S J P N Trust's Hirasugar Institute of Technology, Nidasoshi. Inculcating Values, Promoting Prosperity Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi 1 YEAR BE 1 Sem 2018-19

FIRST YEAR Engg. Department

Course : BASIC ELECTRONICS -18ELN14/24

Sem:1 (2018-19)

Course Coordinator: V.B.Dhere

Digital Systems and Binary Numbers

Digital age and information age
 Digital computers

 General purposes
 Many scientific, industrial and commercial applications

 Digital systems

 Telephone switching exchanges
 Digital camera
 Electronic calculators, PDA's
 Digital TV

 Discrete information-processing systems

 Manipulate discrete elements of information
 For example, {1, 2, 3, ...} and {A, B, C, ...}.

Analog and Digital Signal

Analog system

The physical quantities or signals may vary continuously over a specified range.

Digital system

The physical quantities or signals can assume only discrete values.

Greater accuracy

Decimal Number System

Base (also called radix) = 10 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } Digit Position Integer & fraction Digit Weight Weight = (Base) Position Magnitude Sum of "Digit x Weight

Octal Number System

• Base = 8

- 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }

Weights

– Weight = (Base) Position

Magnitude

- Sum of "Digit x Weight"

Binary Number System

- Base = 2
 - 02 digits { 0, 1}
- Weights

 Weight = (Base)
 Position
- Magnitude

- Sum of "Digit x Weight"

Hexadecimal Number System

- Base = 16
 - 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }
- Weights
 - Weight = (Base) Position
- Magnitude
 - Sum of "Digit x Weight"

Decimal (*Integer*) to Binary Conversion

- Divide the number by the 'Base' (=2)
- Take the remainder (either 0 or 1) as a coefficient from bottom to top
- Take the quotient and repeat the division

Decimal (*Fraction*) to Binary Conversion

- Multiply the number by the 'Base' (=2)
- Take the integer (either 0 or 1) as a coefficient from top to bottom

Binary - Octal Conversion

- $8 = 2^3$
- Each group of 3 bits represents an octal digit

Binary – Hexadecimal Conversion

- $16 = 2^4$
- Each group of 4 bits represents a hexadecimal digit

Complements

- 1's Complement (*Diminished Radix* Complement)
 - All '0's become '1's
 - All '1's become '0's Example (10110000)₂ ⇒ (01001111)₂

2's Complement (*Radix* Complement)
 – Take 1's complement then add 1

Binary Logic

Logic gates

(a) Two-input AND gate

(b) Two-input OR gate

fppt.com

