ENGINEERING MATHEMATICS-I1I

SUBJECT CODE: 17TMAT21

MODULE -1
DIFFERENTIAL EQUATIONS I

LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER WITH CONSTANT
COEFFICIENTS

A differential equation of the form

dny dn-ly dn—’.’y
dx" +a| dx”‘l +(12F +...+an _V:X (1)

where X is a function of x and a,, a, ..., a, are constants is called a linear differential equation of
n'™ order with constant coefficients. Since the highest order of the derivative appearing in (1) is 7,
it is called a differential equation of n™ order and it is called linear.

Using the familiar notation of differential operators:

d | d?_ 4 d3 ) dn
D= a5’ D= L D —?...,D e
Then (1) can be written in the form
(D"+a D"'+a,D""*+..a}y=X
ie., fD)y=X .-£2)
where fD) = D" + a, D""+a2 P, a.
Here f(D) is a polynomial of degree n in D
If x = 0, the equation

fD)y =20
is called a homogeneous equation.
If x # O then the Eqn. (2) is called a non-homogeneous equation.

SOLUTION OF A HOMOGENEOUS SECOND ORDER LINEAR DIFFERENTIAL
EQUATION

2y
1. Solve 4 : —5Q+6y = 0.
dx” dx

Solution. Given equation is (D> — 5D + 6) y = 0

AE. is m —-5m+6 =0
ie., m-2) m-3) =0
ie., m=2.3

2.m. =3

m,



m: = —
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o
=
o
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|
=

m =
This is the form o + i} where oc = 0, B = w.
. The general solution is
y = € (C, cos wt + C, sin wi)
-y = C, cos wt + C, sin wi.
d’y  dy

6. Solve —5+4—+13y =0.
dx” dx i

Solution. The equation can be written as
(D> +4D + 13)y = 0
AE.is m*+4m+13 =0
_azfi6-52
2
—2 =+ 3i (of the form o £ if3)

. The general solution is

y = €2 (C, cos 3x + C, sin 3x).

INVERSE DIFFERENTIAL OPERATOR AND PARTICULAR INTEGRAL

Consider a differential equation

fD)y =x (1)
Define . such that
f(D)
|

Here f(D) is called the inverse differential operator. Hence from Eqn. (1), we obtain
1
yo= ——X T 53

Since this satisfies the Eqn. (1) hence the particular integral of Eqn. (1) is given by Eqn. (3)

1
Thus, particular Integral (P.I.) = ——< X

f(D)
The inverse differential operator 1 is linear.
f(D)
1 ] {ax, + bx,} a : xi+b : X
ie., o et = —— X
f(p) f(0)" ()

where a, b are constants and x, and x, are some functions of x.



SPECIAL FORMS OF THE PARTICULAR INTEGRAL

=
f(D)
We have the equation f(D) y = e**
Let

We have

Type 1: P.I. of the form

D(ear)
f(D) e =
- (12 e” + a

Thus f(b) e = f(a) e

fD) = D*+a, D +a,

a e, D* (¢™) = a* ¢* and so on.
D>+ a, D + a,) e”

j-ae™+ aye™
(@*+a,.a + a,) e =f(a)

1
Operating with on both sides
periine W T (0
1 ax
We get, e = f(a).f(D).e
v P.I L #e @
O P == =
f(D) f(D)
In particular if f(D) = D — a, then using the general formula.
o | e™ _ 1 e™
e get, D—ae = (D—a)¢(D) D—a'¢(a)
eGX 1 1
e., —— = — " |ldx = — . xe™ ol
& f(D) ~ o(a) J ¢ (a) o
fl@ =0+ 06(a
or fla) = ¢(a)
Thus, Eqn. (1) becomes
eﬂX eax
e W
f(D) f(D)
where f@a =0
and f@ =0

This result can be extended further also if

ax

ax

€ 2
fay="1e = X".——— and so on.
! f(D) f"(a)
Type 2: P.I of the form Shox £O8¢Y
f(D)" f(D)

We have D (sin ax) = a cos ax



D? (sin ax) = — a* sin ax
D? (sin ax) = — a* cos ax
D* (sin ax) = a* sin ax
= (—a%? sin ax and so on.
Therefore, if f(D?) is a rational integral function of D? then f(D?) sin ax = f(—a®) sin ax.
1

1 2\ .. i) (RO =4 7
Hence TDz){f(D )snnm} - —f(Dl)f( a )smax
ie., sin ax = f(-a%) ; (lDz) sin ax
5 1 SR — sin ax
- f(p?) f(-a)
Provided f(=a®» = 0 (1)
Similarly, we can prove that
cosax — _cosax
f(D?) - Je?)
if f(=a® # 0
In 1, —cosax = -ﬂ
genera D-) 7 (—az)
if f(=a® # 0 k2
sin(ax+b) = sin(ax +b
)T S e
d — CO0s ax+b) = ~— COS ax+b
an f(D') ( ) f(—a-) ( )

These formula can be easily remembered as follows.

1 : X (.
—— sinax — |sinaxdx = — cosax
< 2 2

D" +a a
X X .
——cosax = ——Jcosax ax = — sin ax.
D™ +a° 2 2a
Type 3: P.L. of the form % where ¢ (x) is a polynomial in x, we seeking the polynomial
Eqn. as the particular solution of
fDy = o)

where ¢ (x) = ay X" + a, kg a. ,x+a,

Hence P.I. is found by divisor. By writing ¢ (x) in descending powers of x and f(D) in
ascending powers of D. The division get completed without any remainder. The quotient so obtained
in the process of division will be particular integral.




and

Type 4: P.I of the form <

We shall prove that

Consider

Similarly,

Let

ax
where V is a function of x.

1 ax ax 1
e V=¢e¢ ——V
f(D) f(D+a)
DE* V) =e* DV + Vae™
=" D+a)V

D*e* V) =e“D*V+ae*DV+a*e™V+ae~DV
=e*“D*V+2aDV+a*V)
=e™“D+a’V

Hence (1) reduces to

f(D) ear

ie.,

D (™ V) = ¥ (D +a) Vand so on.
fD)e*V =e"f(D+a)V
D V=U hat V ;U
f(D+a)V = U, so that _f(D+a)
;U ax U
f(D+a) = °€
1
Operating both sides by ——— we get,
e‘“;U - - e U
f(D+a) f(D)
1 1
e - e
f(D) f(D+a)

Replacing U by V., we get the required result.

Type 5: P.I. of the form

By
f (D) f(D)

where V is a function of x.

By Leibniz’s theorem, we have

D'xV)=xD'V+nl DLV

d
D'V+ {—D":V
v (o]

fD)xV=xfD)V+f DV

Eqn. (1) reduces to

xV _ [x f'(D)J 4

f(D) £(D) | 7(D)

«sE1)

(1)

..(2)

This is formula for finding the particular integral of the functions of the xV. By repeated
application of this formula, we can find P.I. as XV, X’V ...... .



Type 1

d’y _d ;
1. Solve dx: —5—y+6_v = &

& dx
Solution. We have
(D>-5D +6)y = &~

AE. is m —5m+6 =0
ie., m-2)y(m-3) =0
— m = 2:3

Hence the complementary function is
X CF. = C, ¥+ C, &*
Particular Integral (P.L.) is

1 Sx .
PIL = DZ_sD+6’ (D — 5)
1 - &
T F_s5x5+6 6
.. The general solution is given by
y = CF. +PlL
5x
= €2 G e A6 :
2
2. Sotve 22— 3% 2y~ 10e™
~ dx
Solution. We have
D>-3D+2)y = 10 &~
AE. ism>-3m+2=0
ie., m—-2)y(m—-1) =0
m = 2; 1
CF.=C ¥ +C, ¢
PI = s _;D+ 5 10e™ (D — 3)
oo 10e*
35=3x3+2
10 e
B, = >
. The general solution is
y = CF. + PL

10e**

= Ciye* +Cye8 &




Type2:
Solve (D + D? — D - 1) y = cos 2x.
1. Solution. The AE. is
m+m —m—-1=10
F.f.,mz{rrr +1li-1lim+1)y=10
m+ 1D (m -1 =0
m=—1.m =1
m=-1lm==%1
m=-1-1,1
CE=Ce&+(C+C e’
1

PI = D3+D1—D—1mﬂl (D* — —2%

= cos 2x

(D+1)(D* -1

—IcusExKD—l
5 D+1 D-1

~1 (D —1)cos2x
D* -1

(D* = 25

—1|-2sin2x —cos2x
—2_1

- The general solution is
v = C.F. + PL

= ELH+{EI+C3.t}f'I—T|5 {2 sin 2x + cos 2x).

—



2. Solve (D’ + D + 1)y =
Solution. The A.E. is
m +m+ 1

ie., m

Hence the C.F. is

CFE.

L

sin 2x.

x
2

3 3
= e Cicos— x4+ G, sin—x
2 2

—————sin 2x
D-+D+1

1

———sin2x
-2+ D+1

sin 2x

D-3

Multiplying and dividing by (D + 3)

~y=CF. +PL=¢?
3. Solve (D? + 5D + 6) y
Solution. The A.E. is
m* +5m + 6
(m+2) (m+ 3)
m
C.F.

P1.

2L

(D +3)sin2x
D*-9
(D +3)sin2x
-2°-9

= ;—l (2 cos 2x + 3 sin 2x)

V3

G cos——2—3— x+GC, sin——z— p > —% (2 cos 2x + 3 sin 2x).

M

=COS X + €.
=20

=20

=r—ide =3

G, e%%C, &>
1

———— [cos x + €]
D-+5D+6

-2x

COS X i ?
D*+5D+6 D>+5D+6

PL, +PL,
cos X = ;

—_— D’=-1°
D>*+5D+6 ( )

COS X _ COS X
—-124+5D+6 5D+5




PL,

Differential and multiply ‘x’

P.L

. The general solution is

-v

y =Gy eF 4 Cye

1 cosx(D-1)

(D+1)(D-1)

(D-1)cosx
D* -1

wn |

| —sinx—cosx
5 =

-1 sinx+cosx

5 -2

% (sin x + cos x)
g

T re——. (D - -2)
D +5D+6

e—Z.r

> (Dr = 0)
(-2 +5x-2+6

(D - -2)

1

0 (sin x +cosx) + x e X

CF. + Pl

3x i : —2X
+ 10 (sin x 4+ cos x) + x €.




Type 3

1. Solve y” + 3y + 2y = 122%

Solution. We have (D* + 3D + 2) y = 12¢

AE. is m +3m+2 =0
ie., m+1)(m+2) =0
=5 m=-1,-2
CF = Ce™ + Cze"-"

P

5

12x~
D> +3D+2

We need to divide for obtaining the P.I

243D PP

6x2 — 18x + 21

12x2
1222 + 36x + 12

—36x — 12
- 36x — 54

42
42

Hence, P.I. = 6x% — 18x + 21

. The general solution is
.‘V

.‘I

2,‘ )
2. Solve d—~2+2£+y -
dx” dx

0

CE +PL

Ce™+ Cze‘z"r + 6x2 — 18x + 21.

2
2x+x°.

Solution. We have (D? + 2D + 1) y = 2x + X7

AE. is m* + 2m + 1
i.e:; (m + 1)2 =
ie., m+1)(m+1)
= m
CF.
P.L

0

0

0

-1, -1

€, +C,x)e*

2x+x2 x2+2x

D+2D+1 1+2D+D’

Note:
3D(6x2) = 36x
D*(6x%) =12




s, e )

1+2D+D* | @+
X2+ 4x +2
-2x -2
-2x — 4
2
2
0

PL = x*=2x+2
y = CF. + PL
= (C, + C,x) e + (x* — 2x + 2).

Type 4

2 ) )
1. Solve ((Ii _: +2%—3_v = e* cos x.
X :

Solution. We have
(D*> + 2D — 3)y = & cos x

AE. is m+2m-3 =0
Le., m+3)(m-1) =0
ie., m=-3,1
CE. = G+ G2
PIL = %e" cos X
D-+2D-3

Taking €' outside the operator and changing D to D + 1

x 1
= e cos X

(D+1) +2(D+1)-3

X 1 vl gl
= ¢ ————cosx Dt _12
D’ +4D ( )




X

5 1
-1+4D

COS X

. [ cos x x 4D+1]
4D-1 4D+1

” [ _4sinx+cosx |
16 D* -1

(D

—4sinx+cosx
-17

- .

X

= ﬁ (4 sin x — cos x)

y = CF. + PLL

X

€ :
y=C,e¥*+C, &+ — (4 sin x — cos x).

' 17

2. Solve (D? + 1)y = 5¢* x°.

Solution. A.E. is
m+1=0

ie, m+ 1) m-m+1) =0
m+1)=0m-m+1=0

m= -1
1143
=
- 3 3
CFEF. = Ce'+e?|G cos%.x‘+ C, sin —\{Z:xJ
P.I L g 52
"
Taking ¢" outside the operator and changing D to D + 1
1 — 5
(D+1)" +1
5 5x?

& -
D" +3D°+3D+2

55 1%




5¢*

2

2x°
2+3D+3D*+D’

(For a convenient division we have multiplied and divided by 2)

34 3
X —3X + 7
23D 3P | 22
22+ 6x+6
-6x-6
—-6x-9
3
3
0
3) 5et
Pl = .-2-3.-+—)~—
(‘ )2
Sex
— (2x - 6x+ 3)
4
y = CF. + Pl

x Se*
Cie " +e? {Cz cos-:,;-)\'+C3 sin—?—x +%(2’f2 - 6x +3).



Type 5

2

1. Solve d’y +4y =xsin x.
dx

22

Solution. We have
D>+ 4)y
AE. is m* + 4
m?
m

CFE

Let us use

xsin x
D> +4

P.L

2. Solve (D’ + 2D + 1)y =
Solution. AE. is
m* +2m + 1
ie., (m + 1)?
m
C.F.

PL

X

X sin x

0

-4

+2i

C, cos 2x + C, sin 2x

mXSinx
> =

¥ ’(D)] 4

F(D) | £(D)

[ 2D sin x
=" 2
| D +4|D" +4

xsin x _ZD(sinx)
D2+4 (D2+4)2

xsinx 2cosx
3 3?

xsinx 2cosx
3 9

6 (3x sin x — 2 cos Xx)

CE.+PL

(D% 5.—1%

(D* - -1%

1
C, cos 2x + C, sin 2x + 6 (3x sin x — 2 cos x|

CoS X.

0

0

= L]

(C,+ C, x)e*

XCOSX
D> +2D+1



Let us we have

7(0)

P.I

P.IL

P.IL;

21

T DXy2D+1

f’(D)jI Vv

f(D) | £(D)

o 2D+2 Cos X
| D’+2D+1| D*+2D+1

X COS X (2D +2)cos x

D*+2D+1 (p242p+1)

Pl D,

X COS X , N
(DF - -19

xcosxx D
2D x D

—Xxsinx e 2
2D° Wtk

X ..
—Sinx

(2D +2)cos x 5 .
Rl Mo (D* = —1?)
(D*+2D+1)

—2sinx+2cosx
(2D)’

—2sinx+2cosx = 5
4D’ @"=-19

2sinx—2cosx
4

|
5 (sin x — cos Xx)

: 1
—XsinxX—— (sin x —
5 5 (sin x — cos Xx)

|
5 (x sin x — sin x + cos X)

CFE. +PL

(Cl + C2 x)e*+ E (x sin x — sin x + cos Xx).



METHOD OF UNDETERMINED COOFFICIENTS:

The particular integral of an n"™ order linear non-homogeneous differential equation F(D)y=X
with constant coefficients can be determined by the method of undetermined coefficients
provided the RHS function X is an exponential function, polynomial in cosine, sine or sums or
product of such functions.

The trial solution to be assumed in each case depend on the form of X. Choose PI from the
following table depending on the nature of X.

SI.No. RHS function X Choice of Pl yp
1 K e C e
2 K sin (ax+b) or K cos (ax+b) c, sin (ax+b)+ ¢, cos (ax+b)
3 K e®sin (ax+b) ¢ e¥sin (ax+h)+ ¢ e™cos (ax+h)
or
K e®* cos(ax+b)
4 K x"wheren=0,1,2,3..... C, C XC X .. cXx “cX
+ - =+ + 0 4 N
K x" e*wheren=0,1,2,3..... e” c ¢ Xxc X% ... c X'
+ - 4 + 4
6 K x"sin (ax+b) a, sin(ax bzrb0 cos(ax +b)
or a, .x.sin(ax  b) b,x cos(ax b)
K x" cos (ax+b) Ta_ x2sin(ax b) bx2cos@x b)
+ 2 + +° +
e n
3,.x_.sin(ax_ b) b,x cos(ax b)
7 K X" e*sin (ax+h) e” a sin(ax " b) b0 cos(ax b)
+ + +
K doxr b +a1 X.sin(ax  b) byx cos(ax+b)
X" e cos (ax+b) +a_x"sin(ax; b)b x*cos(ax b)
Foeveeens +
+a, .xn sin(axt b¥b, xn cos(ax+ b)

1 Solve by the method of undetermined coefficients (D*—=3 D+2) y = 4 a3«

Sol: m*-3m+2=0=(m- 1)(m2)=0 =m=1.22
Y. =C* +C,e>"

3x
Assume Pl yzce substituting this in the given d.e we determine the unknown coefficient as




(D* —-3D +2)y = 4e*
9ce® —9ce® +2ce® =4e
2ce* =4e* =c=2

3x

3x

Ly, =26
d
2. Solve ﬂ+2_}:4y _ 2x* | 3e-*by the method of undetermined coefficients.
dx*  dx
Sol: We have (D? +2D +4) y2x +3e™*

2 _—2tV1p ot i _1+43;

is m +2m+4=0 = p= 5 5

Y. =€ x [1 C0s+/3x +¢,sin \/§x]

Assume Pl inthe form y=a,x* +a, %a,+a,e”
Dy=2a, %a,—ae "
D’y =2a, +a,e™*
Substituting these values in the givend.e
We get 2a, +a,e " +2(2a, xa,—a,e *)+4(ax’ +a, ¥%a,+a,e )=2x>+3e*
Equating corresponding coefficient on both sides, we get

2. = = —
X 4a1_2 = al
21

X : 4a, +4a, =0 :>4(Ej+4a2 =0

1
2+4a,=0=>4a,=-2 = a, Z_E

C:2a +2a,+4a; =0

2(2}«2(—%}4% =0 =>4a,=0

ra, —2a,+4a, =3

=X

e

1.2 1
S PLiy==X —ZXx4e™*
"2 2

y=e*€ cos\/§x+czsin\/§xj+%x2 —%X+ex



2
3. Solve by using the method of undetermined coefficients d_2_9y = 3 +e2* —SIN3X
dx

Sol: We have (D? —-9)y = x* +e** —sin3x
AE is m29=0 = m°=9 = m=43
y, =ce” +c,e™
Choose Plas y=Ax’+Bx %Cx+ D+ Ee? +Fsin3x+ G cos3x

y' = 3AX* +2Bx+C + 2Ee” +3F cos3x —3Gsin3x
y'' = 6AX + 2B +4Ee” —9F sin3x —9Gcos3x

Substituting these values in the given d.e, we get
BAX + 2B + 4Ee”* —9F sin3x —9G cos3x —9 Ax® + BX® +Cx + D + Ee* + F sin3x + G cos3x ]
=X +€e —sin3x

Equating the coefficient of

1
-9 Al — A___

xX*: —9B=0 = B=0
1
X : 6A 9G0 :6[_5)_9020

2 2
.S 9C_0_9C__° .c__2
3 3 27
C :2B9D=0=D=0
1
e?* 1 4E9E=1— —OE=-1- Ez_g

sin3x +9F 9G =¢ = F=-1
18

cos3x:— 9G-9G=0 =G =0

1 .
=—l 3_.2X_1 2 x +_S|n3X
Yo =79X "7 8¢ T g

Complete solution  y=y, +Yy,

Y :Cle3X +C2e -3x _lxa _é_leZX +i5in3X



METHOD OF VARIATION OF PARAMETERS:

Consider a linear differential equation of second order

0Dy ) (1)
it g A O
where a,, a, are functions of “x’. If the complimentary function of this equation is known then we

can find the-particular integral by using the method known as the method of variation of parameters.

Suppose the complimentary function of the Eqn. (1) is
CF. = C,y, + C,y, where C, and C, are constants and y, and y, are
the complementary solutions of Eqn. (1)
The Eqn. (1) implies that

WHay +a,y =0 -2

Yi+ay;+a,y, = 0 ..(3)
We replace the arbitrary constants C, C, present in C.F. by functions of x, say A, B respec-
tively,
y = Ay, + By, (4)
is the complete solution of the given equation.
The procedure to determine A and B is as follows.

From Eqn. (4) y = (Ay/+By;)+(Ay, +By,) (5)
We shall choose A and B such that

Ay, + By, =0 ...(6)
Thus Eqn. (5) becomes y; = Ay + By, -(7)

Differentiating Eqn. (7) w.r.t. ‘x’ again, we have

y = (Ay/'+Ay; ) +(A’y + B'y;) .(8)

Thus, Eqn. (1) as a consequence of (4), (7) and (8) becomes
AV +B'y; = (x) ..(9)



Let us consider equations (6) and (9) for solving

Ay +By, =0 ..(6)

Ay +By; = ¢(x) -(9)

Solving A" and B’ by cross multiplication, we get

-y, 0(x) B 1 0(x)

Al = —= b =———+ (10
W W (10)
Find A and B
V. x
Integrating. A = _J‘L‘;’()dx-kkl
¥, 0(x)
yl yz ’ ’
where W = , » [ =XiYa =N
i »

Substituting the expressions of A and B

y = Ay, + By, is the complete solution.

1. Solve by the method of variation of parameters
2

=i e COSeE X

dx”
Solution. We have
(D> + 1) y = cosec x
AE. is m+1=0 = m=-1 = mes i
Hence the C.F. is given by
X y. = C,cos x + C, sin x (k)
y=Acosx+Bsinx -(2)

be the complete solution of the given equation where A and B are to be found.
The general solution is y = Ay, + By,

We have y, = cos x and y, = sin x
y; = —sinxand y, = cos x
_ R L
W = M=

. . 2 .« 2
COS X+ COS X 4+ sin x-sin x = cosx + sinx = |



A = —¥a ':P{-ﬂ e ¥ &l x)
= —W . = W
— SINX - COSEC X COSX - COREC X
= I s = —I
A=~ 1, B = cot x

A= [(-N)dr+CLie A=—x+C,

B = _[DDlIiT+CJ, Le, B = log sin x + C,

Hence the general solution of the given Egn. (2) is

¥ = C,cos x + C, sin x —x cos x + sin x log sin x

2. Solve by the method of variation of parameters

d’y
=+4y = 4 tan 2x.

d’
Solution. We have
(D +4)y = 4 tan 2x
AE. is m +4 =10

where ¢(x) = 4 tan 2x.
LE., m = + 2i
Hence the complementary function is given by

¥, = Cjcos Ix + G sin 2x
v =Acos 2x + B sin Ix A1
be the complete solution of the given equation where A and B are to be found

We have ¥, = cos 2x and y, = sin 2x
¥ = — 2 sin 2x and ¥4 =2 cos 2x
Then W= nn-—»nM

= 05 2y -2 cos 2y + 2 sin 2x-sin 2x
= 2 (cos?2x + sin®2x)
— 2

F )

Also, ®x) = 4 tan 2x

. — ¥2 @ x) ¥l x)
A" = - and B = W




—sin2x -4tan2x ) —cos 2x-4tan2x

g AG= 2
.

W CIEE SR g il
cos2x

On integrating, we get

A= —ZJ‘ i 2xdx,B: ZJ sin 2x dx
cos2x

_2J' 1- cos* 2x

cos2x

= =2 [{sec 2x—cos 2x} dx

-2 { %log (sec 2x + tan 2x) —% sin 2x}

A =—log(sec2x+lan2x)+sin2x+Cl

o)
|

" 2j sin 2x dx

2(-cos2x) 5

Il
=1

B = —cos 2x + C,
Substituting these values of A and B in Egn. (1), we get
y = C,cos 2x + C, sin 2x — cos 2x log (sec 2x + tan 2x)
which is the required general solution.



MODULE -2

DIFFERENTIAL EQUATIONS I

SOLUTION OF CAUCHY’S HOMOGENEOUS LINEAR EQUATION AND LEGENDRE’S LINEAR
EQUATION

A linear differential equation of the form

d"y i Ay o dy
xt CAT B0 g SR Y =+ 4a,  x-—+a,y= (x) (1)
T T V5

Where a,. a,, a, ...a, are constants and ¢(x) is a function of x is called a homogeneous linear
differential equation of order n.

The equation can be transformed into an equation with constant coefficients by changing the

: L4y _dy 1 _dy
e ax®> T dz° x dx
_ 1 d’y 1 dy
T x d7? x dz
) 3 dz_v dz_v dy
ie., = St
dx> dz* dz
d?
ie., xzdx;’ = D> -D)yy=D®D-1)y
s d3y
Similarly, x” dxs =DWDL-1DHD-2)y
d"
X" d;}' = D@D—-1) .. D—n+1y
X
d d? d”"
Substituting these values of x—‘v.xz —-Y --------- x" —Y in Egn. (1). it reduces to a linear
dx dx~ dx”

differential equation with constant coefficient can be solved by the method used earlier.
Also, an equation of the form,
n_,
(ax+b)" ;d—:—i—a, (ax+b)"".
dx

where a, a, ..... a, are constants and ¢ (x) is a function of x is called a homogeneous linear differential
equation of order n. It is also called “Legendre’s linear differential equation™.

dn_l_V

n—1

+...any = (x) =2y

This equation can be reduced to a linear differential equation with constant coefficients by using
the substitution.

ax + b = € or z = log (ax + b)
As above we can prove that

(ax +b)-

2P = wiliy
D



aDMD-1)y

-------------------------------------------------------------

The reduced equation can be solved by using the methods of the previous section.

(ax+b) . il —
dx~
n M
(ax+b)" 42 _
dx
PROBLEMS:
2 )
1. Solve x* d '}—Zxﬂ—{v =
dx” dx

a'"D D - 1)D -2) ... D-n+1)y

Solution. The given equation is

2 )
i 4 : —2xﬂ—4y =
dx” dx
Substitute Xi=
So that lii-‘-
o tha dx

The given equation reduces to

0

i,

DD-1)y-2Dy -4y =
[DD-1)-2D-4]y =

ie., (D*-3D-4)y =

which is an equation with constant coefficients

AE. is m*—3m-4 =

ie., m-4)m+1) =

. m:=

O 5 CE.=
Pi.=

DMD-1)y
D—4

e* Dr=0
D—4

aff)

«2)



.. The general solution of (2) is

Substituting €* = x or

y = CF. + PL

|
yi= Cpeta Cuet 4 gze4‘

z = log x, we get
P Cx* + Cyx™! +%logx(x4)

4
y = C,x4 +&+x—logx
: X 5

is the general solution of the Eqn. (1).

dv
2. Solve x° dx) - 3x

d
Doty =x+ 17
dx

Solution. The given equation is

» d?y dy
f———3x—+4y = (x + 1)?
. g ’ )
Substituting x=€ or g=logx
Th 22 _ g FEY_pwm
en e = ST D-1)y
. Eqn. (1) reduces to
DMD-1)y-3Dy+4y = (& + 1)
ie. (D*-4D +4)y = e¥ + 25 + 1
which is a linear equation with constant coefficients.
AE. is m —4m+4 =0
ie., (m-27%=0
m= 2.2
CE = (C, +1€z) &
PL = — 1 (¢% +2¢7+1)
(D-2)
eZZ Ze.'. eO:
= it 5 + -
(D-2)° (D-2)° (D-2)
=PL, +PL, +PL,
6,2: ) i
PL, = — (D —2)
(D-2)
el: (D 0)
— |
(-2
= S D':2)

-(2)

(1)



— m (Dr = 0)
Zlelz
PL, = 3
P Ze D - 1)
Ly = —/———= —
27 (p=2)
2e°
Ay
PL, = 2¢
eO:
Pl, & —— (D — 0)
3 (D_ 2)_
B
T4 4
2
PL = —e¥ +2e +—
The general solution of Eqn. (2) is
¥ ECR PRI
72e3.’. 1
y = (G +Cyz)e¥ += +2¢€° g
Substituting e* = x or z = log x, we get
x*(logx)’
y = (C, +GC,logx) x? +M+2x+—

is the general solution of the equation (1).

2

d dy
3. Solve X* d—'_:’+213—12)‘ = x log x.
" :

Solution. The given Eqn. is

d’y ., dy
2 2 +2x5—12y = 2 log x
Substituting x=¢ or z=logux so that
dy ) d%y

I
7
j=>
=
(=%

-



Then Eqgn. (1) reduces to

DD-1)y+2Dy-12y = %%
ie., D>+ D-12)y = ze% (2)
which is the Linear differential equation with constant coefficients.
AE. is m +m-12 = 0
CE. = Cp'es Cp®
P.I ;ze"
T D'+D-12
2z Z
= € 3 D—D+2
(D+2) +(D+2)-12 PR
= 2z Z
D" +5D-6
g D
6 36
-6+5D+D*| z
a2
T6
S
6
5
6
0
or; = 22 Smet ]
. 6 36 6 | 6
.. General solution of Eqgn. (2) is
y = CF. +PL
% 5
y = C|€_4: +C783:——(2+—J
’ B 6 6
Substituting e‘ = x or 7 = log x, we get
2
y = Cl)r'4 +C,x3—x—(logx+§)
’ - 6 6
¢ 5 xz( 5)
) = ——+Cx" ——|logx+—
." 4 - 6 g 6

X

which is the general solution of Eqn. (1).



Differential equations of first order and higher degree

. d
If y:f(X), we use the notation d_y =p throughout this unit.
X

A differential equation of first order and n™ degree is the form
Ap"+ApT A, PP +A =0
Where A,, A, A,,...A,are functions of x and y. This being a differential equation of first order,

the associated general solution will contain only one arbitrary constant. We proceed to discuss
equations solvable for P or y or X, wherein the problem is reduced to that of solving one or more
differential equations of first order and first degree. We finally discuss the solution of clairaut’s
equation.

Equations solvable for p

Supposing that the LHS of (1) is expressed as a product of n linear factors, then the
equivalent form of (1) is

P=f.(x y) P~ f(xy) . p=fi(xy) =0 ...(2)
= P-f(xy) =0, P=f,(x,y) =0.. =1, (x,y) =0

All these are differential equations of first order and first degree. They can be solved by
the known methods. If F, (x, y,c¥0,F, (X, y,c¥0,... F, (X, Y, c¥x0 respectively represents the

solution of these equations then the general solution is given by the product of all these solution.
Note: We need to present the general solution with the same arbitrary constant in each factor.

dx dx
Sol: The given equation is

yp> +(x-Yy) px=0

0 —(X—Y)J_M/(X—Y) +4xy

2
1. Solve: y[gy] + X-Yy d—y—x=0

2y
_(CyxExty)
Ie,p_y—x+x+y or ID:y—x—x—y
2y 2y
ie, p=1 or p=-x/y



gilzla y=X+C or ( yx-¢)=0
Also, dy

—X
i 7 or ydyxdx=0 :>Iy dyr_[x dx k

- 2 2
1e., %+ V?zk or 2+y2=2k or (X*+,.-¢c)=0

Thus the general solution is given by (y-x-c) (x> + ,,2 —¢) =0
2. Solve: x(y ) —(2x+3y) 46 %0

Sol: The given equation with the usual notation is,
xp> —(2x+3y) p6 y0

_(2x+3y)+ \/(Zx +3y)° —24xy
- 2X
_ (2x+3y) £ (2x -3y) 9 3y

or —
2X X

We have
g¥=2:>Idy =2jdx+c or y=2x+c or (y—-2x-c¢) =0
d

Also _yfil P Ay g X:>j_i 3_[
dx X y

ie., logy =3log xk or logylog x}logc, where k logx
ie., logy=log(cx}) =y=cx* or ycx®=0
Thus the general solution is (y-2x-c)(y-cx®) = 0

3) Solve P(P+Y)=X(X+Y)
Sol: The given equationis, p> + py —X(X +y) =0

—yi\/\,z +4AX(X +y)

p=
2
p_—yi\/4x2+4xy+\,z -y (2x+y)
2 2

We have,



d NG

dx 2

Also, _dZ _Y X
dx

ie., dy +y =-X,isalinear d.e (similar tothe previous problem)
dx

p=1, Q=—xe/™ —¢
Hence ye* = j—xexdx +C
ie., ye* =—(xe* —e* J}c, integrating by parts.

Thusthe general solutionis givenby (2y -2 —c)[ e (¥ x— 1¢]=0

Equations solvable fory:

We say that the given differential equation is solvable for y, if it is possible to express y
in terms of x and p explicitly. The method of solving is illustrated stepwise.
Y=f(x, p)
We differentiate (1) w.r.t x to obtain

d_y: sz[x,y,d_pJ
dx dx

Here it should be noted that there is no need to have the given equation solvable for y in
the explicit form(1).By recognizing that the equation is solvable for y, We can proceed to

differentiate the same w.r.t. x. We notice that (2) is a differential equation of first order in p
and x. We solve the same to obtain the solution in the form. ¢(x, p,c¥0

By eliminating p from (1) and (3) we obtain the general solution of the given
differential equation in the form G(x,y,c) =0

Remark: Suppose we are unable to eliminate p from (1)and (3), we need to solve for x and y
from the same to obtain.

X=F(p,c), y=F(pc)
Which constitutes the solution of the given equation regarding p as a parameter.

Equations solvable for x

We say that the given equation is solvable for x, if it is possible to express x in terms of y

and p. The method of solving is identical with that of the earlier one and the same is as follows.

x=1(y,p)




Differentiate w.r.t.y to obtain

%_E_F(x y G_p}
dy p dy

(2) Being ifferential equation  of first order in p and y the solution is of the form.
#(y, pcxO

By eliminating p from (1) and (3) we obtain the general solution of the given d.e in the form

G(x,y,c)=0
Note: The content of the remark given in the previous article continue to hold good here also.
1. Solve: y2 pxtan™(xp?)
Sol : By data, y=2px=+tan™ (xp*)
The equation is of the formy = f (X, p), solvable for y.

Differentiating (1) w.r.t.x,

a
p_2p_2%xz;|:xz p_p+ h2:|
dx 1+ 2 44

a
ie., —p—zx-dp-= L |:2Xp—p+n2:|
dx 1+2,44

_ p? dp[ p
ie, —P- =2X— +1

14x2 p4 dx 1+x2p4
1.x2.p% 2 4
. p{#-p+]_ Tp+kxp]
ie, -V —24— |=2X—|—2+4—
1+ x p dx 1tx p

ie.,, log x2log p=k
consider y = 2 px +tan _1\(Xp2)

and xp2 =C
Using (2) in (1) we have,

y = Jc/x. -xtan_l(c)
Th 2 cxtan ¢ isthe general solution.




2. Obtain the general solution and the singular solution of the equation y + pX = 2,4

Sol: The given equation is solvable for y only.
Y+ PX= h24

Differentiating w.r.t x,
e, _2 :pxﬂo or_diﬂz;, Jd_XJ,E I%
dx X p X 2°p

ie.,Iogx+Iog\/E:k or log (x/ﬁ ¥ log c:x\/E:c

Consider, y+ px= n2,4

x/p=c or x2gc or pc/x?

Using (2) in (1) wehave, y + (¢ /x2)x = (c2 /xHx*

Thus xy+c=c’x isthe general solution.

Now, to obtain the singular solution, we differentiate this relation partially w.r.t c,
treating ¢ as a parameter.

That is, 1=2cx or c¢=1/2x.

The general solution now becomes,

xy+_£___i_

2x  4Ax* Y
Thus 4x* y +1=0, is the singularsolution.

3) Solve y=psinp +cosp

Sol:y=psinp+cosp

Differentiating w.r.t. X,

p_pcos pd_p+sin p@_sin p@
dx dx dx
: dp
1€., =1C°5pd— or cos p dpdx
X

= [cos p dp= [dx+cC



le., sin B X+C Or Xsin p—c

Thus we can say that y= p sin p + cos p and x =sin p - cconstitutes
the general solution of the givend.e

Note:sin p=x+c=p= sin 1(a<c).

We can as well substitute for p in (1) and present the solution in the form,

y=(x+c)sin 1(a<c) +cossin~ 1 (xc)

4) Obtain the general solution and singular solution of the equation

y=2 pkp’y
Sol: The given equation is solvable for x and it can be written as

p
Differentiating w.r.t y we get
2_1 ydp dp

Ignoring (EJF p}vhichdoes not contain dﬂ, this gives
p dy
1+¥dp_0 or dy.dp_,
p dy y p
Integrating we get
yp =C........ (2) 2 in (1)

substituting for p from

y? = 2CX + q2

5) Solve p%2py cot xy* .

Sol: Dividing throughout by p?, the equation can be written as

2
K__yCOt X _1 adding cot’ xtob.s
P° P
%—ﬂcot % cot” % 1+cot’ X
PP

2
or [l—cotxJ = COS ec’x
p



:>1—COI'X = +COSecx

p
=Y _cot xcosecx
dy /dx
QY _ sinX gy gng ¥ __sinx
y cosx+1 y cosx-1

Integrating these two equations we get

y(cosx+1)=c, and y(cos x— I¥c,
general solutionis

y(cosx+1)—c y(cosx— Lrc =0

6) Solve: p> —4x®p— 12x*y 0 ,obtain thesingularsolutionalso..

Sol: The given equation is solvable for y only.

2 —4xX°p-12x"y=0.......... (1)_
2+4X°p
y=n_ T _f X,
12x* . p)

Differentiating (L)w.r.t.x,

5 pUP + 4,5 AP 20x" p_12x*p _48x° y. 0
Pax dx

2 5
& op+axt ¥8x*(xp - P—4x Py,
dx 2X

d
( p2x5)d_plﬂ(p+2x5)
X X

dp_2p _g
dx X

= Integrating Iogjﬁ—log % k
= p=,242 ..equation (1)becomes
c* +4c*x® =12y

Setting ¢* = k the general solutionbecomes
k? +4kx® =12y
Differentiating w.r.t k partially we get
2k +4x° =0
Using k = —2x° in general solution we get
x°® +3y = 0 as the singular solution



7) Solve p® —4xyp +8 y%O0 by solving for x.
Sol: The given equation is solvable for x only.
p’ —4xyp+8y =0
3 2
=P8y = f(y,p)
4yp
Differentiating (1)w.r.t.y,

dp 1
3 pzdp-—4XY——4yp-——4pX+16y =0

dy dy p
dp
—(3p° _4xy) = 4px-12y
dy

B 3 2 3 2
@3p2p +8y }z{p +8y _124

dy | p y

@_ZDS—S)’Z}: p3_4y2

dyl p y

2dp oy € -4y
(p* =4V =

p dy y

<4.0p L

pdy vy

2 logp =logy + logc

U sing P_—\/Ein(l)wehave,

cy . Joy —4xy Jey +8y £0
Dividingthroughoutby W=y% we have,
cv e4xy a8/ y=0

Jo (e4x)=-8y

Thusthegeneralsolutionisc(c — 4x)* =64y

Clairaut’s Equation
The equation of the form y— px + f (p)is known as Clairaut’s equation.

This being in the form y = F (x, p), that is solvable for y, we differentiate (1) w.r.t.x

dp
Sdy_ 4 dp f(p)
dx PP de dx



This implies that d_p= 0 and hencep=c
dx

Using p=cin (1) we obtain the genertal solution of clairaut's equation in the form
y =cx+ f (c)

1. Solve: y= px+E
p

Sol: The given equation is Clairaut’s equation of the form ¥ px+ f(p), whose general solution
is y=cx+ f(c)

Thus the general solution is y= g2
c

Singular solution
Differentiating partially w.r.t c the above equation we have,

OZX__

Hence ycx+(a/c)becomes,
y=va / x. *xavx/a

Thus y2 = 4ax is the singular solution.
2. Modify the following equation into Clairaut’s form. Hence obtain the associated general

2
and singular solutions XP~ —Py+kp+a=0
Sol : xp2 - py+kp+a=0, by data

ie., xp2 +kp+a=py

e, Y_POp+k ya
p
e, y= px+(k+§J
p

Here (1) is in the Clairaut’s form y=px-+f(p) whose general solution is y = c¢x + f(C)



Thus the general solution is y = ¢x +(k +§]
c

Now differentiating partially w.r.t ¢ we have,

a

0=x——
C2

c=+valXx

Hence the general solution becomes,
y- k=24ax

Thus the singular solution is (y - k)* = 4ax.
Remark: We can also obtain the solution in the method: solvable fory.

3. Solve the equation (px —Yy) (py + X) = 2p by reducing into Clairaut’s form, taking the
substitutions X = x* , Y =y?

SoI:X=x2 :>d—x=2x
dx
Y=y :>d—Y=2y
dy
dy dy dYy dX dy
Now, p-2Y _ &Y 4% HA and let p_
dx. dY dX dx dx
1
ie_’ p:_.P.ZX
2y
ie p=EP

Consider( px—y)( pyx)=2p
e, [VF g ] [¥X ervyx] 2 d%p
N N N
ie., (PXY) (R1)=2P
ie., Y =PX _ 2P iIs in the Clairaut's form and hence the associated genertal solution is
P+1
Y_ox_ °C

c+1

Thus the required general solution of the given equation is y2 _ox? 2

c+1



4) Solve px—y py+x =a’p,use thesubstitution X= x> Y= y°.

Sol: Let X=x2:>d_x=2x
dx
Y:x2:>d—x=2y
dy
Now, p—dy _dy _ dYdX dy.
dx dy dx dx andlet® g,
P:i .p.2x or QEP
2y y
W

Consider ( pxy)( pyx) =2p

[EP\/_X\/?} {Epﬁh@:zﬂp

NG NG g
(PX-Y )PR1D=2P
Y =PX _ 2P
P+1
Is in the Clairaut’s form and hence the associated general solution is

Y —ex - 25
c+1

Thus the required general solution of the given equation is  y% cx? —2—Cl

C+

5) Obtain the general solution and singular solution of the Clairaut’s equation xp* —yp?+1=0
Sol: The given eqléation can be written as
xp® .1 1. . .
y— P+ — Y= pxy__isinthe Clairaut's form yv. px . f(p)
2 2

whose general solutionisy =cx + f (c)

Thus general solutionis ycx .
2

C

Differnetiating partiallyw.r.t.cweget

2 2 1/3
O=x——=c= (—]

3 X

Thus general solutionbecomes
1/3 2/3

_| 2 X 213\, _ 2\,2/3
y_(xJ X+[2] = 277y =3X

or 4y° =27x°



MODULE -3

PARTIAL DIFFERENTIAL EQUATIONS

Introduction:

Many problems in vibration of strings, heat conduction, electrostatics involve two or more variables.
Analysis of these problems leads to partial derivatives and equations involving them. In this unit we first
discuss the formation of PDE analogous to that of formation of ODE. Later we discuss some methods of
solving PDE.

Definitions:

An equation involving one or more derivatives of a function of two or more variables is called a partial
differential equation.

The order of a PDE is the order of the highest derivative and the degree of the PDE is the degree of highest
order derivative after clearing the equation of fractional powers.

A PDE is said to be linear if it is of first degree in the dependent variable and its partial derivative.

In each term of the PDE contains either the dependent variable or one of its partial derivatives, the PDE is
said to be homogeneous. Otherwise it is said to be a Non-homogeneous PDE.

o Formation of pde by eliminating the arbitrary constants
¢ Formation of pde by eliminating the arbitrary functions

Solutions to first order first degree pde of the type

Pp+QqQ=R
Formation of pde by eliminating the arbitrary constants:
(1) Solve: 5 5
S G Vil
a’? b?

Sol: Differentiating (i) partially with respect to x and y,

oz 2x 1 1oz p
2—=—0r—=——=—
OX 42 a2 XOX X



20z _2y 1 _la _q
he h2 YOX Y

Substituting these values of 1/a®and 1/b%in (i), we get
(@=z(x *+a)(y’+ b)
Sol: Differentiating the given relation partially
(x-a) 2+ (y-b) 2+ 2= K2 ...(i)

Differentiating (i) partially w. r. t. x and y,

z

(x_a)+za_Z:O,(y_b)+za_ 0
X oy

Substituting for (x- a) and (y- b) from these in (i), we get

2

ozY (@ . _ o . .

z{ ﬁ(a—Z] +[5y1) ]= k2 This is the required partial differential equation.
X

(3)z=ax+ by +cxy ..(i)

Sol: Differentiating (i) partially w.r.t. x y, we get

oz .
Y =a+cy..(i)
d =b+cx..(ii)

%

It is not possible to eliminate a,b,c from relations (i)-(iii).

Partially differentiating (ii),

0%z =C Using this in (ii) and (iii)
oxoy
2
. _ 9, 0z
ox Y oxoy



b2 o’z

oy “oxdy

Substituting for a, b, ¢ in (i), we get

o o2 2 2
zZ= X{—Z—y—z:|+y{§_x£l+ oz

Oy oxdy

07 07 072

= Yoy Yoxgy
G X, Y 2" 1

a®> b* ¢
Sol: Differentiating partially w.r.t. X,

2X 2z 0z X Z 0z
St 5 =00r—=—"
a~ ¢ ox 22 ~2 OX

Differentiating this partially w.r.t. X, we get

2 2
i:—i g] +Z% Or_Ci:_ %J +Z&
22 ~2 |\ OX 0y 2 22 OX 0,2

- Differentiating the given equation partially w.r.t. y twice we get
2 2 2

2oz _(oz) ,,0% EGZ_[@J 07

yoy \oy)  an xox \ox) X

Is the required p. d. e..

Note:

As another required partial differential equation.
P.D.E. obtained by elimination of arbitrary constants need not be not unique

Formation of p d e by eliminating the arbitrary functions:

1) 2= +y’)




Sol: Differentiating z partially w.r.t. x and y,

52 12 az 12
P (X fy?)oxg== FI(X° 1 y2)2
P y*)-2x,q 5 y*)-2y
p/g=x/y or yp-xqg=0 istherequired pde
(2) z=f(x+ct) +g (x-ct)
Sol: Differentiating z partially with respect to x and t,

2
%: f'(x+ct)+g'(x—0t),%: f"(x+ct)+g"(x—ct)

X2
Thus the pde is

927 9 _,
Oz Oy2

@) x+y+z=f(+y+77)
Sol:Differentiating partially w.r.t. x and y

z .,
1,9 1 +y° +22)[2x+22 QJ
X OX

1+%Z:f'(xz+y2+zz){2y+2z%}
_1H@I &) _ 1+(% &)

x+2(0z I0x) y+1z(0z I%y)

2f'(x° +y* +2%)

( y—z)gXZJr(z_x)% = X_Y is the required pde

(4) z = f(xylz).

Sol: Differentiating partially w.r.t. x and y

F g ﬁ){y_ﬁ%
X zZ )z 20X



f,(xy]_ 0z 18 X B oz 1y
Tyl {r(x12)@zh X} (x 1 & (y/2)@z by}

217 %

or Xp = yq is the required pde.

(5) z = y* + 2 f(1/x + logy)

8 1
Sol: 8—2—2 2 f '(1/ﬂxlogy){§}

\)

oz .., _i
a—Zf(l/xHOQY){ Xz}

2f'(1/x+|ogy)=—><25_z,€ (§_zy]
oy \oy

Hence @24_ yizzyZ
ox oy

(6) Z=xD(y) + W(x)

Sol: % =0 )y (9 % —xg'(y) +/(X)

Substituting  ¢@'(y) and y'(x)

0z _ 0, 0
el e L ORSIA )

is the required pde.

2
LI

ooy Cox oy ?



7) Form the partial differential equation by eliminating the arbitrary functions from
z = f(y-2x) + g(2y-x) (Dec 2011)
Sol: By data, z = f(y-2x) + g(2y-x)
oz ,
p=—==2f (y29)-9g" (2yx)
Ox

a ’ r
Q=az=f (y2x)+29 (2yX)

r:%:4f” (F2X)+9" 2 X) e (1)

02 y "
s-m——Zf (¥2x)—29" (2 ¢ X)......... (2)

t=ﬁ=f"(y—2x)+4g”(z VX (3)
y2

Dx 22)=2r+s=6f"(y—2X).ccecoen..... 4)

(2Q)x 2(3)=25+t=-3f"(y=2X).c0cr..... (5)

Nowdividing(4) by (5) we get

2r+s=—2 or2r +5s+2t=0

2s +t

Thus 2££5iﬁza_%=0istherequired PDE
' Xy oy

LAGRANGE’S FIRST ORDER FIRST DEGREE PDE: Pp+Qg=R
(1) Solve: yzp + zxq =Xxy.

—dxdy —dz

Sol i xy

Subsidiary equations are

From the first two and the last two terms, we get, respectively



%=ﬂor xdx—ydy 0 andyzgor ydy —zdz=0.
y X z Yy

Integrating we getx* - y’=a, y*-z"=bh.
Hence, a general solution is

O(x*-y?, y* —2%) =0

(2) Solve: y?p - xyq = x(z-2y)

Sol : X _ Y a

Y xy x(@z-2y)

From the first two ratios we get

x> + y*=a  from the last ratios two we get
dz , z _ 2

dy 'y

from the last ratios two we get

dz z
d_y + ; =2 ordinary linear differential equation hence

yz—-y'=b
solution is®(x* + y* yz—y°) =0

@ Solve: z(xp —yq) = y* —x*

Sol:%: dy: az
IX =Y 22— 2

_:dy, or xdy+ydx=0 or d(xy)=0,

on integration, yields xy =a



xdx +ydy + zdz=0 x*+y*+z°=b
Hence, a general solution of the given equation
O(xy,x2+y2+2z2)=0

_y—zp+z—xq_x—y
(4) Solve: vz x 7 xy

Sol : Y2 gy == dy = Yz
y—z Z—X X—Yy

xdx+ydy+zdz=0 ...(J)
Integrating (i) we get
X’ +y +7°= a
yzdx +zxdy +xydz =0...(ii)
Dividing (ii) throughout by xyz and then integrating,
we get xyz=hb
O(x* +y* +7°,xyz) =0
(5) (x+22)p + (42x —y)q = 2X" +y

dx dy dz

Sol : = =—.
X+22 4zx-y 2X"+y

(1)

Using multipliers 2x, -1, -1 we obtain 2x dx —dy —dz =0
Using multipliers y, x, -2z in (i), we obtain

y dx + x dy — 2z dz = 0 which on integration yields

Xy — 2= b ....(iii)

5) Solve z,, =sinxsiny forwhichz, = -2sinywhenx=0and z0

when y is an odd multiple of .



Sol: Here we first find z by integration and apply the given conditions to determine the arbitrary

functions occurring as constants of integration.

The given PDF can be  written af_ L =sinxsiny
ox\ oy

Integrating w.r.t X treating y as constant,

oz . . :
— =siny pin xdx+ f (y¥-sin ycos x f (y)
o sy

Integrating w.r.t y treating x as constant
z=—cosx [ sin ydy [f (y)dyg(x)
z= —cosx € cosyyF (yrg(x),
where F(y) = If (y)dy.

Thus z=cos x cos ¥ F ( y}g(x)

z
Alsoby data, %:—2 siny whenx = 0. U sin g thisin (1)

—2siny=(-siny).1+ f (y) (cos 0=1)

Hence F(y) = J'f (y)dy = I—sin ydy=cosy
Withthis, (2) becomes z = cosxcos y+cos ¥ g(x)

U sin g theconditionthat z = 0 if y =(2n +1)%in (3)we have
Vs T
0 = cos x cos(2n+1)5+ COS X c(2n+1)5+ g(x)

Butcos(2n +1)§ =0.and hence&0+0+ g(x)

Thus the solution of the PDE is givenby
Z=CO0S X COSY +COSy

Method of Separation of VVariables

1) Solve by the method of variables 3u, +2u, = 0, giventhat u(x, 0) = 4e™*

Given 320 Oecee @)

Sol: o o
X X



Assume solution of (1) as

U=XY where X=X(x);¥=Y (y)

au o u
3I— (xp2— (xwo

po (xy) o (xy¥)
d_x+2)(_(j10:>3d)(:—2dY
dx dy X dx Y dy
Let 3 Xk 30Xy

X dx X

=3y

=3log X kx+c, = log X =%+c1

kx

—X=e3
Let 2_dy, _ 4 _-Kdy
Y dy Yy 2
—ky

= logY =:K2cd¥+,\2:>Y =e2
Substituting (2)&(3) in (1)

K(*Y

U=e (3 2]+CL+C2

Also u(x,0) =4e ™"
2%

ie, 4e" = Ae (ﬂ = 4e* = Ae
Comparing we get A=4& K=-3

kx
3

-3
U =4e [3 2] is required solution.

2) Solve by the method of variables 4% +%u = 3u, giventhatu(0,y) = 55y

Solution: Given 4a—u+@:3u
ox oy

Assume solution of (1) as

u=XY where X=X (x):Y=Y(y)



o )
4&(XY)+E( XY ¥ 3XY

dX , , dY _3xy 49X 1 dy

- LA =
4 dx dy X dx Y dy
Let 49X k3.1 dy,

X dx Y dy

Separating var iables and int egrating we get

:>IogX=kT:+c1, log ¥ 3-k ¥c,

= X=p4 and Y =_3kyc

KX 3 k y kx 3k
—+ —+ y
Henceu =XY =_,¢'c a4 = Ae* where A=_q'c

put x=0and u=,_sy

The general solutionbecomes

2 =Ae* "V = A=2and k =-2
.. Particular solutionis

APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS:

Various possible solutions of standard p.d.es by the method of separation of
variables.

We need to obtain the solution of the ODEs by taking the constant k equal to
i) Zero ii) positive: k=+p? iii) negative: k=-p?
Thus we obtain three possible solutions for the associated p.d.e

Various possible solutions of the one dimensional heat equation u =c*ux by the method of
separation of variables.

Consider % 2 92y
ot Oy2?

Let u= XT where X=X(x),T=T(t) be the solution of the PDE

Hence the PDE becomes



2 2
OXT & XT 0l d?X

a o dt © ax

Dividing by ¢®XT we have _1 dT _ 1d°*X
T dt X dx

Equating both sides to a common constant k we have

2
1d X ang LdT
X dx c’T dt
d*X LIPS Sy
e —kX =0 and gt

D°-k X=0 and D-c*k TEO

dz . : i
Where D =" " in the first equation and D :i in the second equation
dx? dt

Case (i) : letk=0
AEs are m=0 amd m?=0 amd m=0,0 are the roots

Solutions are given by

T=ce"=cand X =C, ¥C, sox= C, %C,
Hence the solution of the PDE is given by

U= XT= ¢, C,X+c,

Or u(x,t) =Ax+B where c1c2=A and c1c3-B
Case (ii) let k be positive say k=+p?

AEs are m —c?p?=0 and m?-p*=0

m= c?p? and m=+p

Solutions are given by

2 2
T= ~1aC Pt and X = ~oaPX +,;3e7px



Hence the solution of the PDE is given by

2 2 f '
U=XT =nacpt (€M +C0 )

¢ pt px px

Or u(x,t) =c,e (A’e +Be )whereci’c2’=A’ and C1’c3’=B’
Case (iii): let k be negative say k=-p?

AEs are m+ ¢?p*=0 and m*+p*=0

m=- c¢’p?and m=+ip

solutions are given by

T= p-'ln’clp‘t and X =.,C08 pPx ~",Sin px

Hence the solution of the PDE is given by

U=XT=.,.cpt.(C, COS P¥ ., Sin pX)

_22 -
U(XE) =€ cpt (ar COS PX-+ g SiN PX)

1 Solve the Heat equation du =2 Qgiven that u(0,t)=0,u(1,0)=0 and u(x,0)=2100x/I

ot OX
: 200"
Soln: bn=gjlooxsin 77X x = = jxsinﬂdx
(N | T |
|
N7 X . Nxx
. 200 x._cosi_ _smT
"2 nz/l nz/l 2

_ 200 -1 " 200 -1 ™
b, =200 —L Icosnz =- =
2 Nr nr Nz

The required solution is obtained by substituting this value of b,

Thus u(x,t):i200 1 ZM gin 7%
— nz | I




2. Obtain the solution of the heat equation ﬁ 2 0% given that u(0,t)=0,u(l,t)and

ot X
|
2Tx indx=—
u(x,0) =f(x)where f(x)=J | 2

2T -1x in—ISxSI
| 2
Soln: bn=T°'jf (x) siF?T—de
0

bn=|3 ?sin X 4 _f—(l—) n—dx

0
2

_[x sm—dx+_[ (I—x)sin%dx
0 —

2

b 8T Sinn_‘T

i (272 2
The required solution is obtained by substituting this value of by

—n2A2p2t

ST 1 _..nr
Thus u(x,t) =—% —sin—e
(x,1) ﬂzgnz

sin %
2 I

3 Solve the heat equatior%;;ig with the boundary conditions u(0,t)=0,u(l,t)and
u(x,0) =3sinrx '
Soln: u(x,t) =€ "t (A COS PX B SiN PX).errmrerrreeerrrnnerrenee 1)
Consider u(0,t)=0 now 1 becomes
0=¢ P'(A) thus A=0
Consider u(1,t)=0 using A=0 (1) becomes
0=e™"* (Bsinp)

Since B#0,sinp=0or p=n



u(x,t)=e " (B sin mx)

- n2 7[2021

In general U(X,t) = ane sin nTx
=1

Consider u(x,0)= 3 sin nzx and we have

3sinnzx=h, simx+b,sin2r xb,sin 37X

Comparing both sides we get b, =3 b, =0,b, =0

We substitute these values in the expanded form and then get
u(x, t=3e * (sinzx)

Various possible solutions of the one dimensional wave equation Ut =c’ux by the method of
separation of variables.

02 0?
Consider — = c2 u
2

O E
Let u= XT where X=X(x),T=T(t) be the solution of the PDE

Hence the PDE becomes

& XT 8% XT d“T d?X
= 2 orX ___ _ 2
2 02 dt? dx?

2 2
Dividing by ¢?XTwehave 1 dT _1dX

T dtf X dx

Equating both sides to a common constant k we have

2 1 d°T
24 )2<:k and  ———— =K
X dx cT dt
dZX dzT sz—O
=2 kX =0 and gg ¢ =

e



D’-k X0 and D*-c’k EO

Where D? :2 in the first equation and D? :d_z in the second equation
dx’ dt?

Case(i) : let k=0

AEs are m=0 amd m?=0 amd m=0,0 are the roots

Solutions are given by

T=ce"=cand X =c, ¥C, s0x= C, %C,

Hence the solution of the PDE is given by

U= XT= ¢, C,X+c,

Or u(x,t) =Ax+B where c1c2=A and c1c3-B

Case (ii) let k be positive say k=+p?

AEs are m —¢”p?=0 and m*-p®=0

m= ¢’p? and m=+p

Solutions are given by

T = e ot ANAX = o pmpx +ce ™

Hence the solution of the PDE is given by

2 2 f pX f _
U=XT =pacpt (C,Y +C € px)

cp%t px pX

Or u(xt) =ce (A’e +Be )whereci’ca’=A’ and ¢1’cs’=B’
Case (iii): let k be negative say k=-p”

AEs are m+ ¢’p?=0 and m*+p?=0

m=- ¢’p® and m=+ip

Solutions are given by

T=rpmcprand X =qn,C08 p¥.,Sin px



Hence the solution of the PDE is given by
u=XT = P“ln_c‘pét (c’, cos px ., sin px)

- 22 -
U(XE) = e 5t (ar COS PX+ g SN PX)

1. Solve the wave equation ug=c’ux subject to the conditions u(t,0)=0 ,u(l,t)=0,
o . 3
= X Q0 and u(x,0) =uesin’(zx/I)

Soln: u xt _stmTﬂXcoszI_Ct

Consider u(x,0) =uosin®(x/1)
u x,0 = ibﬂ sin?
n=1

. R TX 2 . Nzx
uosm3|—=anS|n|—
n=1

3 1.3
u, | = sin® X X _~sin 27X zb sin X
4 I 4 | |

u,
Hosin 7% _ Yo i 37X —bsinZX +b, sm2_ b,sin 222 Sx
4 [ 4 | | I

comparing both sides we get

b_3b y _0 b="u, b=0 b0,
1 4 2 3 4 4 5
Thus by substituting these values in the expanded form we get

U, . 37X 3
u(x, t)__sm X cos F _ Hogin 27X o 27Ct
4

I I 4 | |

2. Solve the wave equation ug=c’uy subject to the conditions u(t,0)=0 ,u(l,t)=0,
u
% X Q0 \when t=0and u(x,0) =f(x)



n n
Soln: u xt = ¥bsin T”Xcos et
n=1

Consider u(x,0)=f(x) then we have

Consider u(x,0) = Zb sin TX

F(x) = Zb sin TX

The series in RHS is regarded as the sine half range Fourier series of f(x) in (0,1) and hence
b, =2 [t (0 sié‘f—xdx

Thus we have the required solution in the form

n n
u Xt _stmﬁcos as

DOUBLE INTEGRAL

The double integral of a function f (x, ¥) over a region D in R* is denoted by H ¥ (x,y) dxdy

Let f (x, y) be a continuous function in R* defined on a closed rectangle
= {(x, Wa<x<bandc<Ly<d

4
For any fixed x € [a, b] consider the integral J-‘_f (x.) dy

'The value of this integral depends on x and we get a new function of x. This can be integrated

b [ pd :
depends on x and, we get L [-[ / (%.Y)d\’:|d* This 1s called an “iterated integral®.

Similarly, we can define another

|1 5 sy

For continuous function f (x, y), we have

b [d d [b
_[Jf(x._\-')dxdv = ;!. hf(.r.y)dv}dr:]- Mf(x.y)dx}dy

c
If f (x, y) is continuous on a bounded region S and S is given by

S={(x,ya<x<band ¢, (x) <y< 9, (x)}. where ¢, and ¢, are
two continuous functions on [a, b] then



b | 0,(y)

jsjf(x.,.v)dxdv = [ [ £ (xydyax

a | (x)

y=0, (x)

The iterated integral in the R.H.S. is also written in

the form §

b 0,(x)

Jax [ £xy)a y=6,00)
a  0x)

Similarly, if S={(x,ylc<y<d a TR
and ¢, (y) £x <0, (y)} Fig. 3.4

then ” f(x,y)dxdy = J;d U‘h:m f(xy) dx]dy

o,(y)

If § cannot be written in neither of the above two forms we divide § into finite number of sub-
regions such that each of the subregions can be represented in one of the above forms and we get
the double integral over S by adding the integrals over these subregions.

PROBLEMS:

12
1. Evaluate: I = J; Io x_vz dy dx.

Solution 1

([ o

2
37~

1
I [i} dx (Integrating w.r.t. y keeping x constant)
0

o 3

- %J:Sxdx

_1{8%}'_1
3 2 5 3

1 2
2. Evaluate: I I xy dy dx.

o J1
Solution. Let / be the given integral

Then, ) Gl — jlx{ f_v dy} dx

0

.
1 2 |7 1

J.x- Y dx.=é_|-xdx=2.
0 2 ; 2 Jo 4



a

J

5. Evaluate:

I

n'_'

Solution

» v
x=-¢ y=-b

Integrating w.r.t. y, x — constant.

dax

v
Xx=-c L

8abc’

2ax’y + ——+—
3

2ax*(b+b) + ZTa

8ab’c
+

(x’+\ +< dzdwix

3

a

z

X7+ yzz+?} dy dx
7=-a

3

a 3
SN AW
3

x%a+a)+y%a+a)+[

2 2 2(13
2ax” + 2ay” + B

}dy dx

5 b
o )} dx
3 i

2’

2av

(b* +b°)

3 3
b+ _4ab ﬂ} dx
3 3

’
da’h

(2 + (20

4a’h
x)+
0+

4ab’
+
3

4ab‘

8a’be
+

3
8abc
—

3 3

@41+ )

+T(b+b)

03 ”M

o



Evaluation of a Double Integral by Changing the Order of Integration

In the evaluation of the double integrals sometimes we may have to change the order of integration
so that evaluation is more convenient. If the limits of integration are variables then change in the
order of integration changes the limits of integration. In such cases a rough idea of the region of
integration is necessary.

Evaluation of a Double Integral by Change of Variables

Sometimes the double integral can be evaluated easily by changing the variables.
Suppose x and y are functions of two variables # and v.

ie., x = x(u v)and y =y (4, v) and the Jacobian
()_x
;Y _fou
d(uw.v) |y
ou

Then the region A changes into the region R under the transformations

x=x(wv)yand y=y (u, v)

Then ij (x,y)dxdy = ij(u,v) J du dv
A R
If X =rcos 6, y=rsinf
ox ox

5 d(x,u) |5 30| _|cos®~-rsinb

d(r,8) dy 9| |sin® rc059‘= g
Jar 06
J_[f(x._v)dxdy - JJF(r.G)rdrde. LD
A R

Applications to Area and VVolume

1. “-dx dy = Area of the region R in the Cartesian form.
R

2. _”I'-dl‘ dO = Area of the region R in the polar form.
R

3. fjjdx dy dz = Volume of a solid.
v

4. Volume of a solid (in polars) obtained by the revolution of a curve enclosing an area A about
the initial line is given by

V= .”21tr2 sin O - dr de.
A



5. If z = f (x, y) be the equation of a surface § then the surface area is given by

(2] (&) wea

Type 1. Evaluation over a given region

1. Evaluate J-'[n dxdy where R is the triangular region bounded by the axes of coordinates

and the line £+l =k
a b

X o Y

Solution. R is the region bounded by x = 0, y = 0 being the coordinates axes and 5 +Z =1
being the straight line through (0, a) and [O.b(] —iJ] A
a
X
when x is held fixed and y varies from 0 to b 1‘;
LY
a b
y X
= = = == "
’ ) 0 @0\
=5 y = b(l—ﬁJ Fig. 3.2
a

P
—
-
o
| OSSR
L
T
8|~
.
=

O — O —

- [ (-2 e
L (.




b la> 2 5 1 »
= —|———a +—a
212 3 4

a’h?
24

2. Evaluate “ xydxdy over the area in the first quadrant bounded by the circle x* + y* = a’.

Solution ”.\y dxdy = ‘[ nydy dx l 4 },2 i

)
Xty =a

x=0f y=0 2 2
i 'k y=qa -x

ﬂ ’\ .
><I\J
+
<M
n
r mm
>

I . 2 )
= Al

2 2 4 Fig. 3.3
e d|_d
T2 4 8

Type 2. Evaluation of a double integral by changing the order of integration

a 2Jax
1. Change the order of integration and hence evaluate J sz dy dx.
0 0
Solution y = 2+ax
= V' = dax

when x = a on y* = 4ax, y* = 4d°
= Y= E2a

So,ony=2Jax,y=2a whenx=a

The integral is over the shaded region.



Y 4

y=2|ax

(a, 2a)

S —_—

(]

<
]
-

o'—.
-

Y4

(By changing the order)



|
; ; X
2. Change the order of integration and hence evaluate J J
0 «x

Solution yi=gfD g

= Pudeg

= 4=

This circle and y = x meet if x* +
=2y =]

So, (1, 1) is the meeting point.

| y2-1

Now 1=J
0

J2 oy

- | ]

y=0 x= 0\)1 "'V

| 77

(0.42)
Pz

(111)

dy dx

dx dy

y for0<y<l
e (= \/ﬁforl<v<\/_

(Note that x = ¢ (y) is the R.H.S. boundary of the shaded region)

So, the required integral is

|
I =

1

'V
= xz+}?‘]ﬂdy+

= [(V2y-y)dy+

n

j."—GIJ-O'\JI +y dxm+m'|.1 .rJ-U Jxr+y?




Il
1
p—
)
|
—
s ——
ru|"‘
| I—
_I.
1
%)
-
|

1

= 1-—.

2
Type 3. Evaluation by changing into polars

1. Evaluate J.J.e‘l “*)axdy by changing to polar coordinates.

00

Solution. In polars we have x = r cos 6, y = r sin 6
r* and dx dy = r dr d6

X+y =

Since x, y varies from 0 to o

r also varies from 0 to oo
In the first quadrant ‘6’
varies from 0 to m/2

Thus

Put

t also varies from O to oo

Y 4

P(xy)

ul

=<V



a \a* -y’
2. Evaluate J Jy x> +y* dxdy by changing into polars.
0 0

Solution I= j J x° +\ dx dy

Xi= ,/az —vy?orx* +y* = a?is a circle with centre origin and radius a. Since, y varies from 0 to a

the region of integration is the first quadrant of the circle.
In polars, we have x = r cos 6, y = r sinf

X+yr=r
Le., =i
=5 f=a

Also x =0, y = 0 will give r = 0 and hence we can say that r varies from 0 to a. In the first
quadrant 6 varies from 0 to m/2, we know that dx dy = r dr d8

a T2
I = Jrsin(-)rrdrde
r=06=0
a /2
= Jr3 sin 6 dr do
r=0 8=0
= | (~cos 9):;/2 dr
r=0

47" 4
~ro-1dr= || =%
4 " 4

I
D C—
ESN

Ll
T

Triple Integrals:

The treatment of Triple integrals also known as volume integrals in R*is a simple and straight
extension of the ideas in respect of double integrals.

Let f(x,y,z) be continuous and single valued function defined over a region V of space. Let V be
divided into sub regions 8V, dV,.......6V, into n parts. Let (X, ¥, Z,) be any arbitrary point




within or on the boundary of the sub region v, . From the sum s = Z f X\ Yo Z PV,
k=1

If as B> and the maximum diameter of every.

Sub region approaches zero the sum (1) has a limit then the limit is denoted byﬂjf (x, y,z)dv
\

This is called the triple integral of f(x,y,z) over the region V.

For the purpose of evolution the above triple integral over the region V can be expressed as an
iterated integral or repeated integral in the form

11y, ey { “i”{’“]” oy z)dz} }

gL w(xy)

Where f(X,y,z) is continuous in the region V bounded by the surfaces z=z =y/(x, y), z#(X,Y).

yg(x), y h&), x a, % b .=he above integral indicates the three successive integration to be

performed in the following order, first w.r.t z, keeping x and y as constant then w.r.t y keeping x
as constant and finally w.r.t.x.

Note:

¢ When an integration is performed w.r.t a variable that variable is eliminated completely
from the remaining integral.

o If the limits are not constants the integration should be in the order in which dx, dy, dz is
given in the integral.

Evaluation of the integral may be performed in any order if all the limits are constants.
If f(x,y,z) = 1 then the triple integral gives the volume of the region.

1. Evaluate ]'z.[zjxyzzdxdydz
001
2

12 1 2 2.2
Sol : _[ I jxyzzdxdydz = J X yz ] dydz
001 l

= I‘ijz SN dde



2 4 |
1 2272
:j \,272—y4z }dz
oL 0
o]
= dz
oL 4

2. Evaluate _[”(x2 +y? + 2% )dxdydz
000

aJ'ei[(x2 +,,2 + zz)dxdydz = T"{Xg 4 y2 ¥ 77 %adydz
0 00 0

0

O(—‘Q)

a

= I jiL+y a+z a}dydz
0L

QO:

= {fg— y’a+z a]dy]dz

a| 3 a
0 3 0

3
= %4+ at +gz,z]dz

:{ L a7’ T
3 0




a?_x?_y
_[ Xyzdxdydz
0

aNmw [V
Sol : I=J' I 3 I Xy z dzpdydx
0 0 0

A2 —y2 =2

- ;
f ﬂ} dy dx
0 2 0

:]' J' %(az— w2—Y*)dydx
0 0

a.xL,z -2
[ (xya®— s y—xy*)dydx
0

=1 T(a“x+ w5—2a°x)
8

2,472
_1| L x8_2AX g
gld 2 6 4 48

0

4. Evaluate _mxyz dxdy dz over the region R enclosed by the coordinate planes and the
R

plane x +y + z=1
Sol: Inthe given region, z variesfrom0to 1 —-x -y

For z-=0, y varies from 0 to 1 — x. For y=0,x varies from 0 to 1.

1 1x1x-y

Hjxyzdxdydz_ j' j Ixyzdxdydz

x=0y=0 z=0

il



_11'[ {T (1-x)* y2(1-x)y? +\,3]dy}dx

2
_t
2

i[{ (1-x)* @x)? ——(1 X)(1- x)3+ (1 x)* }} X

1

Y 1[_a-x
- 4!(1 d OI)(_24{ 30 l
1

720
Change of variable in triple integrals
Computational work can often be reduced while evaluating triple integrals by changing
the variables X, y, z to some new variables u, v, w, which related to x,y,z and which are
such that the

OX OX O
o voow
Jacobian J=M=g Q i#O
o(u,v,w) |ou ov ow
07 07 @
v ow

It can be proved that

_mf (x, Yy, 2)dxdydz
- ﬂ j¢(u, v, w)Jdudvdw........(1)

R is the region in which (x,y,z) vary and R" is the corresponding region inwhich
(u,v,w)vary andp(u, v, w f x(u,v,w), y(u,v,w), z(u,v,w)
Once the triple integral wrt (X,y,z) is changed to triple integral wrt (u,v,w) by using the

formula(l), the later integral may be evaluated by expressing it in terms of repeated

integrals with appropriate limit of integration



Triple integral in cylindrical polar coordinates

Suppose (x,y,z) are related to three variables (R, ¢z) through the the relation
x=Rcos¢ , ¥Rsing , = zthenR, ¢ z arecalled cylindriocal polar coordinates;
In this case,

OX oOX OX
R 0p oz
2y |y oy g

oR,42) |OR 0¢ oz
0z 01 o2
R 0p oz

Hence dxdydz has to be changed to R dRd¢ dz

Thus we have

mf (X, v, Z) dxdydz
= [[[#(R.¢, RdRdpdz

R*is the region in which (R,¢,z)vary, as(X,y,z) vary inR

#(R,¢ ,2)f (Rcosg, Rsing,z)

Triple integral in spherical polar coordinates

Suppose (X,y,z) are related to three variables (r,&8,4) through the relations
X=rsind cog ,y=r sind sip ,zrcosd. Then (r, 6, ¢) are called spherical polar

coordinates.

PROBLEMS:

1) If R is the region bounded by the planes x=0,y=0,z=0,z=1 and the cylinder x* + ,,2 =1
.Evaluate the integral m xyzdxdydz by changing it to cylindrical polar coordinates.
R
Sol: Let (R, ¢2) be cylindrical polar coordinates. In thegiven region, R varies from 0

to 1, gvaries from 0 t& and z varies from 0 to 1.
2

IJI xyzdxdydz = f: &EO L,(R cosp)(R sing)zRdRdgdx



— ERSdesin ¢cos¢£zdz

1 fR%lR[MT
4% 2

0

2) Evaluate m xyzdxdydz over the positive octant of the sphere by changing itto
R

spherical polar coordinates.

Sol: In the region, r varies from 0 to a, &varies from 0 to g and ¢ varies from 0 to.

The relations between Cartesian and spherical polar coordinates are

X=rsing cog , yrsind sing ,z=rcosé.....(1)
Also dxdydz = r *sin@ drddd ¢

We have x° et =at 2)

Jyxyzdxdydz = Jj?:o Jf:o J;r si@cos¢ r sidsing r co® r’si@drdod ¢

- Jzor‘r’ sin® @ cosdsin gdrdéd ¢
aG

——— COSz—cos0
96

6
48



MODULE-4
INTEGRAL CALCULUS

Application of double integrals:

Introduction: we now consider the use of double integrals for computing areas of plane and
curved surfaces and volumes, which occur quite in science and engineering.

Computation of plane Areas:

Recall expression

b y,(x) d X2 (Y)
jf(x, y)dA = H f(x, y)dxdy = j yj f(x, y)dydx = j jy f (x, y)dxdy
A R a y(x C X%
by, (x) d X (y) n g’
[dA=[[dxdy =[ [ dydx={ [ dxdy........(2)
A R a y(x) ¢ X (y)

The integral I dA represents the total area of the plane region R over which the iterated integral
A

are taken . Thus (1) may be used to compute the area A. nNote that dx dy is the plane area
element dA in the Cartesian form.

Also _dedy = J]rdrd 6, rdrd@is the plane area element in polar form.
R R

Area in Cartesian form

Let the curves AB and CD bey, = f,(x)andy, = f, (x). Let the ordinates AC and BD be x=a and

x=b. So the area enclosed by the two curves and x=a and x=b is ABCD. Let p(x,y) and be
Q(x+dx, ¥d8y) two neighbouring points, then the area of the small rectangle PQ=6x8y

Y2 Y2
Area of the vertical strip =|j mZ5X5y =X jdy
o Y1

Y70 oy
Since & x the width of the strip is constant throughout, if we add all the strips from x=ato x=b
we get

h Y2 b Y2

The area ABCD = umzca‘x [ dy=fox fdy



b ¥,
Area= j _[ dxdy

ayr

Area in Polar form:

1. Find the area of the eIIipseﬁJrY_2 —1 by double integration .
a®> b’
b L
Soln: For the vertical strip PQ, y varies fromy =0to y = —~/@ ~x° when the strip is slided
a

from CB to A, x varies from x=0 to x=a

bt
Therefore Area of the ellipse=4 Area of CAB=4 j jdydx
x=0 y=0

base
=4j ' Idy dx:4f ﬁ?ﬁmdx
0 0 0

2 b a
= blasin’1 _4_.__ 7 _ ab
al 2 a 2 2

2. Find the area between the parabolas y’=4ax and x* =4ay

Soln: We have Y?=4ax ..................... (1) and X2 =4aY.......ccovvvennn... Q).

Solving (1) and (2) we get the point of intersections (0,0) and (4a,4a) . The shaded portion
in the figure is the required area divide the arc into horizontal strips of width &y

y2
X varies from p,4— to Q./4ay and then y varies from O, y=0to A, y=4a.
a

Therefore the required area is

4a sy 4a Jray

jdy dx = de X

0 y 0 Xi
N 4a



4a

0

Computation of surface area (using double integral):

The double integral can made use in evaluating the surface area of a surface.

Consider a surface S in space .let the equation of the surface S be z=f(x,y) . it can be that surface

area of this surface is

Given by S=_[

1{5_2
ox

A

;

07
dxd
(ay)] dy

Where A the region representing the projection of S on the xy-plane.

Note that (x,y)vary over A as (x,y,z) vary over S.

Similarly if B and C projection of S on the yz-plane and zx - plane respectively , then

aZ
o= (5
and AL
S _ _1 0%
-
AL

)Z
JZ

_]2

0z
oX

1

2dydz

1
2

dzdx

1) Find the surface area of the sphere x*+y*+z°=a®.

Soln: the required surface arc is twice the surface are of the upper part of the given sphere,

whose equation is

7=

this,gives,O—Z:
OX

a2 "y

-~

a2

—v2 Ty

1
2—,2 %2 2)0



a2 T y2 T2

y

similarly a_
G,

X a2 T y2 7,2

_ [82]2 (82}2 a’
A = = = —
OX OX A2 =2 =2

hence, the, required, surface, area,is

1 1
72 2 2
s=2J' 1+(5_J _{QEJZ 2dxdy=2ﬁ{%}2dxdy
. X oy wla—-x -y

Where A the projection of the sphere on the xy-plane . we note that this projication is the area
bounded by circle x?+y?=a®.hence in A ,© varies from Oto2r

And r varies from Oto a, where (r, ©) are the polar coordinates. put x=cos 0 ,y=sin 0 dxdy=rdrd 0

27 a
drdo = 2 [dox [———rd
rdr 6‘ xoj rdr

27 a a
ns=2 j' j—
sorsova =r? Va? —r?
27 2T
A
=2&J‘d9—{\/a 2 g=2ajda:}2az b =4m
0 0
2) Find the surface area of the portion of the cylinder x*+z=a’ which lies inside the
cylinder x*+y*+=a’,

Soln: Let s; be the cylinder x*+z°=a® and s, be the cylinder x*+z’=a” for the cylinder
0z 0

S =—=-X 2=
OX z'0y
2 2
0] that,1+(a—zj + @ =1+)£3+0:72+Y2 __ a?
OX oy 52 52 A2 =2

The required surface area is twice the surface area of the upper part of the cylinder S; which lies
inside the cylinder x?+y?=a®. Hence the required surface area is

2 (3 (3] [or-r e

N e



Where A is the projection of the cylinder Si on the x y plane that llies with in the cylinder

Sa:x2+y?=a2 In Ax varies from —a toa and for each x,y varies from-~,, & ,2tov, =2

a Va2—y2

=2 dyd
i x—jay \/'[7\/3. —X yex
=2aaf Jaz dex

—ZaIFl\/nz—yz @X

=4aj axda 7, =4a - ¢a_£8a’

Volume underneath a surface:

Let Z=(x,y)be the equation of the surface S. let P be a point on the surface S.let A denote the
orthogonal projection of S on the xy- plane . divide it into  area elements by drawing thre lines
parallel to the axes of x and y on  the elements &xdy as base ,erect a cylinder having generators

parallel to QZ and meeting the surface S in an element of area 8 .the volume underneath the
surface bounded by S, its projection A on xy plane and the cylinder with generator through the
boundary curve of A on the xy plane and parallel to OZ is given by,

V= ”f ¢ y dxdy = ”dedy

. . . 2 2 2
1) Find the volume of the ellipsoid X, ¥ 2 _1
a’> b? c?
Sol: Let S denote the surface of the ellipsoid above the xy-plane .the equation of this  surface
2 y2 2 -
2 0 :1i>0
a’> pb? c? B
IS
2 2 -
or,z_c{ _1X_N_J =fgy
a’h?

The volume of the region bounded by this surface and the xy-plane gives the volume viof the
upper half of the full ellipsoid .this volume is given byv, = ﬂ(( yﬁxdy
A

Where A is the area of the projection of S on the xy plane .



Note that A is the area bounded by the ellipse X +y_2 -1
a® b’
) 2
SV = ﬂ(l— % — y_ZJ 2 dxdy = C( ﬂabJ
A a b2 3
2
=_ac
3

2 4
The volume of the full ellipsoid is 2vi.thus the required volume is v = 2.— zabc = — 80¢C

Volume of revolution using double integrals:

Let y=f(x) be a simples closed plane curves enclosing an area A. suppose this curve is revolved
about the x-axis. Then it can be proved that the volume of the solid generated is given by the
formula .

V= HZ::ydA: HZ;zydxdy
A
In polar form this formula becomes v = Hr 2sin od &dr
A

1) Find the volume generated by the revolution of the cardioids r =a (1+cos0) about the
intial line.

Sol: The given cardioids is symmetrical about the initial line 6=0.therfore the volume generated
by revolving the upper part of the curve about the initial line is same as the volume
generated by revolving the whole the curve .for the upper part of the curve 0 varies form 0
to © and for each 0 , r varies from 0 to a(l+cos0),therefore the required volume is

7 a(lcosd)
V= j jZ;zr 2 simdrdé
#=0 r=0

3 a(+cosgj
} ”

:2ﬂjsing {r_
0 3 0

278° 7 N

=£j(+cos€/sin9d6‘

3 0

_277‘,113[(+c056?‘“]r 8

— =_m
3 4 3

0



Computation of volume by triple integrals:

Recall the expression,

- b] MR /€y N
jf %y zdv= j_Uf ¢y, z dxdydz= J- J-((, y, zdz pdy (dx
Y R al ol w€y ]

As a particular case ,where f(X,y,z)=1,this expression becomes

j' dv = m dxdydz = t]'hf-)ﬁ‘gj‘yo-l]zdydx ............................. (1)
v R a g€ P€y

The integral Idv represents the volume V of the region R. thus expression (1)may be used to

compute V.

If(x,y,z) are changed to (u,v,w)we obtained the following expression for the volume,

[dv: j jjdxdydz: j ﬂ GAUAVAW. . 2)

Taking (u,v,w)= (R,0,z) in (2)

We obtained J' = deRdgﬁdz ................ (3) an expression for volume in terms of
R
dv

v

cylindrical polar coordinates.

Similarlyf = jﬂrzsin adrdedg an expression for volume in terms of spherical  polar
R

dv

\2



coordinates.
PROBLEMS:
1) Find the volume common to the cylinders x*+y?=a® and x*+z°=a’
Soln: In the given region z varies from —+, 2,2 to ++, 2,2 and y varies from
-V, =42 to +v, =2 .for z=0, y=0 x varies from -ato a

Therefore, required volume is




2) Find the volume bounded by the cylinder X?+Y?=4 and the planes y+z=3 and z=0

Soln: Here z varies from 0 to 3-y, y varies from () to () and x varies from -2 to 2

.. Required volume

2 Ja—po 3y
V = j _[ Idzdydx

X="2 y=—f4—,2 270

2 4-2 3y 2 4-2 Y
= jdx I dy _[dz: Idx I dy z

2 e 0 2 4y 0

2 42 2 2 V42
= Idx I 3-y dy Idx(B—y—J

2 o, -2 2)



2 2 2
=_[ 3 4—yz—4 X 43 4— 2 +4—X dx
b 2 2

2 2
=6_[\/4—x2 eb(ﬁ[gxM—yz +fsin15}
2 2

2 2|

=6 23in‘1g—23in‘l 2 —12| 2+ 2127
2 2 2 2

Curvilinear coordinates:

Introduction: the cartesian co-ordinate system is not always convenient to solve all sorts of
problems. Many a time we come across a problem having certain symmetries which decide the
choice of a co ordinates systems .our experience with the cylindrical and spherical polar co-
ordinates systems places us in a good position to analyse general co-ordinates systems or
curvilinear coordinates. Any suitable set of three curved surface can be used as reference surface
and their intersection as the reference axes. Such a system is called curvilinear system.

Definition:

The position of a point P(x,y,z)in Cartesian co-ordinates system is determined by intersection of
three mutually perpendicular planes x=ki, y=kz, and z=k 3 where k; (i=1,2,3)

Are constants in curvilinear system, the axes will in general be curved. Let us the denote the
curved coordinate axis by and respectively.

It should be noted that axis is the intersection of two surfaces ui= constant and u,=constant and
So on.

Cartesian coordinates (x,y,z) are related to (u1,u»,u3) by the relations which can be expressed as
X=X(U,U2,u3); Y=Y(U1,U2,U3): Z=Z(U1,U2,U3)....... (1)

Equation (1) gives the transformation equation from 1 coordinates system to another.

The inverse transformation equation can be written as ui= uz (X,y,z), U= U2 (X,y,z), Us= U3

(1) And (2) are called transformation of coordinates.

Each point p(x,y,z) in space determine a unique triplet of numbers (uy,uz,uz) and conversely to
each such triplet there is a unique point in space. The trial (us,u.,us) are called curvilinear
coordinates of the point p.




Unit vectors and scale factors:
0
Let P =X +yj+ 2k be the position vector of the point p. then the set of equation x=x(uz,uz,us),

I ™
y=y(U1,U2,U3),z=2(U1,U2,u3) can be written as =T €, u,,u; _

. . {
A tangent vector to the u curve at p (for which u and u are constant ) is EL
ul
The unit tangent vector in this direction is
0. 3l
-
Do Ou _ ou
el M
ou,
il
So that where h, =|—
ou,
h,é, = O
- Guy

Similarly if éz ande; and are unit tangent vector to the u and u curves at p respectively.
Than

G %
0 _ du,  du,
, = =
o] h
au,
I
So that h,é, _ %
cu

)

. 0l 2l
And  h,6, =— ( where hy =|F
du, U,

The quantities hy, h2and hz are called scale factors. The unit vectors are in the directions of
increasing ug, u2, and us respectively.

Relation between base vectors and normal vectors:

O _,a. 0l o,
~L=hg;F =g, _F=hg,;
U, au

i

6u2

o . 1o, 1ér
e, ==
ou, h, dou, h, ou,

We have:

ol

_1
&




[~ 1 I
el 3X,e.| 1 ox g

i hi au; i hz Ou, : h3 5u3

ej_— e j_1oysej_10y
hl 6U1 i h2 auz h3 au3

ek_Lloziek 1 az;ek 1oz
hl 5u1 h2 auz h3 au3

Elementary arc length:

Letr =] ul,uz,u3P ]
.dr _9 du, 9 du,, O du,

2+
aul auz §u3

i I A A
If ds represents the differential arc distance between two neighbouring points

¢, u,,u, and @, +du,,u, +du,,u, +du,
then,,,dsz_dr.dr_‘fhdu ehdu eAh du T@Ahdu ehdu ehdu -~
= = 3 3 3% 1T 2 2 T 73

1t 72

2 2 2 2
or,,,,,ds =h1du1 +h2du2+h3du3

—

o,
On the curve ug cure uzand uzare constants .. du, =du, =0..ds = h,du, = —du,
ul

Similarly ds = h,du,,ds = h,du,



Elementary volume element:

Let p be one of the vertices of an infinitesimal parallelepiped. The length of the edges of the
parallelepiped are h,du,, h,du,, hydu,

Volume of the parallelepiped =dv=h1 hz hs duiduz dusis called the volume element.

dv= [(&;h,du,)(€;h,du,)]x€;h;du,

__Ox.y.2) dur duz dus

V=
6(“11”2 ,U3)

- (Jﬂj dua duzdus
U, U,Ug

Jacobian is positive since each hy, hy, hz of are positive.

0 0
Expression for v, divF, curlFand’?¢ in orthogonal curvilinear coordinates:

Suppose the transformations from Cartesian coordinates X,y,z to curvilinear coordinates u,, U, , U,
be x=f( u,, u,, uUz), y=g( uy, U,, Uz), z=h( uy, U,, u;) where f,g,h are single valued function with
continuous first partial derivatives in some given region. The condition for the function f,g,h to
be independent is if the jacobian

X X Ox
&, %, A,

oy |y q G,
a(ulauz,ua) 3u1 au2 aU3
0 0 G
aul aUZ

When this condition is satisfied, u,, U,,U; can be solved as single valued functions odf x, y and z

with continuous partial derivatives of the first order.
0 0
Let p be a point with position vector op = xi' + yj+ zk in the Cartesian form. The change  of
0
Ol Ol Ol

coordinates to u,, U, , U; makesr a function of u,, u,, u;. The vectorgﬂ —F  —F are along
u, ©du, du,



tangent to coordinate curvesu, =c,,u, =C,,U; =Cj.

Let &, é,, é; denote unit vector along

these tangents. Then 6p = €h 0 _¢h J _¢€h
a 11 a - 2 2 a - 3 3
u, u, U,

I I I
Where hlz_ap, ho= _8L ha= O
5u1 du, du,

If &, 6é,, €& aresuchthat . é,=0, é,.6,=0, &,. =0

Then the curvilinear coordinates will be orthogonal and €, =€,x €,,6,=6;xé €,=6é x§,

o oL

0_10
Now r=r(u,u 2,u3):>dr

U, du, au,

Gradient in orthogonal curvilinear coordinates:

_Ldu1+_Ldu2 + —Fdu,

Let ®(x,y,z) be a scalar point function in orthogonal curvilinear coordinates.

letgradg = ¢€, + @€, + @€, wheregd, ¢,, ¢;are functionsof U, U,,U,

dr = €,h,du, +8&,h,du, +&,h,du, _

alsodg = gradg - dr = @8, + 4,8, + 4.6,

- €,hdu, +é,h,du, +é;h,du;, _

i.e,d¢ = ¢h,du, +¢,h,du, + g;h,dus................. (2)
comparing(1)....and....(2), wehavegh, =—¢,¢»zh 9 ygshs = 99
n (3u2 ou,
L. 10 1 09 12¢,
S h, ou €. ¢, = h, ou, €. = h, au, €
1 1 1
op g ¢
sgradp=Vp=——— +——"—du,6, +———du.é
grade @ h ou, du,é, h, 2u, du,é, h, ou, o[V )
A A é
v, &0 &2 B . (%)
h,du, h,cu, h,du,
from..(3) Vu, = & vu, — & vu, — 8, (5)
h,’ h,’ h,

here..Vu,,Vu, Vu,



Are vectors along normal to the coordinates surfaces ui=c1,u2=C2,u3=C3

Using (4) in (3)we get v _ vu, & 0 +VU,-

Expression for divergence of a vector functions in orthogonal curvilinear
coordinates.

I I
Let f :ul,lﬂjz,u3 be a vector point function such that f + f,6, + f,é, where fy,f,,f; are
= f¢"
components f along €,,€,,€, respectively.

[ [
f=V-f=V-(£8)+V-(f,8,)+V-(f&)

consider,,V - (&) =V-(fé, x&) =V-(fh,h;Vu, xVu;)(using....(4))
~LV-(fe)=V '(fthhSD) -(Vu, >D<VU3) + f,h,hsV - (Vu, xVuy)
(usin g -(¢A) =Vg-A+gV-A)

also..v xVu, =0 =.V x Vu,since..curl..grad¢g = 0
5 € %
V_(fle ? _ V_(flhp 2-(Vu2 xVu3) _ V_(fl h2 r; ). from(5)

hzh;
&
_y.(fhh).
h;h,
cy 10
cy.(fe)y 1 0 (ihh)
h.h, hu,

R 1
similarlyy _(€) :_i(fz hh)
hih, hou,

v.(tey 1 0(thh)

hh, houg *
p 1 0 0 0
Vi = —— _(f1h2h3)+_(f2h3h1)+_(f3hlh2)
h,h,h, | éu, au, du,

I
Expression for curlF in orthogonal curvilinear coordinates

( [
LetF = (u,,u,,u;) be avector point function such that f = f,, + f,é, + f.é,

curlF =curl(f,&)+curl(f,E,)+curl(f;€;)

Consider curl(f,&) =curl(f,h,Vu,) = f,h,curl(Vu,) + gradf,h, x Vu,



=grad f, hxVy,

_guumkm
ou,

0

in orthogonal curvilinear

z%ﬁxmﬁ L o (thy 1 9 (fh) 1, & using(3)and(s)
h, ou, * bt h, 8u, 2 h, éu, h,
: G Uhmh—{aUhmh
h h h 2 u2 11 3'13
similarly
. ) A ) \
curl(f,e,) = s {{—(fzhz)}eshs —{—(fzhz)}emli|
1 2
wﬂm9=h [@_Uhmm {5 ﬁhmz}
2
! {lzﬁgm)_gz<um)Fm+{gi(nm)
- curlf ot du, _ ou,
= a ~
12 3 .\ —8—(f2h2_a_(flh2 83h3
6u1 |"IZ
) &h,  &h, éh;
Thus curlf = i i i is the expression for curlf
hh, hou, ou, au, b
flhl fz 2 f3h3

coordinates.

Expression forv?e in orthogonal curvilinear coordinates

Let ¢ = ¢(u;,U,,Uy) be a scalar function of uy,us,Us

We know
170 190 og
V¢ = h ,\¢ 1"' ¢ &, __¢es
| ou, h, éu, h, cu,
Vig=V 18¢e1+1a¢ 2+i%e'3
h, ou, h, éu h, éu,
1 0 | hjh, Op

Vzgo = |:
hth k@ul

9 [ hohy ¢,
h, oy,

h,h, o¢

au,

|

h, du,

Jal

h3 auB

This is theexpression for¥¢ in orthogonal curvilinear coordinates.

H



BETA AND GAMMA FUNCTIONS

In this topic we define two special functions of improper integrals known as Beta function and
Gamma function. These functions play important role in applied mathematics.

Definitions

1. The Beta function denoted by B (m, n) or § (m, n) is defined by
1

B (m n = J i (l—)c)"_I dx,(m,n>0) (1)
0

2. The Gamma function denoted by I" (n) is defined by

n-1 -x
[ = J* e dx (2
N

Properties of Beta and Gamma Functions

I B(mn = P(n m

2: B (m. II) - _([ (1+ m+n '([ ]+x m+n (3)
n/2

3. B(mn = 2|sin® " 6cos™" 6d0 (4

= 2| sin*'0cos*™ ' 040




72
4. ﬁ[p—ﬂq—ﬂ] = 2 I sin” 6 cos? 6 40
2 2 A
i/2

= 2 J sin? B cos” B do

5. rm+1)

6. F'n+1)
Proof 1. We have

n I'(n)

n!, if n is a+ ve real number.

!
J P2 i
0

|
J=9™ i-(-2]" ax
0

B (m, n)

Sincej'f(x)dx = Jf(_a—x)dx
0 0
|
= J O R
0
|

ol l—x

I
Oy

B (n, m)
Thus, B (m,n) = B (n, m)
Hence (1) is proved.

(2) By definition of Beta function,
!

B(mn = I o (l—x)"_l dx
0

1
Substituting x = —— then dx =
1+t (1+1)

o ol e
1+t 1+t [(1+;)'

Therefore,

5~ dt when x =0, f = oo and when x = 1, 1 = 0.



B (m, n)

Similarly, B (n, m)
Since,

B (m, n)

B (m, n)

0 m—| n—|

1 t -1
J(1+t] [1+ } L
% ¢ (1+1)
*. I"_]
.0 (1+I)m_l+n_]+2
2 n-1 by n-1

t m+n dt =J - m+n dx
o (1¥1) o (1+x)
2 xm—l
.0 (l+x)m+n

B (n, m), we get

oo

J

n—1 e m-1
*_dx=‘[ BT
A e e

m+n

(3) By definition of Beta functions

B (m, n)

Substitute
Also when

when

B (m,

.m—1

X1 - x)" dx

i

x = sin’ O then dx = 2 sin 6 cos 6 d6
=0,6=0
n
X =) 0= E
nf2
n)y = j (sinze)m‘l‘(]—sinzﬂ)n‘l-2sin9cos(i)d9
0

n—|

sin”" @ (cos2 9) -sinBcosO d6

. 2m-2 -2 o
sin”" " Bcos™ ~ OsinBcosb dO

sin>" ' @cos™ ' 0 do



v

Since, B (m, n) = B (n, m), we have

72

B (’", ") = 2 I Sinzm_l ecos?,n—l 9(19
0

x/2

0

2 I sin®" ' Bcos” ' 0 46

(4) Substituting 2m -1 =pand2n-1=g¢4

p+1 q+1 .
So that m = T n= > in the above result, we have

7p)

B(p_ﬂq_ﬂ) =2 j sin” Bcos? 6 d6
2 2 :
72

~ 2 J' sin? Bcos” O do
0

(1) Substituting g = 0 in the above result,

2 "2

we get

/2

7/2
11
B[’H .—] _ 2j sinf’ede=2jcos"ede-
0 0

(2) Substituting p = 0 and g = 0 in the above result

/2

B[%%) = ! do=m

(5) Replacing n by (n + 1) in the definition of gamma function.

Eim) =

where n = (n + 1)

rn+1) =

On integrating by parts, we get

ra+1 =

I P e )
0

O+nJ. &5l = AT (n).
0



n

i . - .
since lim —=0, ifn > 0
X—rco e

Thus, F''nh+1)=nT(m),|forn>0

This is called the recurrence formula, for the gamma function.

(6) If n is a positive integer then by repeated application of the above formula, we get

IF'n+1) = nT(n)
=nln-1+1)
=n(n—-1)T (n- 1) (using above result)
=nn-1))m-2)T(n-2)
=n(n-1)(n-2..... 1 (1)
=n!T(1)
But rqa = _[ X087
0
= e ]0 == (@ <i)= 1
Hence I'(n+ 1) = nl, if n is a positive integer.
For example
ER) = =1TF3)=21=2,F@@)=31=6
If n is a positive fraction then using the recurrence formula [" (n + 1) = n T (n) can be evaluated
as follows.
nr é I 1+l l I lJ
O T37) = 2) =212
5 3 3 3
- = —+1| = =T |-
(2 r 2 r 2 2 ZJ
7 3 5 5
3) T 2 r 2 2 2}
5



Relationship between Beta and Gamma Functions

The Beta and Gamma functions are related by

I'(m) T(n)
B@,8) = “Foutn) 7
Proof. We have rm = J i T
0
Substituting x = £, dx = 2tdt, we get
< n—1 2
ra = | () ¢ ara
0
_ 2J 2V dt
0
I'(n) = ZJ X2 ¢ gy (i)
0
Replacing n by m, and ‘x” by ‘y’, we have
T 2m-1 ,-y? s
r'(m) = 2_[ yoe dy i)
0
Hence
Cm)-Tn = I2J.x2n—l e_xz dx} .{2.[‘,2”1—1 e—)‘3 dvl
0 0

= 4J Je_[x-\L‘\.-)Afz"'l vy dx dy ..(iii)
00

We shall transform the double integral into polar coordinates.
Substitute x = r cos 8, y = r sin 6 then we have dx dy = r drd®
As x and y varies from 0 to oo, the region of integration entire first quadrant. Hence, 6 varies
T . 2 2 2
from O to 3 and r varies from O to e and also x* + y- = r~
Hence (iii) becomes,
o Tf2
= N Ry
4 j J e (rcos®)™ (rsin®)™ - rdodr
r=0 6=0

T'(m) T(n)

sin® '@ cos™ "0 do (V)

S eyt | H

o) o R |
= 4 J pAm-l = dr x
r=0



—— “

Substituting r* = t, in the first integral. We get,

oo

2 U i
2(m+n)-1 —r - 2 m+n—| t
J r e’ dr = > J t e dt
r=0 0
< I'(m+n)
)

and from (iv), | sin*""'6cos™ "6 do= % B(m,n)

= e |

Therefore (iv) reduces to T'(m)T (n) = T (m+n)B(m.n)

I'(m)T (n)

Thus, B (m, n) = W Hence proved.

Corollary. To show that F(%] = Jr

1
Putting m = n = 3 in this result, we get
1 1
,3[1 1 rl3lTl3]
2"2] = r[1]

But I (1) 1
"

-

2

)} ..(8)

L
2

T

2
Now consider B (m, n) = 2 I sin”™' B cos® ' 0 6
0

Now we have from (8), L.H.S.

73]

o el s

s
2

2 x
2j sin”6cos’ 0 d6 =2 [6]2 =
0



i

—bx?
Prove that ra dx = ———= where a and b are positive constants.
0 2Jbloga R

Sol:

oo 2 o0 —b.l’z
—bx* ) loga .
Now, Jo a dx = Jo {e . } since a = €& ¢

= re—{bloga}x“dx
0

dt

Substitute (b log @) ¥* = 1, dx = oo

So that i
o that, e
,/bloga
i dt
e 2.t Jbloga

Jm e dx

a_
0 J:e Zﬁ,/bloga




n 1 m+1 ..
Prove that J: x" e dx = — = F[ ) where m and n are positive constants.
(ml) n
2 na "
i
. [ \n
Substitute ax" = t so that x = [—)
a
| .-
Then dx = —5:t° dt
na"
Therefore,

00 e (-} r‘" _ tn
J e ™ dx = J [—) P g dt
0 0 a |

(m+1)

= ;f t " et dt

na(m+ 1)/n
1 m+1
— I A
na{m+|)ln n

Specialization to Cartesian coordinates:

. T T
For Cartesian system, we have u, =Xx,u, = Y,U, =2;€ =1,€, = ],&, =kandh, =h,=h, =1

The elementary arc length is given by ds® = dx? + dy? +dz°
dA, = dxdy,dA, = dydz, dA, = dzdx the elementary volume element is given by dv = dxdydz

Specialization to cylindrical Polar coordinates:

In this case U, = p,u, =@, u, =2

000 0 010
Also x=pcosg, y = psing , z. Theunitvectors e,,e,,e;are denoted by e, e,, e, respectively

in this system.

[ I [
Let P = pCoSgi + psing |+ K = o _ COS¢j +Sin ;zfj;a—r =—psin ¢r+pcos¢];ﬂ =K
op o¢ oz



Ol 1=
op| 0

The elementary arc length is given by (ds)® =h’ (du )3h,” (dyz +h3 (du,,2

[
The scalar factors are given by h, = 0

% =11h2 =

i.e: (ds)? = (d py2 + p*(dgy2 + (dz)?
The volume element dv is given by dv = h,h,h,du,du,dus, i.e;dv = pod pd¢dz

Show that the cylindrical coordinate system is orthogonal curvilinear
coordinate system

I - A A . : 10 -
Proof: Let r = pcosdi -+ psing -+ be the position vector of any point P. If €€ e are the
unit vectors at P in the direction of the tangents top, ¢ and z curves respectively, then we have

s O O e O
e =55 8 =55 =,

For cylindrical coordinate system h, =1,h, = p, h&1

0, 10, o PR . A
6 =—",6=——",6 =—F =6 =CoS¢i +5ing];6, =—singi +cos¢ JiE, =
Now ;ﬁe;, =—Cos¢ sip+sing cop=0;€,-€ =0ande, .ép -0
- I
0 1 ) _ o
Hence the unit vectors €,€,€ are mutually perpendicular, which shows that the cylindrical

polar coordinate system is orthogonal curvilinear coordinate system.
Specialization to spherical Polar coordinates

In this case u, =r, uﬁ =0,u; =¢. Also xr siffcos¢ , y=r sifcosg , zrcosé. In thissystem
unit vectors él, éz,esare denoted by ép, é¢, _ez respectively. These unit vectots are extended

respectively in the directions of r increasing, € increasing and ¢ increasing.
Let r be the position vector of the point P. Then
¢ =(r sificosg Y (r siasing )j(r cosOK

YIS

) L ~ O} : :
=sm¢cos¢|’+sm95m¢“|+cosek;%=r cogcos gy +r cogsingj—rsinfg



ol ] ]
- —_rsind fi+r sindcos ¢’
o6 o ¢

O

0z

o)

06

:r‘,h3= :rSine

0
The scalar factors are h, = ‘gp‘ =1,h, =
r

The elementary arc length is given by (ds)*> =h’ (du )3 h,? (diz +hZ(du,y2
i.e (ds)? =(dr)® + ,.20°(dO\2 +r *sin’ O(d g2
The volume element is given by dv=hh,h dydu, dy i.e;dwr?singdrded ¢

Show that the spgerécal coordinate system is orthogonal curvilinear coordinate systemand
also prove that € ,& ,¢ )forma right handed basis.

Proof: We have for spherical Polar coordinate system
F=(r sifcosg W (r si@ising )4(r cosOk

Let gr,tﬂa 9(Da , be the base vectors at P in the directions of the tangents to r,8,4 curves respectively

then we have

. Ol ol ol
=—r = =X — A =2

hé, ar 1,hé, 20 r,he, 29
o 0 0l

iehé =—F =1,h2eg=%=r,h3e¢—%

We know that for spherical polar coordinate the scalar factors h; =1,h, =2 h, =rsin&

8 N . I
..er:g}—:sma COgi +sin@ sig |+ cos Ok re’gza—;:rcose Cofi +1 cosO sigh—rsin B

rsinge, =—rsing sigi +r singcosg’|

Now & -€, =sin&cos@(cos’ ¢ +sin’ ¢)—sin&cos@ = 0
€,-€ =—C0sH cosp sip+cosd cogp sip=0

a'eqa
€,-6 =—singcos¢g sip+singcosg sig=0



This shows that €,,€, and €, are mutually perpendicular. Hence spherical polar coordinates are
also orthogonal curvilinear coordinates.

Lol I ~
|

J K
Further €, x€, =|sin@ cosg sindsing cosd |=-singi +cosg|=¢€,
cos@ cog cosdsing -—sind

- . 01 0 1 .
Similarly we can show that gk€, =€ andé,6x€ =€, whichshows that (e,e,e )form aright
handed basis.

Coordinate transformation with a change of basis:
To express the base vectors e1ez,esin terms of i, j, k

We can use from matrix algebra, if Y=AX then X=A™Y provided A is non singular.

1) Cylindrical polar coordinates (e,. eq. e;)

We have for cylindrical coordinate system
€p= COSQItSIngj, €, =-sin@j +cosei; e=k............ (1)

This gives the transformation of the base vectors in terms of (i,j,k)

e, cos¢g sing Of]i
1) Can be written in matrix foym,, |=| —sing cosg 0/]]
€ 0 0 1|k
cos8 - sin¢ Olfe,
On inverting ,we get | j | =| sin cosgo O (a)
k 0 0 1|le,

I=cos@ep-singe, ; j=sin@e,+ coseey, K=e;
This gives the transformation of (i,j,k) in terms of the base vectors(e,,eo,€z).
2) Spherical polar coordinates:
We have er = sinfcosi + sinfsingj + cosbk
€9 = cosBcos@i + cosBsingj + sinBk

€= -sinQi + cosQj




This gives the transformation of the base vectors in terms of (i,j,k)

e singcos¢g sing sig cosd || i
Writing in matrix form| g|= |[sin@in ¢ co0s& sip CoSe | |]
e, —sing cosg 0 k

Inverting the coefficient matrix,

i sindcos¢ cosdcosg —sing||e,
we get| j | =| sin@sing cos@dsing COSp ||€, |........... (b)
k cosé —-sing 0 e

i singcosg cos@cosg —sing
j=singsing cosdsing COSgp
k cos¢ —sind 0

This gives the transformation of (i,j,k) in terms of the base vectors (er e, €o).

3) Relation between cylindrical and spherical coordinates
Now from (a) and (b)
cosg -sing 0f|e, singcos¢ cosdcosp —sing | |e,

sing cosp Of|e, |=|sindsing cosfsing cosp ||e,

0 0 1f|e, coséd —-sing 0 e,

Each of the matrices are invertible, therefore we get

e, | [cosg —sing O] [sinfcos¢ cosfcosg —sing]|e,
e, |=|sing cosp O0|=|sindsing cosdsing cosg ||e,
e, ] | O 0 1] cosd —-sing 0 e,
e, ] [0 cosd 07]]e,
e, |=| O 0 1|e,
e, | [cos@ —sing 0]|e,

e, sindcosg sindsing cosd || cosg —sing O]fe
similarly| g|=|sin@in ¢ cosésing cosg ||sing cosp Of|e
e

I

P

’ —sing cos ¢ 0 0 0 1]|e,



sin@ 0 cosé@ e,

cos@ 0 —sing e,

0 1 0 e,

Thisgives e =6 e +0e,

e=0e ,—0e apde =g

o

These two results give us the relation between cylindrical and spherical coordinates bases and
vice versa.

PROBLEMS:
1. Express vector f=2yi-zj+3xk in cylindrical coordinates and find f,, f, f2.
Sol:The relation between the Cartesian and cylindrical coordinates given by
X=pcosQ,y=psing,z=z
i=cospe,-singe, ; j=Siney+ cospey, K=e;.
We have f=2yi-zj+3xk
= 2y(cosge, - sinpe,) - z(sinpe, + cospey) + 3X(€z)
= 2psing (cosee, - singep) - z(singpe, + coseey) + 3 pcoso (€2)
f= (2psingcose - zsine)e, - (2psin2 ¢ + zcosQ)e, + 3pcospe;
Therefore

o =2psinpcoso - zsing ; f, - -2psin’ ¢ + zcosg ; f; = 3pcose.

2) Express the vector f=zi-2xj+yk in terms of spherical polar coordinates and find fi, fo, fo,

Sol: In spherical coordinates, we have

er= SinBcosoi + sinBsingj + cosbk ......... (1)
g9 = CosbOcosi + cosBsingj - sinbk ......... (2)
€ = -SinQi + cosQj ......... (3).

The relation between Cartesian and spherical coordinates



MODULE -5
LAPLACE TRANSFORM

INTRODUCTION

= Laplace transform is an integral transform employed in solving physical problems.

= Many physical problems when analysed assumes the form of a differential equation

subjected to a set of initial conditions or boundary conditions.

= By initial conditions we mean that the conditions on the dependent variable are specified
at a single value of the independent variable.

= |f the conditions of the dependent variable are specified at two different values of the

independent variable, the conditions are called boundary conditions.
= The problem with initial conditions is referred to as the Initial value problem.

= The problem with boundary conditions is referred to as the Boundary value problem.

2
Example 1: The problem of solving the equation d’y 4 dy . _ Xwith conditions y(0) =
dx*  dx

(0) = 1 is an initial value problem.

2
Example 2: The problem of solving the equation Sd_zl + ZQY 4 Yy_cosx with y(1)=1,
dx dx

y(2)=3 is called Boundary value problem.

Laplace transform is essentially employed to solve initial value problems. This technique
is of great utility in applications dealing with mechanical systems and electric circuits.
Besides the technique may also be employed to find certain integral values also. The
transform is named after the French Mathematician P.S. de’ Laplace (1749 — 1827).

The subject is divided into the following sub topics.



LAPLACE TRANSFORMS

Definition and Transforms of Convolution Inverse Solution of
Properties some functions theorem transforms differential
equations
Definition:

Let f(t) be a real-valued function defined for all &0 and s be a parameter, real or

complex. Suppose the integral J.efst f (t)dt exists (converges). Then this integral is called the
0

Laplace transform of (t) and is denoted by L[f(t)].

Thus, L[f(H)] = I e * f(t)dt (1)
0
We note that the value of the integral on the right hand side of (1) depends on s. Hence
L[f(t)] is a function of s denoted by F(s) or f(s) .
Thus, L[f(Y)] = F(s) (2

Consider relation (2). Here f(t) is called the Inverse Laplace transform of F(s) and is
denoted by L™ [F(s)].

Thus, LT [Fs)] = () (3)
Suppose f(t) is defined as follows :
fi(t), O<t<a
f(t) = |f(t), a<t<b

fa®>b

Note that f(t) is piecewise contihuous. The Laplace transform of f(t) is defined as



LIf] = [e* f()
0

a b 0o
= fef(Ddt+ [ HR)dt+ [e * f (D)t
0 a b

NOTE: Ina practical situation, the variable t represents the time and s represents frequency.

Hence the Laplace transform converts the time domain into the frequency domain.

Basic properties

The following are some basic properties of Laplace transforms:

1. Linearity property: For any two functions f(t) and {t) (whose Laplace transforms exist)

and any two constants a and b, we have

L [af() + b (] = a L[f(H)] + b L[ (9]

Proof :- By definition, we have

L [af (t) + bo()] = wjest k() by (1) dt= ao]e‘s‘ f(t)dt+b°]e‘st¢(t)dt

=aL[f()] + b L[4(1)]
This is the desired property.
In particular, for a=b=1, we have
L [f(®) +¢(0] = L[FO] + LL6(0)]
andfora=-b=1,wehave L[ f(t) -o(t)] = L [f(t) ]- L[&(D)]

2. Change of scale property: If L L[f(t)] = F(s), then L[f(at)] = EF[SJ where a is a
a a/’

positive constant.

Proof: - By definition, we have

L[f(at)] = J. e * f (at)dt (1)
0



Let us set at = x. Then expression (1) becomes,

L f(at) = 10]e{ﬂx f (x)dx
a 0

This is the desired property.

3. Shifting property: - Let a be any real constant. Then
L [e™f (t)] = F(s-a)

Proof :- By definition, we have

L [e*f (t)] = wfe“ [at f(t) Et
0

_ [e 2 (nyat
0

= F(s-a)

This is the desired property. Here we note that the Laplace transform of e* f(t) can be written
down directly by changing s to s-a in the Laplace transform of f(t).

LAPLACE TRANSFORMS OF STANDARD FUNCTIONS
1. Let a be a constant. Then

st 4at _ —s-a)t

0

e—( s-a)t

T —(s-a)

1
, S—a’

s>a

Thus,



LI(e™)]

w |

—a

In particular, when a=0, we get
1
LQ)==- . s>0
s

By inversion formula, we have

L_l L — eat L_l l — eat
S—a S
-at 1= -
2. L(cosh at) = (L&J =5 e ¢ re ™ dt
2 0

~ loj'l(sa)t + ef(s+a)tdt -
2 -

Let s>|al. Then,

1 e_( s a)t e_( sya)t e
L(coshat) =+ + S
2

2| -(s—a) —(s+a)],

S

Thus, L (cosh at) = , S>|a
(coshat) =~ ol

and so

pat —eiat j a

L
3. L (sinh at) = ( 5 = , s> |al

Thus,



a
L (sinh at) = s 2g2° s> |a

and so,

L‘l[ 1 ]:sinhat

242 a

4. L (sin at) = Ie’“ sin at gt
0

Here we suppose that s > 0 and then integrate by using the formula

ax

[e™sinbxdx = bsinbx—bcosbx

a’ +b?
Thus,
L (sinh at) = a , $>0
s ¥a’
and so

_ 1 sinhat
1 =
I 2+ 42 a

—st
5. L (cos at) = Ie *cosatdt
0

Here we suppose that s>0 and integrate by using the formula

ax

e
a’? +b?

[e* cosbxdx= fcosbx +bsinbx

S
Thus, L (cosat)= —> 5, s>0
( ) s 232



= cosat

-1
and so L
Q 2|_ 92

6. Let n be a constant, which is a non-negative real number or a negative non-integer. Then

Ly Jetndt
0

Lets>0andsetst =X, then

Lt " ¥ je[g) %: 1+1 fe "x"dx
0 0

Sn

The integral.[e_xxndx is called gamma function of (n+1) denoted by I"(n +1). Thus
0

I'(n+1)

on 1

L(t") =

In particular, if n is a non-negative integer then ['(N +1) =n!. Hence

n!

L(t") =

in

and so

L. 1 £n t"

o' - I'(n+1) or ;

as the case may be

Application of shifting property:-
The shifting property is
If L f(t) = F(s), then L [e*f(t)] = F(s-a)

Application of this property leads to the following results :



. L(e* coshbty [(coshbt)ls_a=[ 5 ) s—a

@ Th? T (s-a)l -
Thus,
s—a
L(e¥coshbt) = —————
(Ecoshbh) = (s "a) —
and
_ s—a
|_ 1 _ at
(5_a) s — e™ coshbt
5 L(e* sinhbt) = a
(s—2a)" -2
and
_ 1
L 5_a) — e*sinhbt
_a)? 2
s—a
5 L(e™ cosbt) =
) (S — a)2 +h2
and
_ s—a
|_ 1 . eat
G ay 12" cosbt
b
L(e* sinbt) =

and



E 1 _ e%sinbt

(s—a)’—p2 b
I'(n+1) n!
t
5. L(ea tn) = m or (S _ a)n+1 as the case may be
Hence
L_l 1 pat{n n!

(s—a)™" - T(n+1) @ (s—a)y the case may be
Examples :-
1. Find L[f(t)] given f(t)=t, P<t<3
4, t>3

Here
o0 3 -
L[f(D)]= jeist f(t)dt = -’.e*Sttdt_F ".4e75tdt
0 0 3

Integrating the terms on the RHS, we get

1
i =, +i2(1—e35)

S Q

This is the desired result.

2. Find L[f(t)] given L[f(t)] = sin2t, 0<t < =&
0, t>n

Here

L[F()] = jeStf(t)dt+IGStf(t)dt _ Ie*“sin 2tdt
0 T 0



T

e—St 2 B
:{ dssin 2t2 coszﬁ] - I_e*ﬂs_

2
s*+4 0 2+4

This is the desired result.

3. Evaluate: (i) L(sin3t sin4t)
(i) L(cos®4t)
(i) L(sin®2t)

(i) Here L(sin3t sindt) = L [E (cost _ cos7t)]
2

1 _
_E |-(005t) —L(cos7t) , by using linearity property

1{ s s }_ 24s
2l 2 +1 2+49] (s F1)(s %49)

(i) Here

1
L(cos?4t) = L[ (14 cos8t)}:1{1+ s }
2 2ls .2+64

(1) We
have

35in9—sin39-
sinfe =4 ¢ -
For & =2t, we get

1 .
sin® 2t = " €sin2t _sin6t

so that

. 1| 6 6 48
L(sin® 2t) == — =
( ) 4L2 +4 2 +36} (s® +4)(s* +36)

This is the desired result.



4. Find L(cost cos2t cos3t)
1
Here cos2t cos3t = E[0035t +cost]

so that

1
cost cos2t cos3t = > [cos5t cost 4 cos? 1]

= 1—[cos 6t +Ccos4t +1+cos 2t]
4

+ +=+
2+36 2116 s

Thus L(cost cos2t cosSt):%[ s s 1 s }

2+4

5. Find  L(cosh?2t)

We have

1+cosh28
2

cosh? @ =

For 6 = 2t, we get

Coshz 2t = m

Thus,

L (cosh? 2t):1[1+ > }
2|s 2 -16

6. Evaluate (i) L(~/ t) (ii) E_i) (iii) L(t*?)
Jt

We have L(t") = I(n+1)

n+l
S

] 1
(i) For n= > we get



1
L(t"2) :r_% -~

53/2

Since I'(n+1) =nI(n), we have F[% +1) = %F[JZ-)

Thus, L(/t)= Lf
254
(ii) Forn = E we get

. )
L(t 2 = _}/2

(iii) For n = E we get
2

r[_ll
Lo o2 _=2VT

A

S 2 S 2

7. Evaluate: (i) L(t) (i) L)

We have,

n!
Sn+l

L (t") =

(i) Forn =2, we get

L@®=_22

3 3

S S

(i) For n=3, we get
L@y=_2°

4 4

s
8. Find L [e™' (2cos5t — 3sin5t)]

S



Given =

2L (e cos5t) — 3L (e sin5t)

. €+3° 15 . .

2 5 — 5 , by using shifting property
(s+3)°+25 (s+3)°+25

- 279 , on simplification
2 +6s+34

9. Find L [coshat sinhat]

~ —_

eat + e—at

Here L [coshat sinat] = L{T*Sin at

1 a . a |
2| (sa)’+.2 (s+a) +.2 ]

B a(s® +2a%)
[(s-a)?+a’ J[( sa)’ +a?]

, on simplification

10. Find L (cosht sin®2t)

Given

e ppongms)

1 ~
= 5 l L€ sin2t —L(e'sin6t) +3L(e ‘sin2t) — L(e"sin 6t)]

_1 6 6 R 6
8| (s1°+4 (s-10+36 (s+1)°+4 (s+1)°+36
| R S S SR
40 (s1P%+4 (s-1°+36 (s+1)°’+24 (s+1)°+36



5
11. Find L(e4tt/2)

We have

r'(n+1)

L(t") = == Putn=-5/2. Hence
s

L5 = T(=3/2) N

L Change s to s+4.
-3/2
3S 3/2

N

L e74tt75/2 _
Therefore, ( ) 3(3_'_4)73/2

Transform of t" f(t)

Here we suppose that n is a positive integer. By definition, we have
Fs)= [e™ f (Ot
0

Differentiating ‘n’ times on both sides w.r.t. s, we get

F(s) = j - (t)dt
ds’

Performing differentiation under the integral sign, we get

I Ee)_ O]'(_t)” e f (t)dt
ds"

Multiplying on both sides by (-1)" , weget

()" an F(s) - dj'(t "f ()e-st gy = LI (D], by definition
ds”

Thus,

L [t"f(t)]= (1) "F(s)

ds"

This is the transform of t" (t).




Also,

L‘{ a’ F(S):l =(-D"t"f(t)
ds"

In particular, we have

L[t f(t)] :_%F (s) , for n=1

d
L[ f(t)]=___F(s), forn=2, etc.
ds?

Also, 1{11 F(s)} =—ti(t) and
ds

*1iFS _+2f (t
L{dsz ()} £ 1)

Transform of @

We have, F(s) = [e™ f (t)dt
0
Therefore,

[ F(s)ds = O]T"fcﬁ’t f (t)dt}ds
$ s 0

= D]f (t)ﬁe‘“ds}dt

| a

- Tf(t){

e_st
—t



] )
Thus, L(‘f—fﬂ) = O]F (s)ds

f (1)

This is the transform of t_

Also, I—10}F(s)ds _ ?

Examples :

1. Find L [te™ sin4t]

: 4
We have, L[e" sindt]= ————
[ ] (s+ 1)+16

So that,

L [te" sindt] = 4 a1
ds | 2 +25+17

(s ¥2s+17)

2. Find L (t* sin3t)

3
s %9

We have L (sin3t) =

So that,
L (¢ sin3t) = d_z(ij
ds’\s %9
= 6d S
~ds (s39)°
_18(s %3)
T (s %9)




—t .
3. Find L(e S'nt]
t
We have

1
(s+1)* +1

e'sint \_ ¢ ds a1 5
Hence L = =pRpn " (s+1),
( t J OJ.(S +1)° +1 E ( )]

L(e " sint) =

= %—tan’1 (1) =cot *(s+1)

4. Find Eﬁtﬂl) Using this, evaluate L[smat)

We have L (sint) = .
s 31
sint o ds R
_ SNt _ - fnts
So that LI[f (1)] E t J ;[Sz+1 bnis?

%—tan Ts=cot s =F(s)

Consider

L(sm atJ . I_[sm at] _ alf (at)
t at

1
- a[ F(SH in view of the change of scale property
a \a/|’

= cotl[i)
a



5. Find I_[cosat —cosbt}
S S
We have L [cosat— cosbt] = —
e Fa 2 o FR2

(7]

«© S
So that L[M:‘: J.|: 2 2 :|ds
t S +a Fan b2

S

1
=1 Dlggl S ¥PT
2 o9 s 3a’
:Elog s &b’
2 s 3a’

6. Prove that J‘e -3 smtdI_

We have
d
J.e*tt sintdt =L(t sint) = —_— L(sint)= _ d[ ! }
ds ds| .2 +1
__ 25
(s 51)°

Putting s = 3 in this result, we get

Je%‘t sintdﬂti
0 50

This is the result as required.



Consider

Li= [e T (Dt
0

_ Ifst f(t)ff _ J'(_s)e*St f (t)dt by using integration by parts
0

= L&(e =) - f(0) ][ sLf (t)

=0 -f(0) +s L[f(1)]
Thus

L f (t) = s L[f(t)] - f(0)
Similarly,

L f"(t) = s°L[f(t)] —s f(0) - £'(0)

In general, we have

LE" (1) = " LF(t) — s"*F (0) = S" 2 "(0) — ....... — "}(0)

Transform of jf(t)dt
0
Leto (=T (t)dt. Then ¢(0) =0 angs’ (1) = f(t

Now, Lo(h= [eg(t)dt

. e_st T e o € t
-{¢<t)_—sl - Oj¢ () —dt




- (00) Jiwjf (e-sdt
S 0

Thus, L[ =?UM
(tydt

[ 1 t
Nm'-LL“®Q=ﬁamt

Examples:
1. By using the Laplace transform of sinat, find the Laplace transforms of cosat.

Let f(t) = sin at, then Lf(t)= —2

« ZF 32

We note that
f" (txacosat
Taking Laplace transforms, we get

Lf'(t) = L(a cosat) = aL(cosat)

or L(cosat) = £ 1§ '(t) = : Bf (O —1(0)_
a a

Thus

L(cosat) =

Q 22

This is the desired result.

2. Given {2\/1}= L , show that L{i}zi
T Q3/2

Jat ] s
Let f(t) = 2\ﬁ, given L[f(t)] =™

o312




2 1 1
Jr 2t Ja

Taking Laplace transforms, we get

LF" (t: L{%}

We note that, f'(t) =

Hence

Lbl_yﬂ = Lf’(t) = sLf (t) - f (0)

Thus L[%} = %

This is the result as required.

' ycosat _
3. Find L j(—COSbt]dt
t
0

cosat—cosbt] 1 [s %rbz]
2

Here L[f(t)] = E i Sg'_—az

t
1
Using the result L Jf (t)dt = S Lf(t)
0

t

cosat — cosht 2 2

We get, L j-( ]dt = img[s b }
0 t 2s %

t
4 Find L J.te*tsin Atdt
0



. 8(s+1)
L " sin4t
Here k 3 (s % 2s+17)

8(s+1)
s(s F2s+17)

t
Thus L j'te*t sin 4tdt =
0

Laplace Transform of a periodic function
Formula: Let f (t) be a periodic function of period T. Then

LF (t) =—L— [e*f ()t

l_e ST 0

Proof :By definition, we have

L= [ f(Bdt= [~ f(u)du
0 0

T (n)T

0 nT

w (M+)T
=Y [e* f(u)du

n=0 nT
Letussetu=t+nT, then
w T
i = 2 fe U f(t+nT)dt
n=0t -0
Here
f(t+nT) = f(t), by periodic property

Hence

Lf (t) = i(e T )I_[est f (t)dt

2T
= fe fudu+ e fWdu+....+ fo ' f(u)du+..
T



1 1
) [1 e st }J.e " f (t)dt, identifying the above series as a geometric series.
- 0

Thus L[ f(t)] = [ 1_25T J fe (ot

This is the desired result.

Examples:-
1. For the periodic function f(t) of period 4, defined by f(t) :{3t, 0<t<?2

6, 2<t<4
find L [f(t)]
Here, period of f(t) =T =4
We have,

T

L £(t) = [ﬁ | je U (t)dt

0

_ [ ! T-e“ f (t)dt

—4s |
l-e ;

1 2 4
- { 3te 'dt + '[6e5tdt}
Te ® 2

0

1 o st 2, o st st )4
RN —| = + o 86—
:1_e74s |:[_SJ:|O Jl_sdt F{SJZ

Thus,

3(1 - eizs — 2S€ 4s \
S2 (1* e 4s \

L[f(t)] =




3. A periodic function of periodz—j"T is defined by
(42}

f (O Esinot &t<Z
42

0, Z<t<?Z

[ o)

where E ando are positive constants. Show that L f(t) = (s 2 W2 Yde~

Sol: Here T:Z—E. Therefore
W

1 27w
U®Z;§?§@‘F“fmm

0

1 7lw

_—— |Ee *sinwtdt
- —s(27/ w)
1-e° 5[

l-e s 7

—st
- E [ ¢ - %ssina}t—a)cosa)tj]

2t

E w(e™'” +1)
- 1_e—s(2;r/c9) SZ +Cl)2

Eo(l+e™'?)
= (1_efs:r/w)(1+efsx/w)(82 + w2y

Ew
- (1—e*5’”“°)(s2 + @2y

This is the desired result.

3. A periodic function f(t) of period 2a, a>0 is defined by

f(t)=Jl' E, &t<a

Ew

zl

0

@

-7

s/wy




-E, a < £ 2a

E
show that L [f (t)] = _tanh[%
S

2
Sol: Here T =2a. Therefore L [f (t)] = ]__eﬁ IeSt f (t)dt
0

l a 2a
= ——w| [Ee™dt+ [~ Eedt
_1e—2as ; ’

— E l_e—sa}(e—Zas _e-as ):|

S(l — € 2asy

ko]
=———  Rh€ _
S(1—e 2asy

_ E(l—e_aS\z
s(1-e” ®)Ee as

B E Pas/Z —eiasl2
S | pas/2 +e_a5/2

:Etanh(ﬁ]
S 2

This is the result as desired.

Step Function:

In many Engineering applications, we deal with an important discontinuous function H
(t-a) defined as follows:

{O, Ea
H (ta) = L1, t>a

where a is a non-negative constant.



This function is known as the unit step function or the Heaviside function. The function is
named after the British electrical engineer Oliver Heaviside.The function is also denoted by
u (t-a). The graph of the function is shown below:

Note that the value of the function suddenly jumps from value zero to the value 1as t —» a
from the left and retains the value 1 for all t>a. Hence the function H (t-a) is called the unit step
function.

In particular, when a=0, the function H(t-a) become H(t), where
0, KO

Ht) = 1,t>0

Transform of step function

By definition, we have L [H(t-a)] = J.eﬁt H (t —a)dt
0
= [e* 0dt+ j e (1)dt
0 a

e —as

S
. 1
In particular, we have L H(t) = S

—as

} =H (ta) ang Ll(l) =H(t)

| e
Also, L*
S

S

Unit step function (Heaviside function)

Statement: - L [f (t-a) H (t-a)] = ™ Lf(t)

Proof: - We have



L [f(t-a) H(t-a)] = o]f(t —a)H (t—a)e “'dt

= fe~ f(t-a)dt
Setting t-a =u, we get

L[f(t-a) H(t-a)] = _[e’s("””) f (u)du
0

= e L[f(1)]
This is the desired shift theorem.
Also, L™[e™ L f(t)] = f(t-a) H(t-a)
Examples:
1. Find L [e"? + sin(t-2)] H(t-2)
Sol: Let f(t-2)=[e" +sin (t-2)]
Then f (t) = [ + sint]

so that Lf@=_1 , 1
s-1 2+1

By Heaviside shift theorem, we have

L[f(t-2) H(t-2)] = e Lf(t)

Thus,

L[e“? tsin(t—2)]H @2)=e 2|1 42
s—-1 <2+1

2. Find L (3t* +2t +3) H(t-1)

Sol: Let f(t-1) = 3t* +2t+3




so that
f () = 3(t+1)* +2(t+1) +3 = 3t> +8t +8
Hence

Lrfm1=2, 2,8

S S S
Thus
L [3t% +2t +3] H(t-1) = L[f(t-1) H(t-1)]
=e” L[f()]

5[6 8 8}
=€ | —+—+-
<2 S

Q3

3. Find Le'H (t-2)

Sol: Let f (t-2) = e, sothat, f(t)=e™?

672
s+1

Thus, L [f(t)] =

By shift theorem, we have

e -2(s+1)

L[f(t—2)H (t-2)]=e *Lf(t) = 7

Thus

e -2(s+1)

LFtH@2) L

s+1

f1 (A)t<a
4. Let f (1) = {fz t, t>a

Verify that f(t) = f1(t) + [f2(t) - fa(0)]H(t-a)

Sol: Consider



HOF  2(t) — fu(t)H(t-a) = ( fu(t) + f2 (1) —fu(t), t>a

0 , t<a

= [f2(t), t>a
fi(t), t<a =f(t), given
Thus the required result is verified.

5. Express the following functions in terms of unit step function and hence find their
Laplace transforms.

1. f) = f, 1<«£2

44 ,t>2

Sol: Here, f(t) = t? + (4t-t’) H(t-2)

Hence, L ()= 2, L4t —t% )H (£2) i)
SS

Let ¢ (t-2) = 4t —t?

so thatd(t) = 4(t+2) — (t+2)°= -t*+ 4

Now, L[#(t)] = —Si 3+§

Expression (i) reads as

2 _
Lft)= —+Lpt-2)H #2)_
2s

- £+e25£ﬂ_3]

Q3 S 3

This is the desired result



2. cost, 0<t<m
@) = { sint, t>n
Sol: Here f(t) = cost + (sint-cost)H(t-n)

S

s 31

Hence, L[ f(t)] = + L(sint —cost)H (t —z)  (ii)

Let ¢ (t-m) = sint — cost

Then ¢(t) = sin(t + m) — cos(t + m) = -sint + cost

1 S
+

so that L[ &(t)] = —
[d)()] 2+l 241

Expression (ii) reads as L [f(t)] = S S'#l+ L I5(t—7r)H(t—77:):
S LemLg(y
<2+

UNIT IMPULSE FUNCTION

Definition: The unit impulse function denoted by 8 (1 — a) is defined as follows

8(t-a) = limd,(t—a), a20 (1)
e—0
[0, if t<a
L ..
Where B lt=d):= il @Rigate A2)

I
| 0, if t>a+e
The graph of the function § (1 - a) is as shown below:
45, (t-a)

1

3

Fig. 7.2

Laplace transform of the unit impulse function



J e, (t—a)di

0

Consider L1, (t-a)}

i B il o F
¢ (0)d:+j e —dr+ J’e (0) dt

a+e

1"
P —-C

I

|

| —
—

C)

+

r

—

1

B
Rl

£S5
-a[l—e—cjl
= €
£s
lim L5, -(t-a)} = e lim{"" ]

ie., L{d(t-a)}
If a

ew (Using L" Hospital Rule)
OthenL{8(n)) =1

1. Find the Laplace transforms of the following functions:

(1) (2t=u(t—2)

Solution
(1) Now 2A-1=2(t-2)+3
. Using Heaviside shift theorem, we get
L{-Du(t-2)} = L{[2¢-2)+3u(t-2))
= e L {2t+3) Replacing t — 2 by ¢
= e 2L +L(3))

= e-Z: I—%—-"é}
P

(2) Cuft—3)

2 _ e 2
Solution: £o=-3)+3]



= (t-37+6(-3)+9
Then L{fu(=3)} = L{[(t-3"+6(-3)+9]u(t-3)}

Replacing t — 3 by ¢

= e L{ + 61 +9)
Using Heaviside shift theorem
= e (L)Y +6L(N+9L(1))

(2 6 9]
= f_l’{—3+—2+—}-

s 5 5

, Find L[28(t — 1)+ 38(t — 2) + 48(t + 3)]-

Solution. We have

2LO(t—-1)+3L8(t-2)+4L8(t+3)
26 + 3¢ + 4. Since L&(t—a)=e™

Find L [cos h 3t & (1-2)].

Solution

|
cosh3td(t-2) = 5{8"-{-8‘3’}8{:—2)

Lcos h3t8(1-2)]

{e[e 5(-2)]+ L[ 8- 2]

= shifting s-3—>s
s+3—s
= %{L[S(' -2)]1—9:-3+ L[8(‘ - 2)]!—”*3}

|
hJI'—-

€

V)%
{

As-3) +e—2(3+3)}

Llcosh3t8(t—2)] = cosh6e =



The Inverse Laplace Transforms
Introduction:
Let L [f (t)]= F(s). Then f(t) is defined as the inverse Laplace transform of F(s) and is
denoted by L™ F(s). Thus L™ [F(s)] = f (t).
Linearity Property

Let L™ [F(s)] = f(t) and L™ [G(s) = g(t)] and a and b be any two constants. Then
L™ [aF(s) + b G(s)] =a L™ [F(s)] + b L'[G(s)]

Table of Inverse Laplace Transforms

F(s) f (B=L7F(s)
oso 1
S
. sa pat
s—-a
S Cos at
sO
o
5?2 t32
1 Sin at
, §0
S2 +a2 a
Sin hat
s >|a|
s az a
S
s |
>|a 5232 Cos hat
l ’ §O ti
Sn+1 n!
n=0,123,..
T 50 "
Sn+1 l—“] +1:
n>-1




Example
1. Find the inverse Laplace transforms of the following:
1 s+b 2s =5 4s-9
5 +

ii iii
2s—5 ()Q2+22 ( )43 +25 9-_22

(i) L [1 +s }: L [4_3_}4) Ll{#}zcos at+gsin at

Evaluation of L™ F(s — a)

We have, if L [f(t)] = F(s), then L[e*f(t)] = F(s—a), and so
LY [F(s—a)]=e™f(t) =e™ L™ [F(5)]

Examples

1. Evaluate : L{ 3 +_\ }

¢‘|‘1/4

Given = L* 36+—11}1 =3L" L I
€1 €1° €3



_3e-" L{i}_Zet Ll[i}
s3 <

Using the formula

L‘{ ! }=t— and takingn =2 and 3, we get

+
enl

. Tty2 T143
leen:?’e_t‘“_e 't

2 3

2. Evaluate : L'l{zs;z}
s -2¢5

— e L'{ > }r3et Ll{ L }
s %4 2+4

t .
=e' cos 2t+%e sin 2t

3.Evaluate ;L !| 25+1
s +3s+1

Given =g 4| —=2=—|=2 L| ———2=— |-

’ [ S } ’ [ 1 }
=2|e? L™ —e 2 L™
-5 -5
-9 =9
-3t
=2e7[cos Jﬁti sinjﬁt}
2 2

J5



2 B5s—-4
4.Evaluate: L{&}

e« #c2-25
we have

2s 45s—4 25 %55-4
« #2-25 sC+s-2
_ 25 £55-4
Csq4s2 (-1

Then 2s%+5s-4 = A(s+2) (5-1) + Bs (s-1) + Cs (5+2)
Fors=0,wegetA=2,fors=1, wegetC=1and fors=-2, we get B =-1. Using these values
in (1), we get

2s° +5s-4 2 1

1
B+e2-25 S s+2 s-1
Hence

2
L‘1{25—+55_4} =2-e gl

g2+ Z 25

5.Evaluate : L™ {S 3 -
€+, 2+6€6+2

Let us take

4s+5 A B C
+ +

‘+1§+Q+2: ¢+1§ S+ 1s+2

Then 45+5=A(s+2) +B(s+1) (s+2)+C (5 +1)

Fors=-1,wegetA=1,fors=-2, wegetC=-3



Comparing the coefficients of s?, we get B + C = 0, so that B = 3. Using these values in

4s +5 1 3 3

- ~ \+ o
(1), we get €+12+€+2_ €+,2 €+ 1 s+2

1
Hence L™ LE o —e™|” {;L} L 3e-! L—l[_} —3e7 L F}
€+.2+€+2 o’ S S

—tet +3et — 3

3
6. Evaluate :L™ L“S—a‘*}

<3 A B Cs+D
= + +
Let o 4,4 S—a S+a 24,2

@

Hence s = A(s + a) (s> + a°) + B (s-a)(s*+a%)+(Cs + D) (s°— a%)
For s = a, we get A = ¥; for s = -a, we get B = ¥%; comparing the constant terms, we get
D = a(A-B) = 0; comparing the coefficients of s°, we get

1=A+ B+ CandsoC =% Using these values in (1), we get

<3 1[ 1 1 } 1 s
G-t 4[s-a s+a] 257+,
Taking inverse transforms, we get
3

-1
- {4s_}=l Iat 4o 4 cosat
L 4 =2
S 4_a4

1 —
S |cos hatcos _
2

7. Evaluate :L- [#}

2
g4+ +1

S _ S 1 2s
Consider <4 T<? 1 (2+5+1)1(2—5+1;_2 (2+s+1}z—s+1



(: +s+1j— (: —s+1%

i (: +S+1}2 —s+1:

N~

RN

N

il 11
_(2—S+1: (G +s+1

1 B 1
[ { l‘z‘+§ (+1)+3
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Therefore

Evaluation of L[e® F (s)]

We have, if L [f ()] = F(s), then L[f(t-a) H(t-a) = e * F(s), and so

L [e™ F(s)] = f(t-a) H(t-a)



Examples
€

(1)Evaluate: L™
¢-2°

=)

Here

a=5, F(s)= =
‘-7/4

24,3

11 1l _ett

4 6

Therefore f(t)=L'F(s) = S
6_2) S

I
—0 3

— ﬂzssz_r\g H ‘_5:

Thus
-5s
f(t—-a) Hta)

@ Evaluate: £|*" L Se
2 2
s°+1 s°+4

27 :|
@)

Given=f,{-7 Hq-7 + f, 4+ 27 H¢- 27 _

Here fi(t)=" —51—=sint
s°4+1

f,(t)=) +5S— =cos2t
> (1) L 14

2

Now relation(1) reads as
Given = sin€—7 Hq-7 +cos2d -2z Hq-2x_

—costH€—7z +cos @ Hq-27 _




Inverse transform of logarithmic functions
We have, if L f(t)=F(s), then L] € _di FC
S

L (—i F c:j ~tf (1)
ds

Hence

Examples:

(1) Evaluate: L™ Iog[ﬁj
s+b

Let F (s) = Iog(ﬁj =log€sa —log€+b _
s+b

~ 1 1
Then —2-F ¢ = {———}
ds s+a s+b

So that L™ [—i F ‘% == [_""t —e ™ ]
ds

or tfq=e™_e™

- bt

L g bt
Thus f{ =——
- b

() Evaluate L™ tan‘l(gj
S

Let F (s)-tan 1[2}

Then —iFG}{ a ]

ds Q2 T 52



or L—l[_ilz ¢ j _sinat sothat
ds

or t fqt=sinat

f (:t: sin at

a

Fs
Inverse transformof | ——
S

A 1
(1) Evaluate: L [ 5 ﬂ

so that

Let us denote F € =
2 + 42

f (t) — Lle ‘ } Slnaat

. 1 CECC tsinat
2
ssa? s 0 a
(—cosat _
T
Convolution Theorem:
If L'F(s)} = f() and L YG(s)} = gln)

!
then LY (F(s) G(s)} = [('f () g (t —u) du
Proof. Since L'"Fis) = f() and L'"{G(s)}) = g(D)

Lifo)= [ e fit)a

we have F (5)



and G(s) = L{gn} = '[: e g(t)dt
To prove (1). it is sufficient to prove that

L{_ jo'f(u)g(r-u)du} - F(5) GG -

Consider

L“(:f(u)g(t—u)du}- = J: e “(:f (u) g(r—u)du}- dt

, j;o j'o e f(u) g (t—u) dude ()

AU AU

t=0 )

: ;.

, |
,////7/////%/ ,f///// /2

i}
0 u=0 t 0 u=0 t

Fig. 8.1 Fig. 8.2

The domain of integration for the above double integral is from u =Otou=tand t =0 to
t = oo which is as shown in Fig. 8.1.

The double integral given in the R.H.S. of equation (3) indicates that we integrate first parallel
to u-axis and then parallel to f-axis.

We shall now change the order of integration parallel to {-axis the limits being t = uto f = o
and parallel to w-axis the limits being u = 0 to u = .

~. From equation (3), we get

L-{J;f(u)g(t-u)du} B J: f(u){fe’“ g(t-u)dt}du

- L‘ flu)e ™ J‘f e -4 g(t-u) dt} du
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Substitute  — u = v so that df = dv
when t = u, v=10, and when f = oo, v = o

L [ 1 () gt ~u)

= G(s)J: e

= G(s)- F(s)
L {F(s) G(s)} =

This completes the proof of the theorem.

Solution
|
(i) Let F(S) - 2
(s+1)°
Then L' F(s) = L'

|

(s
L'{G(s)) = L { }

hav

Then by Convolution theorem. we

I:f(u)e'“{f e

Jm fu)e ™ G(s)du
0

1)"

* f(u) du

[ £ ) gt - )

G(s) = —2

el g(v)dv}du

t e ' = f(1) (say)

= g (1) say

L' (F(s) G(s)) = _[Of(u)g('-u)du

= 3
1
= ]sz(s+l)2

= _r ue *(t—u)du
o

= J: (ut —u®)e

Using Convolution

theorem find the

inverse laplace

transforms
I

53[5+I}3



- 1
() Evaluate: L™ [—2]

s sa
. 41 ,
Solution : we have L 5 =€ aty
s+a

1 t
Hence L' ———— = Ie‘att dt
S ga 5

=i2[1— e & Hat } on integration by parts.
a

Using this, we get

1 1
32

Lt = tj[l— € 1+at |dt

2 S+a as g

=%[at te™ +2 ‘eat—l]

Inverse transform of F(s) by using convolution theorem :
We have, if L(t) = F(s) and Lg(t)= G(s), then
L [f(t g(t) FLf(t)-Lg(t) =F (s)G(s) and so

G EEGE R o= [f GudCH

Thisexpressioniscalledthe convolutiontheoremforinverse Laplacetransform



Examples

Employ convolution theorem to evaluate the following:

a 1
L {(+a}+b}

1
Sol:Let us denoteF(s) = oG
s+a s+b

Taking the inverse, we get f(t)=e™,g(t)= bt

Therefore, by convolutiontheorem,

L 1 U _oalf -
= |€atuy buy,, =¢€ aabuqg,,
s+a s+b ; ;

—eiat a abt —1
a-b

efbt _ efat
a-b
@ 1! ;?‘
(2 +a2
1 S
Sol: Let us denote F(s) = ,G(s) = Then
2 T 42 2+ 42

f(t) = Sma_a]‘.’ g(ty=cosat

Hence byconvolution theorem,

t

1.
L'——=— = [=sina +u cosaudu

2+ 42 g a



at 2au

by using compound angle formula

_tsinat

t.sin  atsin
:EJ‘ du,
a; 2
l t
_Ylusin alt_cos at 2au
2a —2a .
AL ————
¢ 1{:+1
Sol: Here
1 S
F(s)=——, G(s) =
©) s—-1 (s) 2 +1
Therefore
f(t) = e',g(t) = sint

By convolution theorem, we have

= Ie““ sin u du

1
L ¢ 151

-

:et e_
2

_% [—t ¢sint—cost — ¢1j:% lt —sint—costj

2a

u t

¢ sin u—cosui

0

LAPLACE TRANSFORM METHOD FOR DIFFERENTIAL EQUATIONS

As noted earlier, Laplace transform technique is employed to solve initial-value

problems. The solution of such a problem is obtained by using the Laplace Transform of the

derivatives of function and then the inverse Laplace Transform.

The following are the expressions for the derivatives derived earlier.



L[f' (t)]=s L f(t)-(0)
L[F(t) =s LF(t)-sf(o)-f(0)

L[f () =s® L(t)-s? f(0)-s f (0)-  0)

! _ -t _
1. Solve by using Laplace transform method y'ty=te . y(0)=2

Sol: Taking the Laplace transform of the given equation, we get

—~ - —~ 1
L W&yt LyC=——
¢+1j
~ ~ 1
€+1 L Wt-2= =
¢+1j
so that
~ 25 %34s+3
Ly =——

¢+ 1 E
Taking the inverse Laplace transform,we get

2
Y ‘T_ L_l uﬁ

€¢+1°

i L_{z( §1_1° ,4¢gl_ 33}

¢+1°

2,1
s+1 ¢+1,§

:% 'e(z +4:

This is the solution of the given equation.

2. Solve by using Laplace transform method:

y"+2y'—3y =sint, y(0) =y’ (030



Sol: Taking the Laplace transform of the given equation, we get

2Ly - sy©) - y'(0) +2[ Lyt) - y(0) F3 L y(t) = -

Using the given conditions, we get

1

L y(t)fs%2s-3

y()[ }Qz-i-l
or

1

L y(t) = —

Yo ¢- W(s3+1
or

g 1
=L {t— (3 Lz +1J

A B CS+D}
_l_

=L" +
1s-1 s+3 2+1

s 1
1 1 1+105

1
8 s— 140 s+3 2 +1

=17

by using the method of partial sums,

1
8¢ 40 10 -

Thisistherequiredsolutionof the given equation.

3) Employ Laplace Transformmethodtosolve theintegralequation.

f(t)=|+tjf@in(w§u



Sol: Taking Laplace transform of the given equation, we get

t
Lf(t)=%+L_[f u sin +u du
0

By using convolution theorem, here, we get

1
Li) =+ LF® . Lsint =14 5O
S S 2+1
Thus
2 +1 [ 2+l )
L ()= or ft)=,74S—|=1+L
3 3 2

S

This is the solutionof the given integral equation.

2
@ A particle is moving along a path satisfying, the equation_er6%Jr 25x — 0 where
dt dt
x denotes the displacement of the particle at time t. If the initial position of the particle is atx =20
and the initial speed is 10, find the displacement of the particle at any time t using Laplace transforms.

Sol: Given equation may be rewritten as
X"(t) + 6X'(t) + 25x(t) =0

Here the initial conditions arex(0) = 20, x'(0)= 10.
Taking the Laplace transform of the equation, we get

L, ()2 +65+25|-20s— 136-0 or

L () = 20s +130
2 +65+25

so that

20s +130
s+3°+16

X(t) =1 1[



R

€,2+16

_po1Y St o 1
¢+3 116 ¢+3_ %16
=tsin4t

e
=20e * cos4t+35

This is the desiredsolutionof the given problem.

(5) A voltage Ee™ is applied at t = 0 to a circuit of inductance L and resistanceR. Show that the

_ . E R
current at any time t is e —e t
R -aL

Sol: The circuit is an LR circuit. The differential equation with respect to the circuit is

L—YRi=E@®
dt

Here L denotes the inductance, i denotes current at any time t and E(t) denotes the E.M.F.

It is given that E(t) = E e™®. With this, we have

Thus, we have

L—qr' Ri=Ee & or
dt

Li'(t) + R i(t) = Ee &

L) +RE M =E Ly ¢ EE or

Taking Laplacetransform(L;)on bothsides, we get



- e L
L i - R i =E

Since i(0)=0, we get L, i(t) SR = or
- s+a

E
¢+a +6L+R _

L, i(t) =

. E

Taking inverse transform L, we get i(t) = L; (s+a)SL+R)
+ +

Thus

Rt
] E -—
i(t) = pdt_p L
© RaL[ ]

This is the result asdesired.

(6) Solve the simultaneous equations for xand y in terms of t given d_x +4 0,
‘Z—f —9x = 0 withx(0) =2, y(0)=1.

Sol: Taking Laplace transforms of the given equations, we get
| Lx(®) - x(0)+4Ly(t) =0
~9Lx(t) + fLy() - y(0) =0

Using the given initial conditions, we get

sLx(t)+4L y(tx2
-9L x(t)+5L y(tk1l

Solving theseequations for Ly(t),we get

s+18
2 +36

Ly(t) =



sothat

yt) = Ll{ S 18 }

_l_
2+36 2+36

= C0S 6t + 3 sin 6t (1)

Using this in_dX9x =0, we get
dt

1 -
x(t) =3 | 6 sin 6t +18 cos 6t _
or

2 _
x(t) =§:| Cos 6t _sin 6t o

(1) and (2) together represents the solution of the given equation.



