FIRST YEAR Engg. Department

Course : BASIC ELECTRONICS -18ELN14/24

Course Coordinator:

V.B.Dhere

Digital Systems and Binary Numbers

\square Digital age and information age
\square Digital computers
General purposes
Many scientific, industrial and commercial applications
Digital systems
Telephone switching exchanges
Digital camera
Electronic calculators, PDA's
Digital TV
Discrete information-processing systems
Manipulate discrete elements of information
For example, $\{1,2,3, \ldots\}$ and $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots\} \ldots$

Analog and Digital Signal

Analog system
The physical quantities or signals may vary continuously over a specified range.
Digital system
The physical quantities or signals can assume only discrete values.
Greater accuracy

Decimal Number System

```
Base (also called radix) = 10
    10 digits {0,1,2,3,4,5,6,7,8,9}
Digit Position
    Integer & fraction
Digit Weight
    Weight =(Base)}\mp@subsup{)}{}{\mathrm{ Position}
Magnitude
    Sum of "Digit x Weight
```


Octal Number System

- Base = 8
-8 digits $\{0,1,2,3,4,5,6,7\}$
- Weights
- Weight $=(\text { Base })^{\text {Position }}$
- Magnitude
- Sum of "Digit x Weight"

Binary Number System

- Base = 2
-02 digits $\{0,1\}$
- Weights
- Weight $=(\text { Base })^{\text {Position }}$
- Magnitude
- Sum of "Digit x Weight"

Hexadecimal Number System

- Base = 16
-16 digits $\{0,1,2,3,4,5,6,7,8,9, A, B, C, D$, E, F \}
- Weights
- Weight $=(\text { Base })^{\text {Position }}$
- Magnitude
- Sum of "Digit x Weight"

Decimal (Integer) to Binary Conversion

- Divide the number by the 'Base’ (=2)
- Take the remainder (either 0 or 1) as a coefficient from bottom to top
- Take the quotient and repeat the division

Decimal (Fraction) to Binary Conversion

- Multiply the number by the 'Base' (=2)
- Take the integer (either 0 or 1) as a coefficient from top to bottom

Binary - Octal Conversion

- $8=2^{3}$
- Each group of 3 bits represents an octal digit

Binary - Hexadecimal Conversion

- $16=2^{4}$
- Each group of 4 bits represents a hexadecimal digit

Complements

- 1's Complement (Diminished Radix Complement)
- All '0's become ' 1 's
- All ' 1 's become '0's

Example (0110000$)_{2}$

$$
\Rightarrow(01001111)_{2}
$$

- 2's Complement (Radix Complement)
- Take 1's complement then add 1

Binary Logic

- Logic gates

(a) Two-input AND gate

(b) Two-input OR gate

(c) NOT gate or inverter

