

Department of Engg. Mathematics

Course : Calculus and Linear Algebra (18MAT11). Sem.: 1st (2018-19)

Course Coordinator:

Prof. S. L. Patil

Differential Calculus - 2

Taylor's Theorem

Taylor's theorem states that if:

- f(x) and its first (n-1) derivatives are continuous in the [a, b] and
- $f^n(x)$ exists in the (a, b)

then there exists at least one point $c \in (a, b)$ such that

$$f(b) = f(a) + \frac{(b-a)}{1!} f'(a) + \frac{(b-a)^2}{2!} f''(a) + \dots + \frac{(b-a)^{n-1}}{(n-1)!} f^{n-1}(a) + \frac{(b-a)^n}{n!} f^n(c)$$

<u>Alternate form – If</u>

- f(x) and its first (n-1) derivatives are continuous in the [a, a + h] (h > 0) and
- $f^n(x)$ exists in the (a, a + h)

then there exists at least one point $\theta \in (0,1)$ such that

$$\langle (a + \theta h) \in (a, a + h) \rangle$$

$$f(a+h) = f(a) + \frac{h}{1!} f'(a) + \frac{h^2}{2!} f''(a) + \dots + \frac{h^{n-1}}{(n-1)!} \frac{f^{n-1}(a)}{n!} + \frac{h^n}{n!} \frac{f^n(a+\theta h)}{n!}$$

Taylor Series

In the interval [a, x], when $n \to \infty$ in Taylor's theorem we get

Taylor series:

• The series is used to create an approximation of what a function looks like

Progression of Maclaurin Series approximation of the exponential function e^x based on n values.¹

- The blue curve indicates the e^x function.
- The red curve indicates the sum of first n + 1 terms of the Maclaurin series.

Maclaurin Series – Calculating Limits

Find $\lim_{x \to 0} \left[\frac{x - \sin x}{x^n} \right]$, where *n* is an integer $\lim_{x \to 0} \left[\frac{x - \sin x}{x^n} \right] = \lim_{x \to 0} \left[\frac{x - (x - \frac{x^3}{3!} + \frac{x^5}{5!} \dots)}{x^n} \right]$

$$\cong \lim_{x \to 0} \left[\frac{\frac{x^3}{3!} - \frac{x^5}{5!} + \cdots}{x^n} \right]$$

$$\cong \lim_{x \to 0} \left[\frac{x^{3-n}}{3!} - \frac{x^{5-n}}{5!} + \dots \right]$$

Indeterminate Forms

Indeterminate form : An expression that evaluates to

Form	Method
⁰ / ₀	L'Hospital's Rule
$^{\infty}/_{\infty}$	L'Hospital's Rule
$0 imes \infty$	Change to $^0/_0$ or $^\infty/_\infty$ by moving one expression to the bottom
$\infty - \infty$	Change to $^0/_0$ or $^\infty/_\infty$ by using common denominator, rationalization, or factoring out a common factor
1 [∞]	Take log to make an indeterminate product
0^{∞}	Take log to make an indeterminate product
∞^0	Take log to make an indeterminate product

Partial Differentiation

• Volume of a cylinder:

$$V = \pi r^2 h$$

- Variables r and h are independent of each other.
- Volume V is dependent on both r and h, i.e., V = f(r, h)
- V = f(r, h) is a function of several variables, wherein
 - Vis the dependent variable
 - -r and h are independent variables
- Derivative of V is computed using Partial Differentiation

Partial Derivative – $\frac{\partial(\text{Function of several variables})}{\partial(\text{Function of several variables})}$

First Order Partial Derivative

- First order partial derivative of u = f(x, y) with respect to independent variables:
 - $\frac{\partial u}{\partial x} \text{ or } \frac{\partial f}{\partial x} \text{ or } u_{\chi}$ $\frac{\partial u}{\partial y} \text{ or } \frac{\partial f}{\partial y} \text{ or } u_{y}$
- Similarly, the first order partial derivatives of u = f(x, y, z) are:

$$\frac{\partial u}{\partial x} \operatorname{or} \frac{\partial f}{\partial x} \operatorname{or} u_{x}$$

$$\frac{\partial u}{\partial y} \operatorname{or} \frac{\partial f}{\partial y} \operatorname{or} u_{y}$$

$$\frac{\partial u}{\partial z} \operatorname{or} \frac{\partial f}{\partial z} \operatorname{or} u_{z}$$

Second Order Partial Derivative

Second Order Partial Derivative = $\frac{\partial (\text{First Order Partial Derivative})}{\partial (\text{Independent variable})}$

Second order partial derivative of u = f(x, y) with respect to independent variables:

Number of second order partial derivatives = (Number of independent variables in the given function)²

Mixed Second Order Partial Derivative

Given u = f(x, y)

An example of computation of second order partial derivative.²

Total Derivative

where

Variable dependency : x

- Therefore *t* is the only independent variable.
- Derivative of *u* with respect to *t*:

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \times \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} \times \frac{\partial y}{\partial y}$$

Implicit Function

Implicit Function: constant where $\varphi(x)$ u = f(x, y) and u = 0 or a

 $\mathbf{x} = \emptyset(\mathbf{x})$ and $\mathbf{y} =$

- Variable dependency :
- *x* is the independent variable
- Since u = 0 or a constant, $\frac{du}{dx} = 0$
- From the definition of total derivative : $\frac{du}{du} = \frac{\partial u}{\partial u} \frac{dx}{\partial u} \frac{\partial u}{\partial u} \frac{dy}{\partial u} = \frac{\partial u}{\partial u} \frac{\partial u}{\partial u} \frac{\partial u}{\partial u} \frac{dy}{\partial u} = \frac{\partial u}{\partial u} = \frac{\partial u}{\partial u} \frac{\partial$

Composite Function

Variable dependency :

• *x* and *y* are the two independent variables • $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ are computed as:

> du du dr du ∂S <u>อบ</u>

Jacobian

• u = f(x, y) and v = g(x, y), where x and y are independent variables

Jacobian of u and v w.r.t x and $y = J\left(\frac{u,v}{x,y}\right) = \frac{\partial(u,v)}{\partial(x,y)} = \frac{\partial u}{\partial(x,y)}$

•
$$u = f(x, y, z), v = g(x, y, z)$$
 and $w = h(x, y, z)$,

where

Jacobian Properties

Maxima and Minima for f(x, y)

Maxima and Minima – Working Rule

Maxima and Minima – Example $\begin{array}{l}
f_x(x,y) = 2x^2 - 4xy + y^4 + 2\\
f_x = 0 & f_y = 0\\
4x - 4y = 0 & -4x + 4y^3 = 0\\
\Rightarrow & x = y & \Rightarrow & y = 0, y = 1 \text{ and } y = -1\\
\end{array}$ \therefore The critical points are (0,0),(1,1) and (-1,-1)

 $A = f_{xx} = 4$, $B = f_{xy} = -4$ and $C = f_{yy} = 12y^2$

Critical points	(0,0)	(1,1)	(-1,-1)
$A = f_{xx} = 4$	4 > 0	4 > 0	4 > 0
$B = f_{xy} = -4$	-4	-4	-4
$C = f_{yy} = 12y^2$	0	12	12
$AC - B^2$	-16 < 0	32 > 0	32 > 0
Decision	Saddle point	Minimum	Minimum

- Enables to maximize or minimize a function that is subject to a constraint.
- Ex1: Designing the dimensions of a box to maximize its volume subject to a certain fixed amount of building material (and cost)

Building

Field

х

Lagrange's – Working Rule

Step 1. Write auxiliary function $F(x, y, z) = f(x, y, z) + \lambda \phi(x, y, z)$, where λ is a parameter.

- Step 2. Find F_x , F_y and F_z .
- Step 3. Solve $F_x = 0$, $F_y = 0$ and $F_z = 0$ to compute λ and find the relations between x, y and z.
- Step 4. Substitute the resulting relation in $\emptyset(x, y, z) = 0$ and solve for the solution set $S = \begin{cases} (x_1, y_1, z_1), \\ (x_2, y_2, z_2), \ldots \end{cases}$ of stationary points.

Step 5. Find the corresponding maximum or minimum or both by substituting the stationary points in f(x, y, z).

Queries ...?