

S J P N Trust's Hirasugar Institute of Technology, Nidasoshi. *Inculcating Values, Promoting Prosperity* **Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi**

Engg. Maths Dept. Maths-II II Sem 2018-19

Department of Engg. Mathematics

Course : Engineering Mathematics-II (17MAT21).

Sem.: 2nd

Laplace Transform

LATO CIL THIS

Content

- ❖ Laplace Transform for ODEs
- ❖ Table of selected Laplace Transforms
- ❖ step functions in Laplace
- ❖ Properties of Laplace Transforms
- ❖ Properties: Linearity
- ❖ Properties: Scaling in Time
- ❖ Properties: Time Shift
- ❖ Properties: S-plane (frequency) shift
- ❖ Properties: Multiplication by t n
- ❖ Real-Life Applications

The French Newton Pierre-Simon Laplace

- **Developed mathematics in astronomy, physics, and statistics**
- **Began work in calculus which led to the Laplace Transform**
- **Focused later on celestial mechanics**

• **One of the first scientists to suggest the existence of black holes**

Why use Laplace Transforms?

- Find solution to differential equation using algebra
- Relationship to Fourier Transform allows easy way to characterize systems
- No need for convolution of input and differential equation solution
- Useful with multiple processes in system

How to use Laplace

- Find differential equations that describe system
- Obtain Laplace transform
- Perform algebra to solve for output or variable of interest
- Apply inverse transform to find solution

What are Laplace transforms?

$$
F(s) = L\{f(t)\} = \int_{0}^{\infty} f(t)e^{-st}dt
$$

- 1. t is real, s is complex!
- 2. Note "transform": $f(t) \rightarrow F(s)$, where t is integrated and s is variable
- 3. Conversely $F(s) \rightarrow f(t)$, t is variable and s is integrated
- 4. Assumes $f(t) = 0$ for all $t < 0$

Laplace Transform Theory

•General Theory

•Example

 $F(s) = E(f(t)) = \int_{\alpha}^{\infty} e^{-s\alpha} f(t) dt = \lim_{n \to \infty} \int_{\alpha}^{\infty} e^{-s\alpha} f(t) dt.$

 $f^{\circ}(t):=1.$ $E(f(x)) = \int_0^\infty e^{-x} dx \log e^{-x} \lim_{x \to \infty} \left(\frac{e^{-x}}{x} \bigg|_0^x \right)$ $\cdots: \liminf_{n\to\infty} \left(\frac{cs^{(-\infty)} }{ \cdots \cdot \frac{cs}{cs}} \cdot 1 \cdot \frac{1}{cs}\right) \mapsto \frac{1}{cs}.$

Laplace Transform for ODEs

•**Equation with initial conditions**

•**Laplace transform is linear**

•**Apply derivative formula**

 $\frac{d\ell^2 y}{d\ell^2} + y = 1, \qquad y(0) = y'(0) = 0$ $f_{\mathcal{I}}(y^M) + f_{\mathcal{I}}(y) = f_{\mathcal{I}}(1)$ $s^2\mathcal{L}(y) = sy(0) = y'(0) + \mathcal{L}(y) = \frac{1}{s}$ $\label{eq:2.1} f^*_s(y) = \frac{1}{s^*_s(s^2+1)} = \frac{1}{s^2+s^2+1}.$

Table of selected Laplace Transforms

 $s^2 + 1$ $s^2 + 1$ 1 $f(t) = \sin(t)u(t) \Leftrightarrow F(s) =$ s $f(t) = cos(t)u(t) \Leftrightarrow F(s) =$ $s + a$ $f(t) = e^{-at}u(t) \Leftrightarrow F(s) = 1$ $f(t) = u(t) \Leftrightarrow F(s) =$ 1 s

More transforms

$$
f(t) = tnu(t) \Leftrightarrow F(s) = \frac{n!}{s^{n+1}}
$$

$$
n = 0, f(t) = u(t) \Leftrightarrow F(s) = \frac{0!}{s} = \frac{1}{s}
$$

n = 1, f(t) = tu(t) \Leftrightarrow F(s) = \frac{s_1^1}{s} = \frac{s_1^2}{s} = \frac{s_1^2}{s_1^2} = \

s 6

s 6

Note on step functions in Laplace

on definition:
Experience • Unit step function definition:

 $u(t) = 1, t \ge 0$ $u(t) = 0, t < 0$

• Used in conjunction with $f(t) \rightarrow f(t)u(t)$ because of Laplace integral limits:

Properties of Laplace Transforms

- Linearity
- Scaling in time
- Multiplication by the
- Integration
- Differentiation

Properties: Linearity

$L{c_1f_1(t) + c_2f_2(t)} = c_1F_1(s) + c_2F_2(s)$

Example : Proof :

$$
L\{\sinh(t)\} =
$$
\n
$$
y\{\frac{1}{2}e^{t} - \frac{1}{2}e^{-t}\} =
$$
\n
$$
\frac{1}{2}L\{e^{t}\} - \frac{1}{2}L\{e^{-t}\} =
$$
\n
$$
\frac{1}{2}(\frac{1}{s-1} - \frac{1}{1s+1}) =
$$
\n
$$
\frac{1}{2}(\frac{(s+1)-(s-1)}{s^2-1}) = \frac{1}{s^2-1}
$$

$$
L{c1f1(t) + c2f2(t)} =
$$

\n
$$
\int_{0}^{\infty} [c1f1(t) + c2f2(t)]e-stdt =
$$

\n
$$
c1\int_{0}^{\infty} f1(t)e-stdt + c2\int_{0}^{\infty} f2(t)e-stdt =
$$

\n
$$
c1F1(s) + c2F2(s)
$$

$L{f(at)}$ **1** F(s) \overline{a} \overline{a} Example : L{sin(ωt)} $s^2 + \omega^2$ $\left(\underline{\hspace{1cm}} \omega^2 \underline{\hspace{1cm}} \right) =$ ω $s^2 + \omega^2$ ω^2 (s ω \mathcal{C} ² 1 $+1) =$ 1 (1 ω ∞ Proof : 1 F(s) −(s)u $\frac{1}{\int f(u)e^{-\overline{a}}}\,du =$ a $\mathbf{u} = \mathbf{a}\mathbf{t}$, t = u $, dt =$ 1 du \overline{a} \overline{a} $\frac{\infty}{\infty}$ $\oint f(at)e \frac{dt}{s}$ $\overline{0}$ $Lf(at)$ = </u> −st a \int $\overline{0}$ let Properties: Scaling in Time

 \overline{a} \overline{a}

Properties	
\n $L\{f(t-t_0)u(t-t_0)\} = e^{-st_0}F(s)$ \n	
\n $L\{e^{-at_0}u(t-10)\} = \frac{L\{f(t-t_0)u(t-t_0)\}e^{-st_0}}{f(t-t_0)u(t-t_0)e^{-st_0}} = \frac{L\{f(t-t_0)u(t-t_0)\}e^{-st_0}}{f(t-t_0)e^{-st_0}} = \frac{L\{f(t-t_0)u(t-t_0)\}e^{-st_0}}{f(t_0)e^{-st_0}} = \frac{L\{f(t-t_0)u(t-t_0)\}e^{-st_0}}{f$	

Properties: S-plane (frequency) shift

 $L{e^{-at}f(t)} = F(s+a)$

LAKO CILA THIS

Proof :

Example :

 $^{-at}f(t)$ } = ∞ \int $e^{-at}f(t)e^{-st}dt =$ 0 ∞ $\int f(t)e^{-(s+a)t}dt =$ 0 $F(s + a)$

Properties: Multiplication by the

$$
L\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} F(s)
$$

Example :

The "D" Operator

1. Differentiation shorthand

2. Integration shorthand

Difference in

$f(0^{+}), f(0^{-}) \& f(0)$

- The values are only different if f(t) is not continuous @ t=0
- Example of discontinuous function: $u(t)$

 $f(0^-) = \lim_{t \to \infty} u(t) = 0$ $t\rightarrow 0^$ $f(0^+) = \lim_{t \to \infty} u(t) = 1$ $t\rightarrow 0^+$ $f(0) = u(0) = 1$

you need the value @ t=0 for $D^{n-1}f(t), D^{n-2}f(t),...Df(t), f(t) \rightarrow$ **called initial conditions! We will use this to solve differential equations!**

Real-Life Applications

- **Semiconductor mobility**
- **Call completion in wireless networks**
- **Vehicle vibrations on compressed rails**
- **Behavior of magnetic and electric fields above the atmosphere**

