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Complex number:

Complex algebra:

Complex conjugation:
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Cauchy-Riemann conditions 

Complex algebra 
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Functions of a complex variable:

All elementary functions of real variables may be extended into the complex 

plane. 
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A complex function can be resolved into its real part and imaginary 

part:
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Multi-valued functions and branch 

cuts:
ivunirrerez nii +=++=== + )2(ln]ln[)ln(ln  :1 Example )2( 

To remove the ambiguity, we can limit all phases to (-,).

 = - is the branch cut.

lnz with n = 0 is the principle value.
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We can let z move on 2 Riemann sheets so that       is single valued everywhere.



Analytic functions: If  f (z) is differentiable at z = z0 and within the 

neighborhood of z=z0,  f (z) is said to be analytic at z = z0. A function that is 

analytic in the whole complex plane is called an entire function.

Cauchy-Riemann conditions for differentiability

Cauchy-Riemann conditions 
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In order to let f be differentiable,  f '(z) must be the same in any direction of z. 

Particularly , it is necessary that
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Conversely, if the Cauchy-Riemann conditions are satisfied,  f (z) is differentiable:
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More about Cauchy-Riemann conditions:

1)  It is a very strong restraint to functions of a complex variable.

2) 

3)

4)

analytic.not but  continuous everywhere is  ,e.g.
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Cauchy-Riemann conditions:
Our Cauchy-Riemann conditions were derived by requiring  f '(z) be the same 

when z changes along x or y directions. How about other directions?

Here I do a general search for the conditions of differentiability. 
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Cauchy’s theorem

Cauchy’s integral theorem

Contour integral:

Cauchy’s integral theorem: If f (z) is analytic in a simply connected region R, 

[and f ′(z) is continuous throughout this region, ] then for any closed path C in R, 

the contour 

integral of f (z) around C is zero:
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Cauchy’s integral formula

Cauchy’s integral formula:

If f (z) is analytic within and on a closed contour C, then for any point z0 within C,
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theorem.



Mapping

Mapping
Mapping: A complex function                                       

can be thought of as describing a mapping from 

the complex z-plane into the complex w-plane. 

In general, a point in the z-plane is mapped into a 

point in the w-plane. A curve in the z-plane is 

mapped into a curve in the w-plane. An area in 

the z-plane is mapped into an area in the w-

plane.
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Inversion:
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In Cartesian coordinates:
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A straight line is mapped into a circle:
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Conformal mapping

Conformal mapping: The function w(z) is said to be conformal at z0 if it 

preserves the angle between any two curves through z0.

If w(z) is analytic and w'(z0) 0, then w(z)  is conformal at 

z0.

Proof: Since w(z) is analytic and w'(z0) 0, we can expand w(z) around z = z0

in a Taylor series:
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1) At any point where w(z) is conformal, the mapping consists of a rotation 

and a dilation. 

2) The local amount of rotation and dilation varies from point to point. 

Therefore a straight line is usually mapped into a curve.

3) A curvilinear orthogonal coordinate system is mapped to another 

curvilinear orthogonal coordinate system .



What happens if w'(z0) = 0?

Suppose w (n)(z0) is the first non-vanishing derivative at z0.   
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This means that at z = z0 the angle between any two curves is magnified by 

a factor n and then rotated by .




