Department of Engg. Mathematics

Course : Calculus and Linear Algebra (18MAT11).
Sem.: $1^{\text {st }}$ (2018-19)

Course Coordinator:

Prof. S. L. Patil

Differential Calculus - 2

Taylor's Theorem

Taylor's theorem states that if:

- $f(x)$ and its first $(n-1)$ derivatives are continuous in the $[a, b]$ and
- $f^{n}(x)$ exists in the (a, b)
then there exists at least one point $c \in(a, b)$ such that

$$
f(b)=f(a)+\frac{(b-a)}{1!} f^{\prime}(a)+\frac{(b-a)^{2}}{2!} f^{\prime \prime}(a)+\ldots+\frac{(b-a)^{n-1}}{(n-1)!} f^{n-1}(a)+\frac{(b-a)^{n}}{n!} f^{n}(c)
$$

Alternate form - If

- $f(x)$ and its first $(n-1)$ derivatives are continuous in the $[a, a+h](h>0)$ and
- $f^{n}(x)$ exists in the $(a, a+h)$
then there exists at least one point $\theta \in(0,1)$ such that

$$
\langle(a+\theta h) \in(a, a+h)\rangle
$$

$$
f(a+h)=f(a)+\frac{h}{1!} f^{\prime}(a)+\frac{h^{2}}{2!} f^{\prime \prime}(a)+\ldots+\frac{h^{n-1}}{(n-1)!} f^{n-1}(a)+\frac{h^{n}}{n!} f^{n}(a+\theta h)
$$

Taylor Series

In the interval $[a, x]$, when $n \rightarrow \infty$ in Taylor's theorem we get Taylor series:

$$
f(x)=f(a)+\frac{(x-a)}{1!} f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\ldots
$$

- The series is usedto create an approximation of what a function looks like

Maclaurin Series Taylor series entered at zero is called Maclaurin Ser

Progression of Maclaurin Series approximation of the exponential function e^{x} based on n values. ${ }^{1}$

- The blue curve indicates the e^{x} function.
- The red curve indicates the sum of first $n+1$ terms of the Maclaurin series.

Maclaurin Series - Calculating Limits

Find $\lim _{x \rightarrow 0}\left[\frac{x-\sin x}{x^{n}}\right]$, where n is an integer

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left[\frac{x-\sin x}{x^{n}}\right] & =\lim _{x \rightarrow 0}\left[\frac{x-\left(x-x^{3} / 3!+x^{5} / 5!\cdots\right)}{x^{n}}\right] \\
& \cong \lim _{x \rightarrow 0}\left[\frac{x^{3} / 3!-x^{5} / 5!+\cdots}{x^{n}}\right] \\
& \cong \lim _{x \rightarrow 0}\left[\frac{x^{3-n}}{3!}-\frac{x^{5-n}}{5!}+\cdots\right]
\end{aligned}
$$

Indeterminate Forms

- Indeterminate form : An expression that evaluates to

Form	Method
$0 / 0$	L'Hospital's Rule
∞ / ∞	Change to $\%$ or ∞ / ∞ by mospital's Rulebotom one expression to the bottom
$0 \times \infty$	Change to 0% or ∞ / ∞ by using common denominator, rationalization, or factoring out a common factor
1^{∞}	Take \log to make an indeterminate product
0^{∞}	Take \log to make an indeterminate product
∞^{0}	Take \log to make an indeterminate product

Applying L'Hospital's Rule

Partial Differentiation

- Volume of a cylinder:

$$
V=\pi r^{2} h
$$

- Variables r and h are independent of each other. ${ }^{h}$.
- Volume V is dependent on both r and h, i.e., $V=f(n ル)$
- $V=f(r, h)$ is a function of several variables, wherein
$-V$ is the dependent variable
$-r$ and h a independent variables
- Derivative of V is computed using Partial Differentiation

$$
\partial \text { (Function of several variables) }
$$

First Order Partial Derivative

- First order partial derivative of $u=f(x, y)$ with respect to independent variables:

$$
\begin{aligned}
& \text { - } \frac{\partial u}{\partial x} \text { or } \frac{\partial f}{\partial x} \text { or } u_{x} \\
& =\frac{\partial u}{\partial y} \text { or } \frac{\partial f}{\partial y} \text { or } u_{y}
\end{aligned}
$$

- Similarly, the first order partial derivatives of $u=f(x, y, z)$ are:
- $\frac{\partial u}{\partial x}$ or $\frac{\partial f}{\partial x}$ or u_{x}
- $\frac{\partial u}{\partial y}$ or $\frac{\partial f}{\partial y}$ or u_{y}
- $\frac{\partial u}{\partial z}$ or $\frac{\partial f}{\partial z}$ or u_{z}

Second Order Partial Derivative

$$
\text { Second Order Partial Derivative }=\frac{\partial(\text { First Order Partial Derivative })}{\partial(\text { Independent variable })}
$$

Second order partial derivative of $u=f(x, y)$ with respect to independent variables:

- $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)$
- $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right)$
- $\frac{\partial^{2} u}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}\right)$
- $\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y}\right)$

Number of second order partial derivatives $=(\text { Number of independent variables in the given function })^{2}$

Mixed Second Order Partial Derivative

$$
\text { Given } u=f(x, y)
$$

- $\frac{\partial^{2} u}{\partial x \partial y}$ and $\frac{\partial^{2} u}{\partial y \partial x}$ are called Mixed Second Order Partial Derivatives
- $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$, if a continuous throl

An example of computation of second order partial derivative. ${ }^{2}$

Total Derivative

$$
u=f(x, y)
$$

where

$$
x=\emptyset(t) y=\varphi(t)
$$

- Variable dependency :
- Therefore t is the only independent variable.
- Derivative of u with respect to t :

$$
\underline{d u}=\frac{\partial u}{\underline{d}} \times \underline{d x}+\underline{\partial u} \times \underline{d y}
$$

Implicit Function

Implicit Function:

$$
u=f(x, y) \text { and } u=0 \text { or a }
$$ constant where $\varphi(x)$

$$
\mathrm{x}=\emptyset(x) \text { and } \mathrm{y}=
$$

- Variable dependency :
- x is the independent variable
- Since $u=0$ or a constant, $\frac{d u}{d x}=0$
- From the definition of total derivative:

$$
\underline{d u}=\frac{\partial u}{} \times \underline{d x}+\underline{\partial u} \times \underline{d y}=0
$$

Composite Function

Composite Function:

$$
\begin{gathered}
u=f(r, s) \\
r=\emptyset(x, y) s=\varphi(x, y)
\end{gathered}
$$

where

- Variable dependency :
- x and y are the two independent variables
- $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ are computed as:

$$
\partial u \quad \partial u \quad \partial r \quad \partial u \quad \partial s \quad \partial u
$$

Jacobian

- $u=f(x, y)$ and $v=g(x, y)$, where x and y are indepenu. variables

Jacobian of u and v w.r.t x and $y=J\left(\frac{u, v}{x, y}\right)=\frac{\partial(u, v)}{\partial(x, y)}=$

$$
\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|
$$

- $u=f(x, y, z), v=g(x, y, z)$ and $w=h(x, y, z)$,

Jacobian Properties

1. $J=\frac{\partial(u, v)}{\partial(x, y)} J^{\prime}=\frac{\partial(x, y)}{\partial(u, v)}$
then

$$
J \times J^{\prime}=1
$$

2. $u=f(r, s)$ and $v=g(r, s)$ where
then
$r=\varnothing(x, y)$
$\mathrm{s}=\varphi(x, y)$
$\partial(1,1,1)$
$\partial(1,11)$

Maxima and Minima for $f(x, y)$

Minima

Maxima	Minima
$f(a, b)>f(a+h, b+k)$	$f(a, b)<f(a+h, b+k)$

Maxima and Minima - Working Rule

$$
\text { Solve } \frac{\partial z}{\partial x}=0 \text { and } \frac{\partial z}{\partial y}=0 \text { for the solution set } S=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

$$
\text { Find } A=\frac{\partial^{2} f}{\partial x^{2}}, B=\frac{\partial^{2} f}{\partial x \partial y} \quad \text { and } C=\frac{\partial^{2} f}{\partial y^{2}}
$$

Maxima and Minima - Example

$$
\begin{array}{cc}
& f_{x}=(x, y)=2 x^{2}-4 x y+4 y \\
f_{y} & y^{4}+2 x+4 y^{3} \\
f_{x}=0 & \\
& f_{y}=0 \\
4 x-4 y=0 & -4 x+4 y^{3}=0 \\
\Rightarrow & x=y \quad
\end{array}
$$

\therefore The critical points are $(0,0),(1,1)$ and $(-1,-1)$

$$
A=f_{x x}=4, B=f_{x y}=-4 \text { and } C=f_{y y}=12 y^{2}
$$

Critical points	$(0,0)$	$(1,1)$	$(-1,-1)$
$A=f_{x x}=4$	$4>0$	$4>0$	$4>0$
$B=f_{x y}=-4$	-4	-4	-4
$C=f_{y y}=12 y^{2}$	0	12	12
$A C-B^{2}$	$-16<0$	$32>0$	$32>0$
Decision	Saddle point	Minimum	Minimum

Lagrange's Undetermined Multipliers

- Enables to maximize or minimize a function that is subject to a constraint.
- Ex1: Designing the dimensions of a box to maximize its volume subject to a certain fixed amount of building material (and cost)
- Ex2: Maximize the area of a field subject to
 of fencing material ${ }_{\text {Naximize }}$: $A=x * y$

Constraint: $500=x+2 y$

Lagrange's - Working Rule

Step 1. Write auxiliary function $F(x, y, z)=f(x, y, z)+\lambda \emptyset(x, y, z)$, where λ is a parameter.

Step 2. Find F_{x}, F_{y} and F_{z}.

Step 3. Solve $F_{x}=0, F_{y}=0$ and $F_{z}=0$ to compute λ and find the relations between x, y and z.

Step 4. Substitute the resulting relation in $\emptyset(x, y, z)=0$ and solve for the solution set $S=\left\{\begin{array}{c}\left(x_{1}, y_{1}, z_{1}\right), \\ \left(x_{2}, y_{2}, z_{2}\right), \ldots\end{array}\right\}$ of stationary points.

Step 5. Find the corresponding maximum or minimum or both by substituting the stationary points in $f(x, y, z)$.

Queries ...?

