

Department of Engg. Mathematics

Course : Engg. Mathematics-IV 15MAT41. Sem.: 4th (2017-18)

Course Coordinator: Prof. S. L. Patil

Probability Theory

Contents

- ➢ Random variable
- Classifications of Random variable
- Discrete Random variable
- Continuous Random variable
- Probability Distributions
- Probability Density Function
- Joint Probability Distributions

Probability

Probability is the likelihood that the event will occur.

Two Conditions:

➤ Value is between 0 and 1.

Sum of the probabilities of all events must be 1.

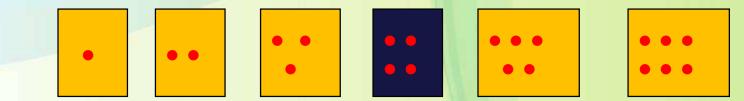
Random Variable

A numerical description of the outcome of an experiment Random experiment is an experiment with random outcome.

Random variable is a variable related to a random event

Example: Discrete RV: countable # of outcomes

Throw a die twice: Count the number of times 4 comes up (0, 1, or 2 times)



- A random variable is a rule that assigns exactly one value to each point in a sample space for an experiment.
- A discrete random variable may assume either a finite number of values or an infinite sequence of values.
- A continuous random variable may assume any numerical value in an interval or collection of intervals.

Discrete Random Variable

Obtained by Counting (0, 1, 2, 3, etc.)
 Usually finite by number of different values
 Ex: Toss a coin 5 times. Count the number of tails.
 (0, 1, 2, 3, 4, or 5 times)

Discrete Random Variables

- The number of throws of a coin needed before a head first appears
- The number of dots when rolling a dice
- The number of defective items in a sample of 20 items
- The number of customers arriving at a check-out counter in an hour
- The number of people in favor of nuclear power in a survey

- The probability distribution is defined by a probability function which provides the probability for each value of the random variable.
- A continuous random variable can assume any value in an interval on the real line or in a collection of intervals.
- Probability Density Function : For a continuous random variable X, a probability density function is a function such that
 1) F(x) ≥ 0, 2) ∫_x[∞] f(x)dx = 1

Discrete - Continuous

- Random variable is discrete if it can take no more than countable number of values
- Random variable is continuous, if it can take any value in an interval

Continuous Random Variables

- The yearly income for a family
- The amount of oil imported into Finland in a particular month
- The time that elapses between the installation of a new component and its failure
- The percentage of impurity in a batch of chemicals

Expected Value

 Expected value is just like the mean in empirical distributions

Examples:

- When playing a dice the expected value equals 3,5
- Insurance company is interested in the expected value of indemnities
- Investor is interested in the expected value of portfolio's revenue

Expected value calculation

 The expected value for a discrete random variable is obtained by multiplying each possible outcome by its probability and then sum these products

Discrete probability distribution

Discrete random variable values and their probabilities.

Discrete Probability Distributions

Binomial Distribution

Binomial experiments satisfy the following:

- •The experiment consists of a sequence of n identical trials
- •All possible outcomes can be classified into two categories, usually called success and failure
- •The probability of an success, p, is constant from trial to trial
- •The outcome of any trial is independent of the outcome of any other trial

Binomial Distribution Random Variables

- The number of heads when tossing a coin for 50 times
- The number of reds when spinning the roulette wheel for 15 times
- The number of defective items in a sample of 20 items from a large shipment
- The number of people in favour of nuclear power in a survey

Poisson distribution

Poisson experiments satisfy the following

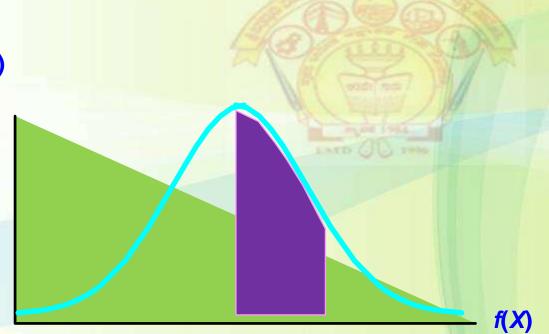
- The probability of occurrence of an event is the same for any two intervals of equal length
- The occurrence or non-occurrence of the event in any interval is independent of the occurrence or non-occurrence in any other interval
- The probability that two or more events will occur in an interval approaches zero as the interval becomes smaller

Poisson Distribution Random Variables

- The number of failures in a large computer system during a given day
- The number of ships arriving at a loading facility during a six-hour loading period
- The number of delivery trucks to arrive at a central warehouse in an hour
- The number of dents, scratches, or other defects in a large roll of sheet metal
- The number of accidents at a crossroads during one year

Normal Distribution

Probability is the area under the curve!



Normal Distribution

Normal distribution is defined by density function

area under density function equals 1, area represents probability

expected value

Cumulative Probability Function

 Cumulative function for x = area to the left of x = probability to get at most x:

Standardized Distribution N(0,1)

- Cumulative function values have been tabulated (in most statistics textbooks) for normal distribution with expected value 0 and standard deviation 1
- This distribution is called standardized distribution and is denoted N(0,1).

Standardizing

0

Ζ

You can standardize any normal distribution $N(\mu,\sigma)$ variable to a standardized distribution N(0,1) variable

SAME AREA! SAME PROB.!

 $x - \mu$

 σ

Χμ

Variance/standard deviation

"The average (expected) squared distance (or deviation) from the mean"

$\sigma^{2} = Var(x) = E[(x - \mu)^{2}] = \sum_{\text{all } x} (x_{i} - \mu)^{2} p(x_{i})$

Variance, formally

Discrete case:

$$Var(X) = \sigma^2 = \sum_{\text{all } x} (x_i - \mu)^2 p(x_i)$$

Continuous case:

$$Var(X) = \sigma^2 = \int_{-\infty}^{\infty} (x_i - \mu)^2 p(x_i) dx$$

Two Discrete Random Variables

Joint Probability Distributions

The joint probability mass function of the discrete random variables X and Y, denoted as $f_{XY}(x, y)$, satisfies

$$(1) \quad f_{XY}(x, y) \ge 0$$

(2)
$$\sum_{x} \sum_{y} f_{XY}(x, y) = 1$$

(3)
$$f_{XY}(x, y) = P(X = x, Y = y)$$

(5-1)

Two Discrete Random Variables

Marginal Probability Distributions

- The individual probability distribution of a random variable is referred to as its marginal probability distribution.
- In general, the marginal probability distribution of *X* can be determined from the joint probability distribution of *X* and other random variables. For example, to determine P(X = x), we sum

P(X = x, Y = y) over all points in the range of (X, Y) for which X = x. Subscripts on the probability mass functions distinguish between the random variables.

Two Continuous Random Variables

Conditional Probability Distribution

Definition

Continuous random variables X_1, X_2, \ldots, X_p are independent if and only if

 $f_{X_1X_2...X_p}(x_1, x_2..., x_p) = f_{X_1}(x_1)f_{X_2}(x_2)...f_{X_p}(x_p) \quad \text{for all } x_1, x_2, ..., x_p$ (5-24)

Covariance and Correlation

Definition

The covariance between the random variables X and Y, denoted as cov(X, Y) or σ_{XY} , is

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - \mu_X \mu_Y$$
(5-26)

Covariance is a measure of **linear relationship** between the random variables. If the relationship between the random variables is nonlinear, the covariance might not be sensitive to the relationship. This is illustrated in Fig. 5-13(d). The only points with nonzero probability are the points on the circle. There is an identifiable relationship between the variables. Still, the covariance is zero.

Covariance and Correlation

Definition

The correlation between random variables X and Y, denoted as ρ_{XY} , is

$$\rho_{XY} = \frac{\operatorname{cov}(X, Y)}{\sqrt{V(X)V(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$
(5-27)

For any two random variables X and Y

$$-1 \le \rho_{XY} \le +1 \tag{5-28}$$

