Department of Engg. Mathematics

Course : Engg. Mathematics-III 17MAT31. Sem.: $3^{\text {rd }}$ (2018-19)

Course Coordinator:

Prof. S. A. Patil

Dept. of Mathematics
HIT, Nidasoshi

YECTOR INTEGRATION

Content:

$>$ Basic Definition of Line Integral, Surface Integral \& Volume
Integral.
$>$ Green's Theorem
> Stokes Theorem
> Gauss Divergence Theorem
> Euler's Theorem

Line Integral, Surface \& Volume Integral

- Line Integral : If there exists a scalar field V along a curve C, then the line integral of V along C is define $\int_{c}{ }_{c}$ by $\underset{r}{r}$
where $d r=d x i+d y j+d z k$.
- Surface Integral: If scalar field V exists on surface S, surface integral V of S is defined by

$$
\int_{S} V d \underset{\sim}{S}=\int_{S} V \underset{\sim}{n} d S
$$

where,

$$
\underset{\sim}{n}=\frac{\nabla S}{|\nabla S|}
$$

Volume Integral : If V is a closed region and F is a scalar field in region V, volume integral F of V is

$$
\int_{V} F d V=\iiint_{V} F d x d y d z
$$

Example: Scalar function $F=2 x$ defeated in one cubic that has been built by planes $x=0, x=1, y=0, y=3, z=$ 0 and $z=2$. Evaluate volume integral F of the cubic.

- Solution:

$$
\begin{aligned}
\int_{V} F d V & =\int_{z=0}^{2} \int_{y=0}^{3} \int_{x=0}^{1} 2 x d x d y d z \\
& =2 \int_{z=0}^{2} \int_{y=0}^{3}\left[\frac{x^{2}}{2}\right]_{0}^{1} d y d z \\
& =2 \int_{z=0}^{2} \int_{y=0}^{3} \frac{1}{2} d y d z \\
& =2 \cdot \frac{1}{2} \int_{z=0}^{2}[y]_{0}^{3} d z \\
& =\int_{z=0}^{2} 3 d z=3[z]_{0}^{2}=6
\end{aligned}
$$

Example : Calculate $\int_{c} \underset{\sim}{F} . d \underset{\sim}{r}$ from $\mathrm{A}=(0,0,0)$ to $\mathrm{B}=(4,2,1)$ along the curve $x=4 t, y=2 t^{2}, z=t^{3}$ if

$$
\underset{\sim}{F}=x^{2} y \underset{\sim}{i}+x z, j-2 y z \underset{\sim}{k}
$$

Given $\underset{\sim}{F}=x^{2} y \underset{\sim}{i}+x z j-2 y z k$

$$
\begin{aligned}
& =(4 t)^{2}\left(2 t^{2}\right) \underset{\sim}{i}+(4 t)\left(t^{3}\right) \underset{\sim}{j}-2\left(2 t^{2}\right)\left(t^{3}\right) \underset{\sim}{k} \\
& =32 t^{4} \underset{\sim}{i}+4 t^{4} \underset{\sim}{j}-4 t^{5} \underset{\sim}{k} .
\end{aligned}
$$

And $\quad d \underset{\sim}{r}=d x \underset{\sim}{i}+d y j+d z k$

$$
=4 d t i+4 t d t j+3 t^{2} d t k
$$

Then

$$
\begin{aligned}
\underset{\sim}{F} . d \underset{\sim}{r} & =\left(32 t^{4} \underset{\sim}{i}+4 t^{4} \underset{\sim}{j}-4 t^{5} \underset{\sim}{\underset{\sim}{x}}\right)\left(4 d t \underset{\sim}{i}+4 t d t \underset{\sim}{j}+3 t^{2} d t \underset{\sim}{k}\right) \\
& =\left(32 t^{4}\right)(4 d t)+\left(4 t^{4}\right)(4 t d t)+\left(-4 t^{5}\right)\left(3 t^{2} d t\right) \\
& =128 t^{4} d t+16 t^{5} d t-12 t^{7} d t \\
& =\left(128 t^{4}+16 t^{5}-12 t^{7}\right) d t .
\end{aligned}
$$

At $\mathrm{A}=(0,0,0), 4 t=0,2 t^{2}=0, t^{3}=0$,

$$
\Rightarrow t=0 .
$$

and, at $\mathrm{B}=(4,2,1), 4 t=4,2 t^{2}=2, t^{3}=1$,
$\Rightarrow t=1$.

$$
\begin{aligned}
\therefore \int_{A}^{B} \underset{\sim}{F} . d \underset{\sim}{r} & =\int_{t=0}^{t=1}\left(128 t^{4}+16 t^{5}-12 t^{7}\right) d t \\
& =\left[\frac{128}{5} t^{5}+\frac{8}{3} t^{6}-\frac{3}{2} t^{8}\right]_{0}^{1} \\
& =\frac{128}{5}+\frac{8}{3}-\frac{3}{2} \\
& =26 \frac{23}{30} .
\end{aligned}
$$

GREEN'S THEOREM

Statement : Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane
and let D be the region bounded by C.

If P and Q have continuous partial derivatives on an open region that contains D, then

$$
\int_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

STOKES' THEOREM

Statement: Let S be an oriented piecewise-smooth surface
bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation.
Let \mathbf{F} be a vector field whose components have continuous partial derivatives on an open region in that contains S.
Then,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}
$$

DIVERGENCE THEOREM

Statement :Let E be a simple solid region and let S be
the boundary surface of E, given with + ve orientation.
Let \mathbf{F} be a vector field whose component functions have continuous partial derivatives on an open region that contains E.
Then,

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} \operatorname{div} \mathbf{F} d V
$$

STOKE'S VS. GREEN'S THEOREM

Stokes' Theorem can be regarded as a higher-dimensional version of Green's Theorem.

- Green's Theorem relates a double integral over a plane region D to a line integral around its plane boundary curve.
- Stokes' Theorem relates a surface integral over a surface S to a line integral around the boundary curve of S (a space curve).

Euler Equation

- Let's go over what we have shown. We can find a minimum (more generally a stationary point) for the path S if we can find a function for the path that satisfies

$$
\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}=0
$$

- The procedure for using this is to set up the problem so that the quantity whose stationary path you seek is expressed as

$$
S=\int_{x_{1}}^{x_{2}} f\left[y(x), y^{\prime}(x), x\right] d x \text {, }
$$

where $f\left[y(x), y^{\prime}(x), x\right]$
is the function appropriate to your problem. Write down the Euler-Lagrange equation, and solve for the function $y(x)$ that defines the required stationary path.

- Let's do a few examples to make the procedure clear.

The Shortest Path Between Two Points

- We earlier showed that the problem of the shortest path between two points can be expressed as

$$
L=\int_{1}^{2} d s=\int_{x_{1}}^{x_{2}} \sqrt{1+y^{\prime}(x)^{2}} d x .
$$

- The integrand contains our function
- The two partial derivatives in the Euler-Lagrange equation are:

$$
\frac{\partial f}{\partial y}=0 \quad \text { and } \quad \frac{\partial f}{\partial y^{\prime}}=\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}
$$

- Thus, the Euler-Lagrange equation gives us
- This says that

$$
\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}=\frac{d}{d x} \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=0
$$

$$
\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=C, \quad \text { or } \quad y^{\prime 2}=C^{2}\left(1+y^{\prime 2}\right)
$$

- A little rearrangement gives the final result: $y^{\prime 2}=$ constant (call it m^{2}), so $y(x)=m x+b$. In other words, a straight line is the shortest path.

