \mathrm{H}(\mathrm{t}-\mathrm{a})] & =\int_{0}^{\infty} e^{-s(a+u)} f(u) d u \\
& =\mathrm{e}^{-\mathrm{as}} \mathrm{~L}[\mathrm{f}(\mathrm{t})]
\end{aligned}
$$

This is the desired shift theorem.
Also, $\quad L^{-1}\left[e^{-a s} L f(t)\right]=f(t-a) H(t-a)$

Examples:

1. Find $L\left[e^{t-2}+\sin (t-2)\right] H(t-2)$

Sol: Let $\mathrm{f}(\mathrm{t}-2)=\left[\mathrm{e}^{\mathrm{t}-2}+\sin (\mathrm{t}-2)\right]$
Then $\mathrm{f}(\mathrm{t})=\left[\mathrm{e}^{\mathrm{t}}+\sin \mathrm{t}\right]$
so that $\mathrm{Lf}(\mathrm{t})=\frac{1}{s-1}+\frac{1}{\mathrm{c}^{2}+1}$
By Heaviside shift theorem, we have

$$
\mathrm{L}[\mathrm{f}(\mathrm{t}-2) \mathrm{H}(\mathrm{t}-2)]=\mathrm{e}^{-2 \mathrm{~s}} \mathrm{Lf}(\mathrm{t})
$$

Thus,

$$
L\left[e^{(t-2)}+\sin (t-2)\right] H \quad(t 2)=e^{-2 s}\left[\frac{1}{s-1}+\frac{1}{\mathbf{v}^{2}+1}\right]
$$

2. Find $L\left(3 t^{2}+2 t+3\right) H(t-1)$

Sol: \quad Let $f(t-1)=3 t^{2}+2 t+3$
so that

$$
f(t)=3(t+1)^{2}+2(t+1)+3=3 t^{2}+8 t+8
$$

Hence

$$
L[f(t)]=\frac{6}{s^{3}}+\frac{8}{s}{ }_{2}+\frac{8}{s}
$$

Thus

$$
\begin{aligned}
\mathrm{L}\left[3 \mathrm{t}^{2}+2 \mathrm{t}+3\right] \mathrm{H}(\mathrm{t}-1) & =\mathrm{L}[\mathrm{f}(\mathrm{t}-1) \mathrm{H}(\mathrm{t}-1)] \\
& =\mathrm{e}^{-\mathrm{s}} \mathrm{~L}[\mathrm{f}(\mathrm{t})] \\
& =e^{-s}\left[\frac{6}{\mathbf{s}^{3}}+\frac{8}{\mathbf{s}^{2}}+\frac{8}{s}\right]
\end{aligned}
$$

3. Find $\mathrm{Le}^{-t} \mathrm{H}(\mathrm{t}-2)$

Sol: Let $\mathrm{f}(\mathrm{t}-2)=\mathrm{e}^{-\mathrm{t}}$, so that, $\mathrm{f}(\mathrm{t})=\mathrm{e}^{-(\mathrm{t}+2)}$
Thus, $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\frac{e^{-2}}{s+1}$
By shift theorem, we have

$$
L[f(t-2) H(t-2)]=e^{-2 s} L f(t)=\frac{e^{-2(s+1)}}{s+1}
$$

Thus

$$
L \llbracket^{-t} H(\neq 2)=\frac{e^{-2(s+1)}}{s+1}
$$

4. Let $\mathrm{f}(\mathrm{t})=\left\{\begin{array}{cc}\mathrm{f}_{1} \quad(\mathrm{t}), \mathrm{t} \leq \mathrm{a} \\ \mathrm{f}_{2}(\mathrm{t}), & \mathrm{t}>\mathrm{a}\end{array}\right.$

Verify that $\mathrm{f}(\mathrm{t})=\mathrm{f}_{1}(\mathrm{t})+\left[\mathrm{f}_{2}(\mathrm{t})-\mathrm{f}_{1}(\mathrm{t})\right] \mathrm{H}(\mathrm{t}-\mathrm{a})$
Sol: Consider

$$
\begin{aligned}
\mathrm{f}_{\mathrm{t}}\left(\mathrm{fff} \quad 2(\mathrm{t})-\mathrm{f}_{1}(\mathrm{t})\right] \mathrm{H}(\mathrm{t}-\mathrm{a}) & =\left\{\begin{array}{cc}
\mathrm{f}_{1}(\mathrm{t})+\mathrm{f}_{2}(\mathrm{t})-\mathrm{f}_{1}(\mathrm{t}), & \mathrm{t}>\mathrm{a} \\
0, & \mathrm{t} \leq \mathrm{a}
\end{array}\right. \\
& = \begin{cases}\mathrm{f}_{2}(\mathrm{t}), & \mathrm{t}>\mathrm{a} \\
\mathrm{f}_{1}(\mathrm{t}), & \mathrm{t} \leq \mathrm{a}=\mathrm{f}(\mathrm{t}), \text { given }\end{cases}
\end{aligned}
$$

Thus the required result is verified.
5. Express the following functions in terms of unit step function and hence find their Laplace transforms.

1. $\mathrm{f}(\mathrm{t})= \begin{cases}2, & 1<\mathbb{K} 2 \\ 4 \mathrm{t}, & \mathrm{t}>2\end{cases}$

Sol: Here, $f(t)=t^{2}+\left(4 t-t^{2}\right) H(t-2)$
Hence, $\mathrm{L} f(\mathrm{t})=\frac{2}{s^{3}}+L\left(4 t-t^{2}\right) H(\neq 2)$
Let $\phi(\mathrm{t}-2)=4 \mathrm{t}-\mathrm{t}^{2}$
so that $\phi(t)=4(t+2)-(t+2)^{2}=-t^{2}+4$
Now, $L[\phi(t)]=-\frac{2}{s}{ }_{3}+\frac{4}{s}$
Expression (i) reads as

$$
\begin{aligned}
\mathrm{Lf}(\mathrm{t}) & =\frac{2}{s^{3}}+L \boldsymbol{\phi}(t-2) H \quad(\neq 2)_{-}^{-} \\
& =\frac{2}{s^{3}}+e^{--} L \phi(t) \\
& =\frac{2}{s^{3}}+e^{-2^{s}}\left(\frac{4}{s}-\frac{2}{s^{3}}\right)
\end{aligned}
$$

This is the desired result
2.
$f(t)= \begin{cases}\cos t, & 0<\mathrm{t}<\pi \\ \operatorname{sint}, & \mathrm{t}>\pi\end{cases}$
Sol: Here $\mathrm{f}(\mathrm{t})=\operatorname{cost}+(\operatorname{sint}-\cos t) H(\mathrm{t}-\pi)$
Hence, $\quad \mathrm{L}[\mathrm{f}(\mathrm{t})]=\frac{s}{s^{2}+1}+L(\sin t-\cos t) H(t-\pi)$
Let $\quad \phi(\mathrm{t}-\pi)=\sin \mathrm{t}-\mathrm{cost}$
Then $\quad \phi(t)=\sin (t+\pi)-\cos (t+\pi)=-\sin t+\cos t$
so that $L[\phi(t)]=-\frac{1}{s^{2}+1}+\frac{s}{s^{2}+1}$

Expression (ii) reads as

$$
\begin{gathered}
\mathrm{L}[\mathrm{f}(\mathrm{t})]=\frac{s}{s^{2}+1}+L \boldsymbol{p}(t-\pi) H(t-\pi)_{-}^{-} \\
\quad=\frac{s}{\mathbf{s}^{2}+1}+e^{-\pi s} L \phi(t)
\end{gathered}
$$

UNIT IMPULSE FUNCTION

Definition: The unit impulse function denoted by $\delta(t-a)$ is defined as follows

$$
\begin{equation*}
\delta(t-a)=\lim _{\varepsilon \rightarrow 0} \delta_{e}(t-a), a \geq 0 \tag{1}
\end{equation*}
$$

Where

$$
\delta_{e}(t-a)=\left\{\begin{array}{llc}
0, & \text { if } & t<a \tag{2}\\
\frac{1}{\varepsilon}, & \text { if } & a<t<a+\varepsilon \\
0, & \text { if } & t>a+\varepsilon
\end{array}\right.
$$

The graph of the function $\delta_{e}(t-a)$ is as shown below:

Fig. 7.2
Laplace transform of the unit impulse function

Consider $\quad L\left\{\delta_{e}(t-a)\right\}=\int_{0}^{\infty} e^{-s t} \delta_{e}(t-a) d t$

$$
\begin{aligned}
& =\int_{0}^{a} e^{-s t}(0) d t+\int_{a}^{a+\varepsilon} e^{-s} \frac{1}{\varepsilon} d t+\int_{a+\varepsilon}^{\infty} e^{-s t}(0) d t \\
& =\frac{1}{\varepsilon} \int_{a}^{a+\varepsilon} e^{-s t} d t=\frac{1}{\varepsilon}\left[\frac{e^{-s t}}{-s}\right]_{a}^{a+\varepsilon} \\
& =-\frac{1}{\varepsilon s}\left[e^{-s(a+\varepsilon)}-e^{-a s}\right] \\
& =e^{-a s}\left[\frac{1-e^{-\varepsilon s}}{\varepsilon s}\right]
\end{aligned}
$$

Taking the limits on both sides as $\varepsilon \rightarrow 0$, we get,

$$
\begin{array}{rlrl}
& & \lim _{\varepsilon \rightarrow 0} L\left\{\delta_{e} \cdot(t-a)\right\} & =e^{-a s} \lim _{\varepsilon \rightarrow 0}\left[\frac{1-e^{-e s}}{\varepsilon s}\right] \\
\text { i.e., } & L\{\delta(t-a)\} & =e^{-a s} \\
\text { If } & a & =0 \text { then } L\{\delta(t)\}=1 & \text { (Using L' Hospital Rule) } \\
\text { If } & \quad L &
\end{array}
$$

1. Find the Laplace transforms of the following functions:

(1) $(2 t-1) u(t-2)$

Solution

(1) Now $\quad 2 t-1=2(t-2)+3$
\therefore Using Heaviside shift theorem, we get

$$
\begin{aligned}
L\{(2 t-1) u(t-2)\} & =L\{[2(t-2)+3] u(t-2)\} \\
& =e^{-2 s} L\{2 t+3\} \\
& =e^{-2 s}\{2 L(t)+L(3)\} \\
& =e^{-2 s}\left\{\frac{2}{s^{2}}+\frac{3}{s}\right\} .
\end{aligned}
$$

(2) $t^{2} u(t-3)$

Solution: $t^{2}=[(t-3)+3]^{2}$

$$
=(t-3)^{2}+6(t-3)+9
$$

Then

$$
L\left\{t^{2} u(t-3)\right\}=L\left\{\left[(t-3)^{2}+6(t-3)+9\right] u(t-3)\right\}
$$

Replacing $t-3$ by t

$$
=e^{-3 s} L\left\{t^{2}+6 t+9\right\}
$$

Using Heaviside shift theorem

$$
\begin{aligned}
& =e^{-3 s}\left\{L\left(t^{2}\right)+6 L(t)+9 L(1)\right\} \\
& =e^{-3 s}\left\{\frac{2}{s^{3}}+\frac{6}{s^{2}}+\frac{9}{s}\right\} .
\end{aligned}
$$

Find $L[2 \delta(t-1)+38(t-2)+4 \delta(t+3)]$.

Solution. We have

$$
\begin{aligned}
& =2 L \delta(t-1)+3 L \delta(t-2)+4 L \delta(t+3) \\
& =2 e^{-s}+3 e^{-2 s}+4 e^{3 s}
\end{aligned}
$$

$$
\text { Since } L \delta(t-a)=e^{-a s}
$$

Find L [$\cosh 3 t \delta(t-2)]$.

Solution

$$
\cosh 3 t \delta(t-2)=\frac{1}{2}\left\{e^{3 t}+e^{-3 t}\right\} \delta(t-2)
$$

$L[\cosh 3 t \delta(t-2)]=\frac{1}{2}\left\{L\left[e^{3 t} \delta(t-2)\right]+L\left[e^{-3 t} \delta(t-2)\right]\right\}$

$$
\begin{aligned}
& =\text { shifting } \quad \begin{array}{r}
s-3 \rightarrow s \\
s+3 \rightarrow s
\end{array} \\
& =\frac{1}{2}\left\{L[\delta(t-2)]_{s \rightarrow s-3}+L[\delta(t-2)]_{s \rightarrow s+3}\right\} \\
& =\frac{1}{2}\left\{\left(e^{-2 s}\right)_{s \rightarrow s-3}+\left(e^{-2 s}\right)_{s \rightarrow+3}\right\} \\
& =\frac{1}{2}\left\{e^{-2(s-3)}+e^{-2(s+3)}\right\} \\
& =\frac{e^{-2 s}}{2}\left\{e^{6}+e^{-6}\right\}
\end{aligned}
$$

$L[\cosh 3 t \delta(t-2)]=\cosh 6 e^{-2 s}$

The Inverse Laplace Transforms

Introduction:

Let $L[f(t)]=F(s)$. Then $f(t)$ is defined as the inverse Laplace transform of $F(s)$ and is denoted by $\mathrm{L}^{-1} \mathrm{~F}(\mathrm{~s})$. Thus $\mathrm{L}^{-1}[\mathrm{~F}(\mathrm{~s})]=\mathrm{f}(\mathrm{t})$.

Linearity Property

Let $\mathrm{L}^{-1}[\mathrm{~F}(\mathrm{~s})]=\mathrm{f}(\mathrm{t})$ and $\mathrm{L}^{-1}[\mathrm{G}(\mathrm{s})=\mathrm{g}(\mathrm{t})]$ and a and b be any two constants. Then $\mathrm{L}^{-1}[\mathrm{aF}(\mathrm{s})+\mathrm{bG}(\mathrm{s})]=\mathrm{a} \mathrm{L}^{-1}[\mathrm{~F}(\mathrm{~s})]+\mathrm{b}^{-1}[\mathrm{G}(\mathrm{s})]$

Table of Inverse Laplace Transforms

F(s)	$f\left(t \neq L^{-1} F(s)\right.$
$\frac{1}{s}, \& 0$	1
$\frac{1}{s-a}, s a$	$e^{a t}$
$\frac{s}{s^{2}+a^{2}}, s^{0}$	Cos at
$\frac{1}{s^{2}+a^{2}}, s^{0}$	$\frac{\text { Sin at }}{\mathrm{a}}$
$\frac{1}{s^{2}-a^{2}}, s>\|a\|$	$\frac{\text { Sin } \mathrm{h} \text { at }}{\mathrm{a}}$
$\frac{s}{>\mid \bar{a} s^{2} a^{2}}, s$	Coshat
$\begin{gathered} \frac{1}{s^{n^{+1}}}, s^{0} \\ n=0,1,2,3, \ldots \end{gathered}$	$\frac{t^{n}}{n!}$
$\begin{gathered} \frac{1}{s^{n^{+}}}, s^{0} \\ n>-1 \end{gathered}$	$\frac{t^{n}}{\Gamma+1}$

Example

1. Find the inverse Laplace transforms of the following:
(i) $\frac{1}{2 s-5}$
(ii) $\frac{s+b}{\mathrm{c}^{2}+a^{2}}$
(iii) $\frac{2 s-5}{4 s^{2}+25}+\frac{4 s-9}{9-s^{2}}$

Here
(i) $L^{-1}\left[\frac{1}{2 s-5}\right]=\frac{1}{2} e^{2^{2}}\left[\frac{1}{s-5 / 2}\right]=\frac{1}{2}^{\frac{5 t}{-}}$
(ii) $L^{-}\left[\frac{1+s}{b^{+}}\right]=L^{-}\left[\frac{s}{s+a^{2}}\right]+b L^{-1}\left[\frac{1}{s^{2}+a^{2}}\right]=\cos a t+\frac{b}{a} \sin a t$ ${ }_{2} a^{\frac{S}{2}}$
(iii) $L^{-1}\left[\frac{2 s-5}{4 s^{2}+25}+\frac{4 s-8}{9-\mathrm{c}^{2}}\right]=\frac{2}{4} I^{-1}\left[\frac{s-5 / 2}{\mathrm{~s}^{2}+\frac{25}{4}}\right]-4 L^{-1}\left[\frac{s-9 / 2}{\mathrm{~s}^{2}-9}\right]$

$$
=\frac{1}{2}\left[\cos \frac{5 t}{2}-\sin \frac{5 t}{2}\right]-4\left[\cos h 3 t-\frac{3}{2} \sin h 3 t\right]
$$

Evaluation of $\mathbf{L}^{-1} \mathrm{~F}(\mathrm{~s}-\mathbf{a})$

We have, if $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{F}(\mathrm{s})$, then $\mathrm{L}\left[\mathrm{e}^{\mathrm{at}} \mathrm{f}(\mathrm{t})\right]=\mathrm{F}(\mathrm{s}-\mathrm{a})$, and so

$$
\mathrm{L}^{-1}[\mathrm{~F}(\mathrm{~s}-\mathrm{a})]=\mathrm{e}^{\mathrm{at}} \mathrm{f}(\mathrm{t})=\mathrm{e}^{\mathrm{at}} \mathrm{~L}^{-1}[\mathrm{~F}(\mathrm{~s})]
$$

Examples

1. Evaluate : $L^{-1}\left[\frac{3 s+1}{1+{ }_{14}}\right]$

Given $=L^{-1}\left[\frac{3(1-\mathcal{Y} 1}{(+1)}\right]=3 L^{-1}\left[\frac{1}{\left(+1^{3}\right)}\right]-2 L^{-1}\left[\frac{1}{\left(+{ }_{1} 4\right.}\right]$

$$
=3 e^{-t} L\left[\frac{1^{1}}{s^{3}}\right]-2 e^{-t} L^{-1}\left[\frac{1}{\mathbf{s}^{4}}\right]
$$

Using the formula

$$
L^{-1}\left[\frac{1}{n^{+1}}\right]=\frac{t^{n}}{n!} \quad \text { and taking } n=2 \text { and } 3 \text {, we get }
$$

$$
\text { Given }=\frac{3 e^{-} t_{t}{ }^{2}}{2}-\frac{e^{-} t_{t}{ }^{3}}{3}
$$

2. Evaluate : $L^{-1}\left[\frac{s+2}{s^{2}-2 \pi 5}\right]$

$$
\begin{aligned}
& \text { Given }=L^{-1}\left[\frac{s+2}{1-12+4}\right]={ }_{\boldsymbol{r}}-\left[\frac{-{ }_{1}+3}{1-1{ }^{2}+4}\right] \\
& ={ }_{\boldsymbol{r}}{ }^{-1}\left[\frac{s-1}{1-{ }_{12}^{2}+4}\right]+3 L^{-1}\left[\frac{1}{1-\mathbf{1}_{2}^{2}+4}\right] \\
& =e^{t} L^{-1}\left[\frac{s}{s{ }^{2}+4}\right]+3 e^{t} L^{-1}\left[\frac{1}{s^{2}+4}\right] \\
& =e^{t} \cos 2 t+\frac{3}{2} e^{t} \sin 2 t
\end{aligned}
$$

3. Evaluate : $L^{-1}\left[\frac{2 s+1}{s^{2}+3 s+1}\right]$

$$
\begin{aligned}
\text { Given }=2 \mathrm{~L}^{-1}\left[\frac{\left(\frac{3}{2}-1\right.}{\left(\frac{3}{2}, \frac{2}{2} / 4\right.}\right] & =2\left[L^{-1}\left[\frac{\left(\frac{3}{2},\right.}{\left(+\frac{3}{2}, \frac{2}{5} / 4\right.}\right]-L^{-1}\left[\frac{1}{\left(+\frac{3}{2},-5 / 4\right.}\right]\right] \\
& =2\left[e^{\frac{-3 t}{2}} L^{-1}\left[\frac{s}{s^{2}-5 / 4}\right]-e^{\frac{-3 t}{2}} L^{-1}\left[\frac{1}{s^{2}-5 / 4}\right]\right] \\
& =2 e^{\frac{-3 t}{2}}\left[\cos \frac{\gamma_{h}^{5}}{2} t \frac{2}{\sqrt{5}} \sin \frac{\gamma_{h}^{5}}{2} t\right]
\end{aligned}
$$

4. Evaluate: $\mathrm{L}^{-1}\left[\frac{2 s+5 s-4}{s^{2}+\mathrm{s}^{2}-2 s}\right]$
we have

$$
\begin{aligned}
& \frac{2 s+5 s-4}{s^{2} s^{2}-2 s}=\frac{2 s{ }^{2}+5 s-4}{s \mathbf{c}^{2}+s-2} \\
& =\frac{2 s+5 s-4}{s+s 2-1} \\
& =\frac{A}{s}+\frac{B}{s+2}+\frac{C}{s-1}
\end{aligned}
$$

Then $2 s^{2}+5 s-4=\mathrm{A}(\mathrm{s}+2)(\mathrm{s}-1)+\mathrm{Bs}(\mathrm{s}-1)+\mathrm{Cs}(\mathrm{s}+2)$
For $s=0$, we get $\mathrm{A}=2$, for $\mathrm{s}=1$, we get $\mathrm{C}=1$ and for $\mathrm{s}=-2$, we get $\mathrm{B}=-1$. Using these values in (1), we get

$$
\frac{2 s^{2}+5 s-4}{s^{3}+\mathrm{c}^{2}-2 s}=\frac{2}{s}-\frac{1}{s+2}+\frac{1}{s-1}
$$

Hence

$$
L^{-1}\left[\frac{2 s^{2}+5 s-4}{s^{2}+s} \frac{2}{-25}\right]=2-e^{-} \quad{ }^{2 t}+e^{t}
$$

5. Evaluate : $L^{-1}\left[\frac{4 s+5}{1+{ }_{12}^{2}+2}\right]$

Let us take

$$
\frac{4 s+5}{1+\frac{2}{2}+2+2}=\frac{A}{1+1_{2}^{2}}+\frac{B}{s+1}+\frac{C}{s+2}
$$

Then

$$
4 \mathrm{~s}+5=\mathrm{A}(\mathrm{~s}+2)+\mathrm{B}(\mathrm{~s}+1)(\mathrm{s}+2)+\mathrm{C}(\mathrm{~s}+1)^{2}
$$

For $\mathrm{s}=-1$, we get $\mathrm{A}=1$, for $\mathrm{s}=-2$, we get $\mathrm{C}=-3$

Comparing the coefficients of s^{2}, we get $\mathrm{B}+\mathrm{C}=0$, so that $\mathrm{B}=3$. Using these values in
(1), we get

$$
\begin{gathered}
\frac{4 s+5}{4+1 \frac{2}{4}+2}=\frac{1}{1+12}+\frac{3}{\sqrt[1]{1}}-\frac{3}{s+2} \\
\text { Hence } L^{-1}\left[\frac{4 s+5}{\left(+{ }_{1} 2\right.}+4+2\right]=e^{-t} L^{-}\left[\begin{array}{l}
1 \\
s^{2}
\end{array}\right]+3 e^{-t} L^{-1}\left[\begin{array}{c}
1 \\
s
\end{array}\right]-3 e^{-2 t} L^{-1}\left[\frac{1}{s}\right] \\
=t e^{-t}+3 e^{-t}-3 e^{-2 t}
\end{gathered}
$$

6. Evaluate : $L^{-1}\left[\frac{s^{3}}{s^{4}-a^{4}}\right]$

$$
\begin{equation*}
\text { Let } \frac{\mathrm{s}^{3}}{\mathrm{~s}+a^{4}}=\frac{A}{s-a}+\frac{B}{s+a}+\frac{C s+D}{\mathrm{~s}^{2}+a^{2}} \tag{1}
\end{equation*}
$$

$$
\text { Hence } s^{3}=A(s+a)\left(s^{2}+a^{2}\right)+B(s-a)\left(s^{2}+a^{2}\right)+(C s+D)\left(s^{2}-a^{2}\right)
$$

For $\mathrm{s}=\mathrm{a}$, we get $\mathrm{A}=1 / 4$; for $\mathrm{s}=-\mathrm{a}$, we get $\mathrm{B}=1 / 4$; comparing the constant terms, we get $\mathrm{D}=\mathrm{a}(\mathrm{A}-\mathrm{B})=0$; comparing the coefficients of s^{3}, we get
$1=\mathrm{A}+\mathrm{B}+\mathrm{C}$ and so $\mathrm{C}=1 / 2$. Using these values in (1), we get

$$
\frac{s^{3}}{s^{4}-a^{4}}=\frac{1}{4}\left[\frac{1}{s-a}+\frac{1}{s+a}\right]+\frac{1}{2} \frac{s}{s^{2}+a^{2}}
$$

Taking inverse transforms, we get

$$
\begin{aligned}
L^{-}\left[\frac{s^{3}}{S^{4} a^{4}}\right] & =\frac{1}{4} \int^{a t}+e^{-a t}-\frac{1}{2} \cos a t \\
& \left.=\frac{1}{2} \right\rvert\, \cos \text { hqtcos }-
\end{aligned}
$$

7. Evaluate : $L^{-1}\left[\frac{s}{s^{4}+s^{2}+1}\right]$

Consider $\frac{s}{s^{4}+s^{2}+1}=\frac{s}{(2+s+1)(2-s+1)}=\frac{1}{2}\left[\frac{2 s}{(2+s+1)(2-s+1)}\right]$

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{\left.\mathbf{N}_{2}+s+1\right)(2-s+1)}{(2+s+1)}\right] \\
& =\frac{1}{2}\left[\frac{1}{(2-s+1)} \frac{1}{(2+s+1)}\right] \\
& =\frac{1}{2}\left[\frac{1}{\left(-\frac{1}{2}\right)+\frac{3}{4}}-\frac{1}{\left(+\frac{1}{2}\right)+\frac{3}{4}}\right]
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& L^{-1}\left[\frac{s}{s^{4} \mathbf{s}^{2}+1}\right]=\frac{1}{2}\left[e^{\frac{1}{2} t} L^{-1}\left[\frac{1}{s+\frac{3}{4}}\right]-e^{-\frac{1}{2} t} L^{-1}\left[\frac{1}{s+\frac{3}{4}}\right]\right] \\
& =\frac{1}{2}\left[e^{\frac{1}{2} t} \frac{\sin _{2}{ }^{2} t}{\frac{\sqrt{3}}{2}}-e^{-\frac{1}{2} t} \frac{\sin \frac{\sqrt{3}}{2} t}{\frac{\sqrt{3}}{2}}\right] \\
& =\frac{2}{\sqrt{3}} \sin \left(\frac{\sqrt{3}}{2} t\right) \sin h\left(\frac{t}{2}\right)
\end{aligned}
$$

Evaluation of $L^{-1}\left[\mathrm{e}^{-\mathrm{as}} \mathrm{F}(\mathrm{s})\right]$

We have, if $L[f(t)]=F(s)$, then $L\left[f(t-a) H(t-a)=e^{-a s} F(s)\right.$, and so

$$
\mathrm{L}^{-1}\left[\mathrm{e}^{-\mathrm{as}} \mathrm{~F}(\mathrm{~s})\right]=\mathrm{f}(\mathrm{t}-\mathrm{a}) \mathrm{H}(\mathrm{t}-\mathrm{a})
$$

Examples
(1)Evaluate: $L^{-1}\left[\frac{e^{-s s}}{-2^{-7}}\right]$

Here

$$
a=5, F(s)=\frac{1}{\left(-\imath \frac{4}{4}\right.}
$$

Therefore $f(t)=L^{-1} F(s)=L^{-} \frac{1}{1-2^{\natural}}=e^{2 t} L^{-1} \frac{1}{s^{4}} \quad=\frac{e^{2 t} t^{3}}{6}$
Thus

$$
\begin{aligned}
L^{-1} \frac{e^{-5 s}}{1-\jmath^{4}} & =f(t-a) H(\neq a) \\
& =\frac{{2^{2}}_{5}-\sqrt{3}}{6} H-5
\end{aligned}
$$

(2) Evaluate: $E\left[\frac{{ }^{e}-\pi s}{s^{2}+1}+\frac{s e^{-2 \pi s}}{s^{2}+4}\right]$

Given $=f_{1}$ 【 $-\pi \bar{H} \backslash-\pi \overline{-}+f_{2}$ t $2 \pi \bar{H} \backslash-2 \pi$,
Here $f_{1}(t)=L^{-} \frac{1}{s^{2}+1}=\sin t$

$$
f_{2}(t)=L^{-} \frac{1 s}{s^{2}+4}=\cos 2 t
$$

Now relation(1) reads as

Inverse transform of logarithmic functions

We have, if $\mathrm{L}(\mathrm{t})=\mathrm{F}(\mathrm{s})$, then $\ \mathbb{C _ { 2 }}=-\frac{d}{d s} F \mathbf{C}$

Hence

$$
L^{-1}\left(-\frac{d}{d s} F\right)=t f(t)
$$

Examples:
(1) Evaluate: $L^{-1} \log \left(\frac{s+a}{s+b}\right)$

$$
\text { Let } F(s)=\log \left(\frac{s+a}{s+b}\right)=\log \left(a--\log +b^{-}\right.
$$

$$
\text { Then }-\frac{d}{d s} F=-\left[\frac{1}{s+a}-\frac{1}{s+b}\right]
$$

$$
\text { So that } L^{-1}\left[-\frac{d}{d s} F \mathbb{S}^{-}{ }^{-a t}-e^{-b t}\right]
$$

$$
\text { or } \quad t f=e^{-b t}-e^{-a t}
$$

Thus $f=\frac{e^{-b t} e^{-a t}}{b}$
(2) Evaluate $L^{-1} \tan ^{-1}\left(\frac{a}{s}\right)$

$$
\text { Let } F\left(s \neq \tan ^{-1}\left(\frac{a}{s}\right)\right.
$$

Then $-\frac{d}{d s} F=\left[\frac{a}{s^{2}+a^{2}}\right]$

$$
\begin{aligned}
& \text { or } L^{-1}\left[-\frac{d}{d s} F s\right]=\sin a t \quad \text { so that } \\
& \text { or } t f t=\sin a t \\
& f=\frac{\sin a t}{a}
\end{aligned}
$$

$$
\text { Inverse transform of }\left[\frac{F s}{s}\right]
$$

(1) Evaluate: $L^{-1}\left[\frac{1}{s\left(^{2}+a^{2}\right.}\right]$

$$
\begin{aligned}
& \text { Let us denote } F=\frac{1}{a^{2}+a^{2}} \text { so that } \\
& f(t)=L^{-1} F=\frac{\sin a t}{a}
\end{aligned}
$$

$$
\text { Then } \begin{aligned}
L^{-1} & =\frac{1}{s\left(s^{2}+a^{2}\right)} L^{-} \frac{F}{s}=\int_{0}^{t} \frac{\sin a t}{a} d t \\
& =\frac{(-\cos a t}{a^{2}}
\end{aligned}
$$

Convolution Theorem:

If

$$
L^{-1}\{F(s)\}=f(t) \text { and } L^{-1}\{G(s)\}=g(t)
$$

$$
\begin{equation*}
L^{-1}\{F(s) G(s)\}=\int_{0}^{t} f(u) g(t-u) d u \tag{1}
\end{equation*}
$$

Proof. Since $\quad L^{-1} F(s)=f(t)$ and $L^{-1}\{G(s)\}=g(t)$
we have

$$
F(s)=L\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

and

$$
G(s)=L\{g(t)\}=\int_{0}^{\infty} e^{-s t} g(t) d t
$$

To prove (1), it is sufficient to prove that

$$
\begin{equation*}
L\left\{\int_{0}^{t} f(u) g(t-u) d u\right\}=F(s) G(s) \tag{2}
\end{equation*}
$$

Consider

$$
\begin{align*}
L\left\{\int_{0}^{t} f(u) g(t-u) d u\right\} & =\int_{0}^{\infty} e^{-s t}\left\{\int_{0}^{t} f(u) g(t-u) d u\right\} d t \\
& =\int_{t=0}^{\infty} \int_{u=0}^{t} e^{-s t} f(u) g(t-u) d u d t \tag{3}
\end{align*}
$$

Fig. 8.1

Fig. 8.2

The domain of integration for the above double integral is from $u=0$ to $u=t$ and $t=0$ to $t=\infty$ which is as shown in Fig. 8.1.

The double integral given in the R.H.S. of equation (3) indicates that we integrate first parallel to u-axis and then parallel to t-axis.

We shall now change the order of integration parallel to t-axis the limits being $t=u$ to $t=\infty$ and parallel to u-axis the limits being $u=0$ to $u=\infty$.
\therefore From equation (3), we get

$$
\begin{aligned}
L\left\{\int_{0}^{t} f(u) g(t-u) d u\right\} & =\int_{0}^{\infty} f(u)\left\{\int_{a}^{\infty} e^{-s t} g(t-u) d t\right\} d u \\
& =\int_{0}^{\infty} f(u) e^{-s u}\left\{\int_{u}^{\infty} e^{-s(t-u)} g(t-u) d t\right\} d u
\end{aligned}
$$

Substitute $t-u=v$ so that $d t=d v$ when $t=u, v=0$, and when $t=\infty, v=\infty$

$$
\left.\begin{array}{rl}
L\left\{\int_{0}^{t} f(u) g(t-u) d u\right\} & =\int_{0}^{\infty} f(u) e^{-s u}\left\{\int_{0}^{\infty} e^{-s v} g(v) d v\right\} d u \\
& =\int_{0}^{\infty} f(u) e^{-s u} G(s) d u \\
& =G(s) \int_{0}^{\infty} e^{-s u} f(u) d u \\
& =G(s) \cdot F(s) \\
\therefore \quad & L^{-1}\{F(s) G(s)\}
\end{array}\right)=\int_{0}^{t} f(u) g(t-u) d u
$$

This completes the proof of the theorem.

Using Convolution

Solution

(i) Let

$$
F(s)=\frac{1}{(s+1)^{2}}, \quad G(s)=\frac{1}{s^{2}}
$$

theorem find the
Then

$$
\begin{aligned}
& L^{-1}\{F(s)\}=L^{-1}\left\{\frac{1}{(s+1)^{2}}\right\}=t e^{-t}=f(t) \text { (say) } \\
& L^{-1}\{G(s)\}=L^{-1}\left\{\frac{1}{s^{2}}\right\}=t=g(t) \text { say }
\end{aligned}
$$

inverse laplace

Then by Convolution theorem, we have

$$
\begin{aligned}
L^{-1}\{F(s) G(s)\} & =\int_{0}^{t} f(u) g(t-u) d u \\
L^{-1}\left\{\frac{1}{s^{2}(s+1)^{2}}\right\} & =\int_{0}^{t} u e^{-u}(t-u) d u \\
& =\int_{0}^{t}\left(u t-u^{2}\right) e^{-u} d u
\end{aligned}
$$

transforms
(i) $\frac{1}{s^{2}(s+l)^{2}}$
(2) Evaluate : $L^{-1}\left[\frac{1}{s^{2}+a^{2}}\right]$

Solution : we have $L^{-1} \frac{1}{s+a^{2}}=e^{-}{ }_{a t_{t}}$

Hence $L^{-1} \frac{1}{s \sharp a^{2}}=\int_{0}^{t} e^{-a t} t d t$

$$
=\frac{1}{a^{2}}\left[1-\bar{e}^{a t}+1 a t\right], \text { on integration by parts. }
$$

Using this, we get

$$
\begin{aligned}
L^{-1} \frac{1}{\mathbf{s}^{2} s+a^{2}} & =\frac{1}{a^{2}} \int_{0}^{t}\left[1-e^{-a t} 1+a t\right] d t \\
& =\frac{1}{a^{3}}\left[\begin{array}{lll}
a t & +e^{-a t}+2 & e^{-a t}-1
\end{array}\right]
\end{aligned}
$$

Inverse transform of $\mathbf{F}(\mathbf{s})$ by using convolution theorem :

We have, if $\mathrm{L}(\mathrm{t})=\mathrm{F}(\mathrm{s})$ and $\mathrm{Lg}(\mathrm{t})=\mathrm{G}(\mathrm{s})$, then
$\mathrm{L}\lceil\mathrm{f}(\mathrm{t}) * \mathrm{~g}(\mathrm{t}) \rrbracket L f(t) \cdot L g(t)=F(s) G(s)$ and $s o$
$\left.{ }_{I^{-}}{ }^{1} \boldsymbol{F}(s) G(s)\right] f\left(t * g(t)=\int_{0}^{t} f(\neq u g)\right.$
This expressioniscalledthe convolution theoremforinverse Laplace transform

Examples

Employ convolution theorem to evaluate the following:
(1) $L^{-1}\left[\frac{1}{\mathbf{(+ a ~} \mathbf{~}+b}\right]$

Sol:Let us $\operatorname{denoteF}(\mathrm{s})=\frac{1}{s+a}, \quad G(\underline{s}) \frac{1}{s+b}$

Taking the inverse, we get $f(t)=e^{-a t}, g(t)={ }_{\rho^{-b t}}$
Therefore, by convolution theorem,

$$
\begin{aligned}
L^{-1}\left[\frac{1}{s+a \quad s+b}\right] & =\int_{0}^{t} e^{-} a t^{-} u_{0}^{-b u} d u \quad=e^{-a t} \int_{0}^{t} a^{-} b u_{d u} \\
& =e^{-a t}\left[\frac{e^{-a b} t-1}{a-b}\right] \\
& =\frac{e^{-b t}-e^{-a t}}{a-b}
\end{aligned}
$$

(2) $L^{-1} \frac{s}{\left(2+n^{2}\right)^{2}}$

Sol: Let us denote $F(s)=\frac{1}{\mathrm{c}^{2}+n^{2}}, G(s)=\frac{s}{\mathrm{c}^{2}+n^{2}} \quad$ Then

$$
f(t)=\frac{\sin a t}{\mathrm{a}}, g(t)=\cos a t
$$

Hence byconvolution theorem,
$L^{-1} \frac{s}{s^{2}+a^{2}}{ }^{2}=\int_{0}^{t} \frac{1}{a} \sin a \quad \neq u \cos a u d u$

$$
\begin{aligned}
& =\frac{1}{a} \int_{0}^{t} \frac{\sin \quad a \neq \sin \quad a \neq 2 a u}{2} d u, \quad \text { by using compound angle formula } \\
& =\frac{1}{2 \mathrm{a}}\left[u \sin a t-\frac{\cos \quad a \neq 2 a u}{-2 a}\right]_{0}^{t}=\frac{t \sin a t}{2 a}
\end{aligned}
$$

(3) $L^{-1} \frac{s}{\{-1 \backslash 2+1}$,

Sol: Here

$$
F(s)=\frac{1}{s-1}, G(s)=\frac{s}{s^{2}+1}
$$

Therefore

$$
f(t)=e^{t}, g(t)=\sin t
$$

By convolution theorem, we have

$$
\begin{aligned}
& L^{-1} \frac{1}{\left.4-1 〕 s^{2}+1\right)}=\int e^{t-u} \sin u d u=e^{t}\left[\frac{e^{-u}}{2}<\sin u-\cos u\right]_{0}^{t} \\
& \left.=\frac{\rho^{t}}{2}\left[\mathbb{L}^{-t}<\sin t-\cos t-<L^{1}\right]=\frac{1}{2} \mathbb{S}^{t}-\sin t-\cos t\right]
\end{aligned}
$$

LAPLACE TRANSFORM METHOD FOR DIFFERENTIAL EOUATIONS

As noted earlier, Laplace transform technique is employed to solve initial-value problems. The solution of such a problem is obtained by using the Laplace Transform of the derivatives of function and then the inverse Laplace Transform.

The following are the expressions for the derivatives derived earlier.

$$
\begin{aligned}
& L\left[f^{\prime}(t)\right]=s L f(t)-f(0) \\
& L\left[f^{\prime \prime}(t)=s^{2} L f(t)-s f(o)-f^{\prime}(0)\right. \\
& L\left[f^{\prime \prime \prime}(t)=s^{3} L f(t)-s^{2} f(0)-s f^{\prime}(0)-f^{\prime \prime}(0)\right.
\end{aligned}
$$

1. Solve by using Laplace transform method $y^{\prime}+y=t e^{-t}, y(o)=2$

Sol: Taking the Laplace transform of the given equation, we get

$$
\begin{aligned}
& 4+1 \backslash \bar{t}-2=\frac{1}{4+1{ }_{2}^{2}}
\end{aligned}
$$

so that
$L y<=\frac{2 s^{2}+4 s+3}{\sqrt{13}}$
Taking the inverse Laplace transform, we get

$$
\begin{aligned}
& Y \quad \tau_{=}=L^{-1} \frac{2 s^{2}+4 s+3}{4+1}
\end{aligned}
$$

$$
\begin{aligned}
& =L^{-1}\left[\frac{2}{s+1}+\frac{1}{\left(+_{13}^{3}\right.}\right] \\
& =\frac{1}{2} \quad e^{-t}(2+4)
\end{aligned}
$$

This is the solution of the given equation.
2. Solve by using Laplace transform method:

$$
y^{\prime \prime}+2 y^{\prime}-3 y=\sin t, \quad y(o)=y^{\prime}(o \neq 0
$$

Sol: Taking the Laplace transform of the given equation, we get

$$
\llbracket^{2} L y(t)-s y(0)-y^{\prime}(0) \pm 2 【 L y(t)-y(0) \nexists 3 L y(t)=\frac{1}{\mathbf{s}^{2}+1}
$$

Using the given conditions, we get

$$
\begin{aligned}
& L y(t) \llbracket s^{2}+2 s-3=\frac{1}{\mathbf{s}^{2}+1} \\
& \text { or } \\
& L y(t)=\frac{1}{\int-1+3 \backslash 2+1} \\
& \text { or } \\
& y(t)=L^{-1}\left[\frac{1}{1-1<3 \backslash 2+1}\right] \\
& =L^{-1}\left[\frac{A}{s-1}+\frac{B}{s+3}+\frac{C s+D}{\mathbf{s}^{2}+1}\right] \\
& =L^{-1}\left[\frac{1}{8} \frac{1}{s-1}-\frac{1}{40} \frac{1}{s+3}+\frac{-\frac{s}{10}-\frac{1}{5}}{s^{2}+1}\right]
\end{aligned}
$$

by using the method of partial sums,

$$
=\frac{1}{8} e^{t}-\frac{1}{40} e^{-3 t}-\frac{1}{10} \cos t+2 \sin t
$$

This is the requiredsolutionof the given equation.
3)EmployLaplace Transformmethodtosolve the integralequation.

$$
\mathrm{f}(\mathrm{t})=1+\int_{0}^{\mathrm{t}} f \text { sin } t u d u
$$

Sol: Taking Laplace transform of the given equation, we get
$L f(t)=\frac{1}{s}+L \int_{0}^{t} f u \sin \neq u d u$
By using convolution theorem, here, we get

$$
L f(t)=\frac{1}{s}+L f(t) \cdot L \sin t=\frac{1}{s}+\frac{L f(t)}{\mathrm{s}^{2}+1}
$$

Thus
$L f(t)=\frac{\mathrm{s}^{2}+1}{s^{3}} \quad$ or $f(t)=r^{-1}\left(\frac{s^{2}+1}{\mathrm{~s}^{3}}\right)=1_{1}+\frac{t^{2}}{2}$

This is the solutionof the given integral equation.
(4) A particle is moving along a path satisfying, the equation $\frac{\mathrm{d}^{2}}{\mathrm{dt}^{2}}+6 \frac{\mathrm{dx}}{\mathrm{dt}}+25 x=0$ where x denotes the displacement of the particle at time t. If the initial position of the particle is at $x=20$ and the initial speed is 10 , find the displacement of the particle at any time t using Laplace transforms.

Sol: Given equation may be rewritten as

$$
x^{\prime \prime}(t)+6 x^{\prime}(t)+25 x(t)=0
$$

Here the initial conditions are $\mathrm{x}(0)=20, \quad \mathrm{x}^{\prime}(0)=10$.
Taking the Laplace transform of the equation, we get
$\mathrm{L}_{\mathrm{x}}(\mathrm{t})\left[\mathrm{c}^{2}+6 \mathrm{~s}+25\right]-20 s-13 \neq 0$ or
$\mathrm{L}_{\mathrm{x}}(\mathrm{t})=\frac{20 s+130}{\mathrm{c}^{2}+6 s+25}$
so that

$$
\mathrm{x}(\mathrm{t})=I_{I_{1}}^{-1}\left[\frac{20 s+130}{s+3^{2}+16}\right]
$$

$$
\begin{aligned}
& =r_{r}^{-}\left[\frac{28+5 s^{+}+70}{1+22^{2}+16}\right] \\
& =20 L^{-1}\left[\frac{s+3}{1+3,+16}\right]+70 L^{-1}\left[\frac{1}{+3,+16}\right] \\
& =20 e^{-3 t} \cos 4 t+35 \frac{e^{-3 t} \sin 4 t}{2}
\end{aligned}
$$

This is the desiredsolutionof the given problem.
(5) A voltage $\mathrm{Ee}^{-\mathrm{at}}$ is applied at $t=0$ to a circuit of inductance L and resistanceR. Show that the current at any time t is $\frac{\mathrm{E}}{\mathrm{R}-\mathrm{aL}}\left[e^{-a t}-e^{-\frac{R t}{L}}\right]$

Sol: The circuit is an LR circuit. The differential equation with respect to the circuit is

$$
L \underset{d t}{ }+\frac{d i}{+} R i=E(t)
$$

Here L denotes the inductance, i denotes current at any time t and $E(t)$ denotes the E.M.F.
It is given that $\mathrm{E}(\mathrm{t})=\mathrm{E} \mathrm{e}^{-\mathrm{at}}$. With this, we have

Thus, we have

$$
\begin{gathered}
L \underset{d t}{d i} R i=E e^{-a t} \text { or } \\
L i^{\prime}(t)^{+} R i(t)=E e^{-a t} \\
\mathrm{~L} \mathbf{L}_{\mathrm{T}} \mathrm{i}^{\prime}(\mathrm{t})_{-}^{-}+R \mathbf{L}_{\mathrm{T}} \mathrm{i}^{\prime}(\mathrm{t})_{-}^{-}=E \mathrm{~L}_{\mathrm{T}}{ }^{a t} \quad \text { or }
\end{gathered}
$$

Taking Laplace transform $\left(L_{T}\right)$ on both sides, we get

$$
L \ L_{T} i(t)-i(0)_{-}^{-}+R \mathbf{\zeta}_{T} i(t)_{-}^{-}=E \frac{1}{s+a}
$$

Since $\mathrm{i}(\mathrm{o})=\mathrm{o}$, we get $\quad L_{T} \quad i(t) \| s \not R_{-}^{-}=\frac{E}{s+a} \quad$ or

$$
L_{T} i(t)=\frac{E}{1+a 〕+L+R}
$$

Taking inverse transform L, we get $i(t)=L_{T}^{-1} \frac{E}{(s+a)(s L+R)}$

$$
=\frac{E}{R-a L}\left[L_{T}^{-1} \frac{1}{s+a}-L L_{T}^{-1} \frac{1}{s L+R}\right]
$$

Thus

$$
i(t)=\frac{E}{R-a L}\left[e^{-a t}-e^{-\frac{R t}{L}}\right]
$$

This is the result as desired.
(6) Solve the simultaneous equations for x and y in terms of t given $\frac{\mathrm{dx}}{\mathrm{dt}}+4 y 0$,

$$
\frac{\mathrm{dy}}{\mathrm{dt}}-9 x=0 \text { with } \mathrm{x}(\mathrm{o})=2, \mathrm{y}(\mathrm{o})=1 .
$$

Sol: Taking Laplace transforms of the given equations, we get

$$
\begin{aligned}
& \text { 【 } \mathrm{Lx}(\mathrm{t})-\mathrm{x}(\mathrm{o})+4 L y(t)=0 \\
& -9 L x(t)+\ L y(t)-y(o)_{-}^{-}=0
\end{aligned}
$$

Using the given initial conditions, we get

$$
\begin{array}{lc}
s L x(t)+4 L & y(t \neq 2 \\
-9 L x(t)+5 L & y(t \neq 1
\end{array}
$$

Solving theseequations for $\mathrm{Ly}(\mathrm{t})$, we get

$$
L y(t)=\frac{s+18}{\mathrm{~s}^{2}+36}
$$

so that

$$
\begin{array}{r}
y(t)=L^{-1}\left[\frac{s}{s^{2}+36}+\frac{18}{s^{2}+36}\right] \\
=\cos 6 t+3 \sin 6 t \tag{1}
\end{array}
$$

Using this in $\underset{\mathrm{dt}}{\mathrm{dy}}-9 x=0$, we get

$$
\mathrm{x}(\mathrm{t})=\frac{1}{9}-6 \sin 6 t+18 \cos 6 t_{-}^{-}
$$

or

$$
\begin{equation*}
x(t)=\frac{2}{3} 1 \cos 6 t-\sin 6 t_{-}^{-} \tag{2}
\end{equation*}
$$

(1) and (2) together represents the solution of the given equation.

