Department of Engg. Mathematics

Course : Engg. Mathematics-IV 15MAT41. Sem.: $4^{\text {th }}$ (2017-18)

Course Coordinator:

Prof. S. S. Thabaj

Complex Variable

Content

$>$ Recapitulation of Basic Concepts
$>$ Cauchy-Riemann conditions
$>$ Cauchy's integral theorem
> Conformal Mapping

Cauchy-Riemann conditions

Complex algebra

Complex number: $\quad z=x+i y$ (both x and y are real, $i=\sqrt{-1}$.)
Complex algebra:
$z_{1}+z_{2}=\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \quad$ (Anologous to 2d vectors.)
$z_{1} z_{2}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right) \quad(\Rightarrow c z=c(x+i y)=c x+i c y) \quad\left(\Rightarrow z_{1}-z_{2}\right)$

$$
z^{2}=(x+i y)=x-i y
$$

Complex conjugation: $\Rightarrow z z^{*}=(x+i y)(x-i y)=x^{2}+y^{2}$
Polar representation: $\quad z=x+i y=r(\cos \theta+i \sin \theta)=r e^{i \theta}$
Modulus (magnitude): $\quad|z|=\sqrt{z z^{*}}=r=\sqrt{x^{2}+y^{2}} \quad \Rightarrow\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$

Argument (phase):

$$
\begin{aligned}
& \arg (z)=\theta=\arctan \left(\frac{y}{x}\right) \quad(+\pi \text { if } z \text { is in the } 2 \text { nd or } 3 \text { rd quadrants. }) \\
& \Rightarrow \arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)
\end{aligned}
$$

Functions of a complex variable:

All elementary functions of real variables may be extended into the complex plane.

A complex function can be resolved into its real part and imaginary
part: $f(z)=u(x, y)+i v(x, y)$
Examples : $z^{2}=(x+i y)^{2}=\left(x^{2}+y^{2}\right)+i 2 x y$

$$
\frac{1}{z}=\frac{1}{x+i y}=\frac{x}{x^{2}+y^{2}}+i \frac{-y}{x^{2}+y^{2}}
$$

Multi-valued functions and branch

cuts:

$$
\text { Example 1: } \ln z=\ln \left(r e^{i \theta}\right)=\ln \left[r e^{i(\theta+2 n \pi)}\right]=\ln r+i(\theta+2 n \pi)=u+i v
$$

To remove the ambiguity, we can limit all phases to $(-\pi, \pi)$.
$\theta=-\pi$ is the branch cut.
In z with $n=0$ is the principle value.
Example 2: $z^{1 / 2}=\left(r e^{i \theta}\right)^{1 / 2}=\left[r e^{i(\theta+2 n \pi)}\right]^{7 / 2}=r^{1 / 2} e^{i(\theta+2 n \pi) / 2}$
We can let z move on 2 Riemann sheets so that
is single valued everywhere.

Cauchy-Riemann conditions

Analytic functions: If $f(z)$ is differentiable at $z=z_{0}$ and within the neighborhood of $z=z_{0}, f(z)$ is said to be analytic at $z=z_{0}$. A function that is analytic in the whole complex plane is called an entire function.

Cauchy-Riemann conditions for differentiability

$f^{\prime}(z)=\frac{d f}{d z}=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta f(z)}{\Delta z}$
In order to let f be differentiable, $f^{\prime}(z)$ must be the same in any direction of Δz.
Particularly, it is necessary that
For $\Delta z=\Delta x, \quad f^{\prime}(z)=\lim _{\Delta x \rightarrow 0} \frac{\Delta u+i \Delta v}{\Delta x}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$.
For $\Delta z=i \Delta y, \quad f^{\prime}(z)=\lim _{\Delta y \rightarrow 0} \frac{\Delta u+i \Delta v}{i \Delta y}=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}$.
Equating them we have

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \leftarrow \underset{\text { Conditions }}{\text { Cauchy-Riemann }}
$$

Conversely, if the Cauchy-Riemann conditions are satisfied, $f(z)$ is differentiable:

$$
\begin{aligned}
\frac{d f}{d z} & =\lim _{\Delta z \rightarrow 0} \frac{\Delta f(z)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) \Delta x+\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right) \Delta y}{\Delta x+i \Delta y}=\lim _{\Delta z \rightarrow 0} \frac{\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) \Delta x+\left(-\frac{\partial v}{\partial x}+i \frac{\partial u}{\partial x}\right) \Delta y}{\Delta x+i \Delta y} \\
& =\lim _{\Delta z \rightarrow 0} \frac{\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right)(\Delta x+i \Delta y)}{\Delta x+i \Delta y}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}, \quad \text { and }=\frac{1}{i}\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right) .
\end{aligned}
$$

More about Cauchy-Riemann conditions:

1) It is a very strong restraint to functions of a complex variable.
2) $\frac{d f}{d z}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}=\frac{\partial u}{\partial(i y)}+i \frac{\partial v}{\partial(i y)}$.
3) $\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}=0 \Rightarrow \nabla u \cdot \nabla v=0 \Rightarrow \nabla u \perp \nabla v \Rightarrow u=c_{1} \perp v=c_{2}$
4) Equivalent to $\frac{\partial f}{\partial z^{*}}=0$, so that $f\left(z, z^{*}\right)$ only depends on z :
$\frac{\partial f}{\partial z^{*}}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial z^{*}}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial z^{*}}=\frac{\partial f}{\partial x} \frac{1}{2}+\frac{\partial f}{\partial y}\left(-\frac{1}{2 i}\right)=0 \Rightarrow \frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}=0 \Rightarrow\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right)+i\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right)=0 \Rightarrow \cdots$
e.g., $f=x-i y$ is everywhere continuous but not analytic.

Cauchy-Riemann conditions:

Our Cauchy-Riemann conditions were derived by requiring $f^{\prime}(z)$ be the same when z changes along x or y directions. How about other directions? Here I do a general search for the conditions of differentiability.
$f^{\prime}(z)=\frac{d f}{d z}=\frac{d u+i d v}{d x+i d y}=\frac{\left(\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y\right)+i\left(\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y\right)}{d x+i d y}=\frac{\left(\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} \frac{d y}{d x}\right)+i\left(\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y} \frac{d y}{d x}\right)}{1+i \frac{d y}{d x}}$
Now let $\frac{d y}{d x}=p$, the direction of the change of z. We want to find the condition under whic h $f^{\prime}(z)$ does not depend on p.
$\frac{d f^{\prime}(z)}{d p}=0=\frac{d}{d p} \frac{\left(\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} p\right)+i\left(\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y} p\right)}{1+i p}=\frac{\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right)(1+i p)-i\left(\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} p\right)+\left(\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y} p\right)}{(1+i p)^{2}}$
$=\frac{\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)+i\left(\frac{\partial v}{\partial y}-\frac{\partial u}{\partial x}\right)}{(1+i p)^{2}} \Rightarrow \begin{cases}\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} & \text { That is, if we require } f^{\prime}(z) \text { be the same at all dire } \\ \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} & \text { we get the same Cauchy - Riemann conditions . }\end{cases}$

Cauchy's theorem

Cauchy's integral theorem

Contour integral:

$\int_{z_{1}}^{z_{2}} f(z) d z=\int_{C}(u+i v)(d x+i d y)=\int_{C}(u d x-v d y)+i \int_{C}(v d x+u d y)$
Cauchy's integral theorem: If $f(z)$ is analytic in a simply connected region R, [and $f^{\prime}(z)$ is continuous throughout this region,] then for any closed path C in R, the contour
integral of $f(z)$ around C is zero:
Proof using Stokes' theorem $\oint_{C} \mathbf{V} \cdot d \lambda=\iint_{S} \nabla \times \mathbf{V} \cdot d \boldsymbol{\sigma}$
$\oint_{C}\left(V_{x} d x+V_{y} d y\right)=\iint_{S}\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right) d x d y$
$\oint_{C} f(z) d z=\oint_{C}(u d x-v d y)+i \oint_{C}(v d x+u d y)$
$=\iint_{S}\left(-\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y+i \iint_{S}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right) d x d y$

$=0$

Cauchy's integral formula

Cauchy's integral formula:

If $f(z)$ is analytic within and on a closed contour C, then for any point z_{0} within C,
$f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z$
Proof :
$\oint_{C} \frac{f(z)}{z-z_{0}} d z+\oint_{L_{1}} \frac{f(z)}{z-z_{0}} d z+\oint_{C_{0}} \frac{f(z)}{z-z_{0}} d z+\oint_{L_{2}} \frac{f(z)}{z-z_{0}} d z=0$
$\oint_{C} \frac{f(z)}{z-z_{0}} d z=-\oint_{C_{0}} \frac{f(z)}{z-z_{0}} d z=-\int_{2 \pi}^{0} \frac{f\left(z_{0}+r e^{i \theta}\right)}{r e^{i \theta}} r i e^{i \theta} d \theta \quad($ Let $r \rightarrow 0)$
$=2 \pi i f\left(z_{0}\right)$

Mapping

Mapping

Mapping: A complex function
can be thought of as describing a mapping from the complex z-plane into the complex w-plane. In general, a point in the z-plane is mapped into a point in the w-plane. A curve in the z-plane is
 mapped into a curve in the w-plane. An area in the z-plane is mapped into an area in the w plane.

Examples of mapping:

Translation:
$w=z+z_{0}$
Rotation:
$w=z z_{0}$, or
$\rho e^{i \phi}=r e^{i \theta} \cdot r_{0} r^{i \theta_{0}} \Rightarrow\left\{\begin{array}{l}\rho=r \cdot r_{0} \\ \varphi=\theta+\theta_{0}\end{array}\right.$

Inversion:
$w=\frac{1}{z}$, or
$\rho e^{i \varphi}=\frac{1}{r e^{i \theta}} \Rightarrow\left\{\begin{array}{l}\rho=\frac{1}{r} \\ \varphi=-\theta\end{array}\right.$
In Cartesian coordinates:
$w=\frac{1}{z} \Rightarrow u+i v=\frac{1}{x+i y} \Rightarrow\left\{\begin{array}{l}u=\frac{x}{x^{2}+y^{2}} \\ v=-\frac{y}{x^{2}+y^{2}}\end{array},\left\{\begin{array}{l}x=\frac{u}{u^{2}+v^{2}} \\ y=-\frac{v}{u^{2}+v^{2}}\end{array}\right.\right.$.
A straight line is mapped into a circle:
$y=a x+b \Rightarrow-\frac{v}{u^{2}+v^{2}}=\frac{a u}{u^{2}+v^{2}}+b$
$\Rightarrow b\left(u^{2}+v^{2}\right)+a u+v=0$.

Conformal mapping

Conformal mapping: The function $w(z)$ is said to be conformal at z_{0} if it preserves the angle between any two curves through z_{0}.
If $w(z)$ is analytic and $w^{\prime}\left(z_{0}\right)$, then $w(z)$ is conformal at z_{0}.
Proof: Since $w(z)$ is analytic and $w^{\prime}\left(z_{0}\right)$ [0, we can expand $w(z)$ around $z=z_{0}$ in a Taylor series:
$w=w\left(z_{0}\right)+w^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\frac{1}{2} w^{\prime \prime}\left(z_{0}\right)\left(z-z_{0}\right)^{2}+\cdots$
$\lim _{z=-z_{0} \rightarrow 0} \frac{w-w_{0}}{z-z_{0}}=w^{\prime}\left(z_{0}\right)$, or $w-w_{0} \approx w^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)$.
$w-w_{0}=A e^{i \alpha}\left(z-z_{0}\right) \Rightarrow \varphi=\alpha+\theta \Rightarrow \varphi_{2}-\varphi_{1}=\theta_{2}-\theta_{1}$.

1) At any point where $w(z)$ is conformal, the mapping consists of a rotation and a dilation.
2) The local amount of rotation and dilation varies from point to point. Therefore a straight line is usually mapped into a curve.
3) A curvilinear orthogonal coordinate system is mapped to another curvilinear orthogonal coordinate system .

What happens if $w^{\prime}\left(z_{0}\right)=0$?
Suppose $\boldsymbol{w}^{(n)}\left(z_{0}\right)$ is the first non-vanishing derivative at z_{0}.

$$
w-w_{0} \approx \frac{w^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n} \Rightarrow \rho e^{i \varphi}=\frac{1}{n!} B e^{i \beta}\left(r e^{i \theta}\right)^{n} \Rightarrow\left\{\begin{array}{l}
\rho=\frac{B r^{n}}{n!} \\
\varphi=n \theta+\beta
\end{array}\right.
$$

This means that at $z=z_{0}$ the angle between any two curves is magnified by a factor \boldsymbol{n} and then rotated by β.

