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equations by

1) Runge Kutta method of 4™ order
2)Milne’s Method.
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Series solution of Legendre’s differential equation
leading to Pn(X)



Numerical solution of Second order Ordinary
differential equations

Consider a Second order O.D.E of the form

Y'=F (XY, y)----- (1)
with initial conditions y(Xo)= Yo and y’(Xo)= Yy’
Sety'=z andy’=Z

dv dz
d_i =z and — = f(x,5,2) with y(xc) = yoand 2(x) = yo'

1

¥Y1=¥ T 5 [y + 2ky + 205 + ky]
1

i1 = E.'D‘I‘E[El"‘ 2:!1-: + EEE + L]_]

where



ky = hf[xg.:¥0, Zo) 11 = hg[xg,¥a, Z0]

n fes Iy h ey l
'E‘::—hf(xl}‘l'EJ}'D"'E:zl}"'E) I, = hg(Il}-I—EJ}-‘D-F—E JED+E)
3 =7 (x0+3 70+ 5 2043 P\ Y07 Yot R0y

ky=hf(xg+ h,yo+ kz,zp+13) Ly = hﬁ{x'}-l_h’}?'}-l_ka’zﬂ'-l_ia}



Milne’s Predictor-Corrector Method

y'=F(x,v.%")
with initial conditions  ¥{xg) = Vg and ¥'{ xg) = ¥,'
yi=z andy"' =z
dy dz .
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dx dx
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BESSEL FUNCTIONS

Definition: The second order differential equation
,d%y  dy
At Max
Where n is a constant, is called Bessel’s equation of order n. It
IS one of the most important differential equations in applied

mathematics. Its particular solutions are Bessel functions.

1: -1:}?‘ .i!i.' ntlr
Julx) = Z:r" TntrT 1} when n is positive

1: 1}?‘ _«x_- ntir
J_n(x) = Z '1"(—11+*r+1} when n is negative

v = Al (x)+ BJ_,(x) | whereA and B are arbitrary constants




Orthogonality of Bessel functions
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Where a, 8 are the roots of Jn(x) = 0.



Rodrigue’s Formula

The relation,
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1s known as Rodrigue’s formula



Series solution of Legendre’s differential
equation leading to
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