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CHAPTER 6 
 

ELECTRICAL CONDUCTIVITY 
 
 
INTRODUCTION 
In the preceding chapter we have described and discussed diffusion of particles in solids and 
particularly of ions and defects in metal oxides. The driving force for the diffusion has been 
taken to be the negative value of the particle gradient or more precisely the negative value of 
the chemical potential gradient. When using isotopes as tracers one may study self-diffusion, 
i.e. diffusion of the components in the oxide (metal and oxygen ions) in a homogeneous 
oxide; in this case the isotopic tracer gradient is the driving force for the diffusion. 
 
In this chapter the transport of electrical charges will be described and discussed. In metal 
oxides the electrically charged particles comprise ions and electrons. The ionic charge carriers 
comprise the cations, anions, and foreign ions (e.g. impurity ions, dopant ions and protons) 
and the electronic charge carriers are the electrons and electron holes. The concentrations of 
the charge carriers are directly related to the defect structure of the oxide and in this chapter 
we will derive expressions for  the temperature and oxygen pressure dependence of the 
electrical conductivity. The discussion will be limited to transport of charges in chemically 
homogeneous metal oxides (no chemical potential gradient) but with an electrical potential 
gradient as the driving force. In the next chapter transport of ionic and electronic charge 
carriers in metal oxides which are simultaneously exposed to chemical and electrical potential 
gradients, i.e. electrochemical potential gradients, will be discussed. 
 
As the mobilities of electrons and electrons holes are normally much higher than those of ions, 
most oxides are electronic conductors. One type of charge carrier often predominates in an 
oxide under particular conditions of temperature and oxygen pressure. An electronically 
conducting oxide is an n-conductor if transport of electrons predominate and a p-conductor if 
electron holes prevail. However, some oxides are or may become ionic conductors or mixed 
ionic/electronic conductors depending on the temperature and oxygen pressure often as a 
result of appropriate doping with aliovalent foreign ions. Some oxides may also exhibit proton 
conductivity in hydrogen- or water vapour-containing atmospheres; predominant proton 
conductivity in such oxides is in some cases observed at reduced temperatures (< 600-700 
°C).  
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TRANSPORT IN AN ELECTRICAL POTENTIAL GRADIENT 
As described in the previous chapter on diffusion in metal oxides the driving force is given by 
the negative of the potential gradient. The force exerted on a charged particle of type i with 
charge zie is given by  
 

 F = -zie dφ
dx  = zieE        (6.1a) 

 

where φ is the electrical potential and E = - dφ
dx   is termed the electric field. 

 
The flux of particles of type i is the product of the concentration ci, the particle mobility Bi, 

and the force F: 
 
 ji = ciBi F = zie ciBiE        (6.1b) 
 
The current density Ii is given by the product of flux and charge: 

 
 Ii = zieji = (zie)2 Bi ci E        (6.2) 
 
While Bi is the particle mobility ("beweglichkeit") , the product of Bi and the charge on each 
particle, zie, is termed the charge carrier mobility ui: 

 
 ui = zieBi          (6.3) 
 
Equation 6.2 can then be written 
 
 Ii = zie ciui E = σi E         (6.4) 
 
where σi = zie ciui is the electrical conductivity due to the charge carriers of type i. The 
electrical conductivity is determined by the product of the concentration ci of the charged 
particles, the charge zie on the particles and the charge carrier mobility, ui. It should be noted 
that Eq.6.4 is an expression of Ohm's law. The unit for the electrical conductivity is Siemens 
per cm, Scm-1 (one Siemens is the reciprocal of one ohm and in older literature the electrical 
conductivity is expressed as ohm-1cm-1). The unit for the charge is coulomb, the 
concentration of charge carriers is expressed as the number of charge carriers of type i per 
cm3, and charge carrier mobility in units of cm2/Vs. (Although the SI unit for length is m, cm 
is being used in the following as it is still by far the one most commonly used in the 
literature). 
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It may be noted that in the above terminology, F, E, Ii, zi, ui and ji may each be positive or 
negative. ui and zi always have the same sign, and as long as no other forces than the the 
electrical act, Ii and Ei always have the same sign, and ji and F always have the same sign. Bi 
and σi are always positive, and it is common also to neglect the sign when specifying charge 
carrier mobilities ui. 

 
The total electrical conductivity σ of a substance is the sum of the partial conductivities σi of 
the different charge carriers: 
 
 σ = ∑

i
σi           (6.5) 

The ratio of the partial conductivity σi to the total conductivity σ is termed the transport (or 
transference) number of species i: 
 

 ti = 
σi
σ             (6.6) 

 
 
Charge carriers in oxides. 
The native charge carriers in a binary oxide are the cations, anions, electrons, and electron 
holes. The total conductivity is then given by  
 
 σ = σc + σa + σn + σp         (6.7) 
 
where σc, σa, σn, and σp are the cation, anion, electron and electron hole conductivities, 
respectively. 
 
Following Eq.6.6 the individual conductivities may be written in terms of their transport 
numbers: σc = tc σ, σa = σ ta, σn = σ tn and σp = σ tp. Using these values Eq.6.7 takes the 
form 
 
 σ = σ (tc + ta + tn + tp)        (6.8) 
 
It may be noted that the sum of the transport numbers of all the charge carriers equals unity: 
tc + ta + tn + tp = 1 
 
The total electrical conductivity is often given by the sum of the ionic conductivity,  σion = σc 
+ σa, and the electronic conductivity, σel = σn + σp, and the total conductivity can then be 
written 
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 σ = σion + σel         (6.9) 
 
Often only one type of charge carrier dominates the charge transport, and in many cases and 
as an approximation contributions from minority carriers are neglected. For oxides the 
mobilities of electrons and electron holes are usually several orders of magnitude (~104 - 108) 
larger than those of the ions, and even when the concentration of electron or electrons holes is 
smaller than that of the ionic charge carriers (or, more precisely, than that of ionic charge 
carrier defects) the oxide may still be a predominantly electronic conductor. The relative 
importance of ionic and electronic conductivity will often vary greatly with temperature and 
oxygen pressure. This will be illustrated in the following chapters. 
 
 
The Nernst-Einstein equation: Relation between the mobility and diffusion coefficient. 
In the previous chapter it was shown that the relation between the random diffusion 
coefficient of particles of type i and the particle mobility is given by  
 
 Di = kTBi 

 
By combining this relation with Eqs.6.3 and 6.4 one obtains the following relation between 
the random diffusion coefficient and the charge carrier mobility and the electrical 
conductivity: 
 

 Di = ui 
kT
zie  = σi 

kT
ciz

2
i e2        (6.10) 

 
This relation is called the Nernst-Einstein relation. 
 
This relation and also the effect of an applied electric field on migration of charged species in 
a homogeneous crystal may also be derived from the following model. 
 
Consider a one-dimensional system with a series of parallel planes separated by a distance s 
(cf. Fick's first law in Chapter 5). It is assumed that the system is homogeneous and that the 
volume concentration of the particles in the planes is ci. The particles in neighbouring planes 
1 and 2 have equal probability of jumping to the neighbouring  planes. In the absence of any 
external kinetic force, the number of particles which jump from plane 1 to plane 2 and from 2  
to 1 per unit time is equal and opposite and given by 12 ωcis. In a homogeneous system there 

will be no net transport of particles.  
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When there is no applied electric field, the activation energy associated with the jumps is 
∆Hm. When an electric field E is applied, the jump frequency in the positive direction will be 
increased and that in the negative direction decreased in that the activation energies are 
changed. In the forward direction the activation energy is reduced to ∆Hm- 12 ziesE and in the 

reverse direction increased to ∆Hm+ 12 ziesE. This is illustrated schematically in Fig.6.1. 

 
The net particle flux is given by the difference in number of jumps in the forward and reverse 
directions: 
 
 ji = 12 cis {ωforw - ωrev}       (6.11) 

 
where  

ωforw = ν exp(
∆S

k
m ) exp(- 

∆H -  
z esE

2
kT

m
i

)  

 
and  
 

ωrev = ν exp(
∆S

k
m ) exp(- 

∆H +  
z esE

2
kT

m
i

). 
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Fig.6.1 Schematic illustration of the effect of an electric field on the migration of 
charged species in a homogeneous crystal. E represents the electric field. ∆Hm is the 
activation energy in the absence of an electric field. In the forward direction the 
activation energy may be considered to be lowered by 12  ziesE and increased by the 

same amount in the reverse direction. 
 
Equation 6.11 then becomes  
 

 ji = 
1
2  cisω{exp (

ziesE
2kT   ) - exp (- 

ziesE
2kT  )}     (6.12) 

 

where ω = ν exp(
∆S

k
m ) exp(- 

∆Hm
kT  ). 

 
When ziesE << 2kT, which is valid for all normal electrical measurements in bulk materials 
(and when Ohm's law is applicable) then the difference in exponentials in Eq.6.12 may be 
written ziesE/kT (since ex - e-x = 2x for x<<1). Eq.6.12 then takes the form 
 

 ji =  
1
2  ωs2ci 

zieE
kT          (6.13) 

 
The diffusion coefficient for one-dimensional random diffusion is given by Di = 12  ωs2 and ji 

then becomes 
 

 ji = Di  
cizieE

kT           (6.14) 

 
As we have shown before, the flux of particles with a charge zie may also be expressed in 
terms of particle or charge carrier mobilities or conductivity: 
 

 ji = zie ciBiE = ci ui E = 
σiE
zie         (6.15) 

 
and when one combines Eqs.6.14 and 6.15 one obtains various forms of the Nernst-Einstein 
relation (Eq.6.10) 
 

 Di = Bi kT = ui 
kT
zie  = σi 

kT
ciz

2
i e2       (6.10) 
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It is emphasised that the relation is derived assuming random diffusion and that the mobilities 
and conductivity through this relation connects to the random (or self) diffusion coefficient Dr 

. It is thus meaningful for relating electrical and diffusional transport of atoms and ions. For 
electrons and holes this is only meaningful when they migrate by an activated hopping 
mechanism. 
 
From the Nernst-Einstein relation it is also seen that the temperature dependence of the 
product σiT is the same as that of Dr. Thus in evaluating the activation energy associated with 
the diffusion coefficient from conductivity measurements, it is necessary to plot (σiT) vs 1/T. 
 
It is also important to note that in the derivation it is implicitly assumed that the ions and 
electrons move independently of each other, i.e. that there is no interference between ionic 
and electronic flows. In the literature this has generally been assumed to be the case, but 
recent studies - so far mainly on CoO - have shown that this is not necessarily the case. This 
will be further discussed in the chapter on the properties of CoO. 
 
 
ELECTRONIC CONDUCTIVITY IN OXIDES 
Most metal oxides are electronic conductors at high temperatures. For many of these oxides 
the conductivity increases with increasing temperature and as the conductivity at the same 
time is much smaller than in metals, this type of conductivity is termed semiconductivity. The 
principal reason for the increasing conductivity is that the number of electronic defects 
increases with increasing temperature. A limited number of oxides - especially among 
transition metal monoxides - are metallic conductors and for which the conductivity decreases 
with increasing temperature. In this case this is attributed to a mobility of electronic defects 
decreasing with increasing temperature. Other oxides, e.g. p-conducting acceptor-doped 
perovskites to be discussed in a later chapter, also exhibit metallic-like conductivity in that the 
conductivity also here decreases with increasing temperature; however in these cases the 
decreasing conductivity is attributed to a decreasing number of electron holes with increasing 
temperature, and the conductivity is thus not to be classified as metallic. 
 
The electronic conductivity, σel, of a semiconducting oxide is given by  
 
 σel = σn + σp = enun+ epup       (6.16) 
 
where σn and σp are the electron and electron hole conductivities, n and p the charge carrier 
concentrations of electrons and electron holes, respectively, and un and up are the carrier (or 
drift) mobilities of electrons and electron holes. As mentioned above, one type of charge 
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carrier will often dominate; however, in special cases where an oxide is close to stoichiometric 
both n- and p- conductivity may contribute significantly to the electronic conductivity. 
 
In defect-chemical equations the concentrations of electrons and electron holes are often 
written in terms of the law of mass action without specifying where the electronic defects are 
located. The concentrations of electronic defects are often interpreted in terms of the band 
theory of solids and in the following is given a brief account of this theory and the 
relationship between this theory and the law of mass action. 
 
 
THE BAND THEORY 
 
In single atoms the electrons may only possess discrete energies. These allowed energies are 
designated by quantum numbers which refer to the electron shell which the electron occupies 
(the principal quantum number), the orbital angular momentum of the electron (azimuthal 
quantum number), and the direction of the angular momentum vector (magnetic quantum 
number). In addition, and according to the Pauli exclusion principle, each energy state can 
only be accommodated by two electrons which have opposite spins. 
 
When individual atoms are brought together in a solid, i.e. when interatomic spacing 
decreases and electronic levels overlap, a splitting of the energy levels begin to occur, and the 
energy levels may be considered to form energy bands in the solid. But the total number of 
levels within a band corresponds exactly to the total number of atoms present in the solid, and 
therefore the levels become more and more finely spaced the larger the number of atoms 
present. Because of the Pauli exclusion principle, each band can accommodate twice as many 
electrons as there are energy levels. Solids contain 1022 - 1023 atoms per cm3, and the number 
of levels in each band is thus of the same order. 
 
The energy bands may overlap or be separated by energy gaps. At absolute zero temperature 
(0 K) the electrons fill up the lowest possible energy levels. The highest filled band represents 
the orbitals of valence electrons and is termed the valence band. It is completely filled at 0 K 
while the next band, termed the conduction band is completely empty. In Fig.6.2, where the 
vertical axis represents the electron energy and horizontal axis the distance through the solid, 
the valence and conduction bands are separated by an energy gap, as is the case in 
semiconductors and insulators. In a pure, perfect and ideal solid the electrons may not possess 
energies within the energy gap, and this is therefore also often termed the forbidden energy 
gap. The size of the energy gap differs for inorganic compounds, and empirically it is found 
that the energy gap increases with the heat of atomisation of the compounds. For binary 
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semiconductors and insulators it has specifically been shown that the band gap, Eg (in electron 
volts) can be expressed approximately as 
 
 Eg = 2(Es - c)         (6.17) 
 
where Es = Eat/equivalent* and c is a constant approximately equal to 2.7. 
 
In materials where the valence band is only partly occupied or where it overlaps with the 
conduction band (no forbidden band gap) the electrons can move freely in the available 
energy levels and we have metallic conduction.  
 
In an insulator or semiconductor at 0 K there is a band gap and the valence band is completely 
filled with electrons while the conduction band is completely empty. In such cases no 
electronic conduction takes place when an electric field is applied. 
 
 

 
 
 
 
 
 
 
 
Fig.6.2. Schematic illustration of the 
energy band diagram for a pure 
semiconductor 
 
 

 
Intrinsic ionisation.    When the temperature is increased, electrons in the valence band are 
excited across the forbidden energy gap to the conduction band. This is the intrinsic 
ionisation. The electrons in the conduction band and the unoccupied electron sites in the 
valence band (electron holes) can move in an electric field. The electron holes behave as 
though they were positively charged and move in the opposite direction of the electrons. The 
intrinsic ionisation thus produces pairs of electron + electron hole charge carriers. When the 
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electronic conductivity is due to intrinsic ionisation only, the semiconductor is called an 
intrinsic semiconductor. According to this model electron and electron hole conductivities 
increase with increasing concentrations of electrons in the conduction band and electron holes 
in the valence band. 
 
In many oxides, and particularly those with large percentage ionic bonding, periodic 
fluctuations of the electric potential associated with each ion become too large (and energy 
bands too narrow) so that the band model provides an inadequate description or theory. In this 
case the electrons or holes may be considered to be localised at the lattice atoms. Such 
localised electronic defects are termed polarons and may from a chemical point of view be 
considered to constitute valence defects. 
 
When classical statistics (the Boltzmann approximation) can be used it may be shown that the 
concentration of electrons and electron holes (expressed in number per cm3) is given by  
 

 n = NC exp(- 
EC-EF

kT  )        (6.18) 

 

 p = NV exp (- 
EF-EV

kT  )        (6.19) 

 
NC and NV represent the number of available states (degeneracy or effective density of states) 
per unit volume in the conduction and valence bands. EC is the energy of the lowest level of 
the conduction band and EV the highest level in the valence band. The parameter EF is termed 
the Fermi level and we will return to this later on.  
 
When the electrons occupy a narrow band of energies close to EC, a parabolic relation 
between NC and EC may be assumed and it may be shown that NC is then given by  
 

 NC = (  
8 m kT

h
 e

*

2

π )3/2        (6.20) 

 

where m
*
e  is the effective mass of the electron. When the holes occupy a narrow region of 

energies close to EV, NV is correspondingly given by  
 

 NV = (  
8 m kT

h
 h

*

2
π )3/2        (6.21) 

 



 11

where m
*
h  is the effective mass of the electron hole. The effective masses of electrons and 

electron holes are seldom accurately known and as an approximation the free electron mass is 
then used in these relations. 
 
The defect reaction and corresponding equilibrium between electrons in the conduction band 
and electron holes in the valence band can in terms of the law of mass action be expressed as  
 
 0 = e' + h.          (6.22) 
 
 n.p = Ki         (6.23) 
 
where Ki is the equilibrium constant for the intrinsic ionisation. Combination with Eqs. 6.18 

and 6.19 gives  
 

 Ki = n.p = NC NV exp (- 
Eg
kT )       (6.24) 

 
where Eg is the band gap, Eg = EC - EV. Eg may thus be considered the enthalpy of the 
intrinsic ionisation. It is emphasised that Eq.6.18 presupposes that classical statistics apply. It 
may also be noted that the Fermi level is eliminated in this expression of the law of mass 
action. It may be noted again that in Eq. 6.24 the concentrations of electrons and electron 
holes are expressed in terms of number per volume unit (e.g. per cm3).  
 
Intrinsic electronic semiconductor.     In an intrinsic semiconductor the concentrations of 
electrons and electron holes are equal, and thus 
 

 n = p = Ki1/2 = (NC NV)1/2 exp (- 
Eg

2kT )     (6.25) 

 
and the electronic conductivity (Eq.6.16) then becomes 
 

 σel = σn + σp = enµn + epµp = e (NCNV)1/2(un + up) exp(- 
Eg

2kT )  (6.26) 

 
It may be noted that NC and NV are temperature dependent and that also un and up may have 
various dependencies on temperature. If the latter are not exponential (as in diffusional 
hopping conduction processes) the exponential term of the energy gap tend to dominate the 
temperature dependence and as an approximation Eq.6.26 is then often written 
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 σel = const. exp(- 
Eg

2kT )       (6.27) 

 
From these relations it is evident that the intrinsic electronic conductivity increases with 
decreasing energy gap. 
 
 
Effects of charged impurities or defects. Extrinsic semiconductors.    As stated before, 
the valence and conduction bands may be considered to constitute the highest filled orbital 
and the lowest empty orbital, respectively. The valence band may in an oxide typically 
represent the 2p states of the O2- ions, and removing an electron from here (creating a hole) 
may be regarded as the creation of an O- ion, which is intuitively possible. The conduction 
band typically represents the reduced state of a metal constituent ion. For instance, in oxides 
with Ti4+ such as TiO2 or SrTiO3 the conduction band would typically represent the 4s state 

of the Ti3+ ion. The size of the band gap can be imagined to represent the difficulty of 
simultaneously oxidising O2- to O- and reducing Ti4+ to Ti3+. In the chosen example we 
expect a moderate band gap. Similar oxides with Mn4+ would be more easily reducible and 
have smaller band gaps, while oxides with Si4+ or Zr4+ are less easily reducible and have 
larger band gaps.  
 
Let us now consider the addition of small amounts of imperfections or impurities. These may 
be considered to contribute additional localised energy levels in the crystal. It is commonly 
assumed that these always fall within the forbidden gap. As we shall see later on this leads to 
situations where a certain temperature is needed to excite these defects to become effectively 
charged. This is not in accordance with experimental evidence and is not intuitive for 
imperfections with very stable aliovalent valence states. Thus, we will first consider cases 
where imperfections introduce levels outside the forbidden gap. 
 
If these levels fall below the valence band edge EV they will always be occupied (even at 0 

K) and be in a reduced state. We refer to it as an acceptor imperfection. For instance, Al4+ 
substituting Ti4+ in the abovementioned oxides may always be considered to be reduced to 
Al3+ and as such be a charged defect even at 0 K, for instance taking the electron from the 
valence band. We may draw this conclusion from the higher stability of O- as compared to 
Al4+.  
 
Similarly, an imperfection introducing a level above the conduction band edge EC may 

always be considered to lose its electron and be oxidised even at 0 K. We refer to it as a 
donor. For instance, La2+ substituting Sr2+ and possibly Ta4+ substituting Ti4+ would be 
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oxidised to La3+ and Ta5+ by giving off the electron to the easier formed Ti3+ of the 
conduction band. 
 
The above examples lead to compensating electronic defects even at 0 K, but real cases may 
comprise simultaneous formation of point defects that may annihilate the electronic defects, 
(depending on oxygen activity). Thus, while Ca substituting La in LaCrO3 is compensated by 
electron holes at high oxygen partial pressures, Al or Ta substituting Ti in SrTiO3 will be 

compensated by oxygen vacancies or metal vacancies, respectively, under the same 
conditions. Of course, this brings up a question of whether native point defects such as 
vacancies at different stages of ionisation themselves introduce levels within or outside the 
band gap. If aliovalent dopants charged at 0 K are to be compensated by point defects at 0 K, 
these point defects must themselves be charged at 0 K and thus have levels outside the band 
gap. 
 
In the following we consider imperfections introducing levels inside the forbidden energy gap 
as illustrated in Fig.6.3. When the imperfection introduces an energy level which is located  

 
 
 
 
 
Fig.6.3  Schematic illustration 
of additionally localised 
energy levels due to donors 
and acceptors in the 
forbidden energy gap in the 
energy band diagram of a 
semiconductor. 

 
 
below the lower edge of the conduction band (EC), electrons can be thermally excited to the 
conduction band. As such the imperfection donates an electron, it is called a donor and the 
corresponding energy level a donor level. Under conditions where such imperfections 
dominate the defect structure the oxide becomes an n-conductor. Correspondingly, 
imperfections with energy levels just above the upper edge of the valence band (EV) are 
termed acceptors; electrons in the valence band may be excited to the energy level of the 
imperfection (acceptor level) and the oxide may become a p-conductor.  
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In SrTiO3 it is for instance found that Fe4+ substituting Ti4+ is an acceptor inside the gap; 

Fe3+ (the result after acceptance of an electron) is less favourable than Fe4+ (when the 
electron is taken from O2-) and at a higher energy than the valence band of the O2- electrons, 
but Fe3+ is clearly more favourable than Ti3+ and thus way below the conductance band. 
Similarly, oxygen vacancies are considered to be donors in the gap, and this can be viewed as 
a trapping of electrons at Ti4+ (as Ti3+) near the vacancy.  
 
While donors and acceptors inside the forbidden gap have positive energies of ionisation, the 
donors and acceptors outside the gap may be considered simply to have negative energies of 
ionisation. 
 
Effects of donors. Let us again describe these processes in terms of the law of mass action. 
Thus the ionisation of a donor Dx may be written 
 
 Dx = D.  + e'         (6.28) 
 
 and the corresponding equilibrium by 
 

 
[D.] n
[Dx]   = KD         (6.29) 

 
If the total number of donors is ND, then 
 
 ND = [D. ] + [Dx]        (6.30) 
 
If the energy of the donor state is ED, and the donor state is mainly empty ([Dx]<<ND) then 

the concentration of electrons in the donor state, [Dx], may following Boltzmann statistics (be 
expressed by  
 

 [Dx] = ND exp (- 
(ED-EF)

kT  )       (6.31) 

 

Since we assume 
[Dx]
ND  <<1, and that Boltzmann statistics also apply to conduction band 

electrons and by further combining Eqs.6.18 and 6.29-6.31, we get an expression for KD: 
 

 KD = NC exp (- 
EC-ED

kT  ) = NC exp (- 
Ed
kT )     (6.32) 
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where Ed = EC-ED represents the ionisation energy of the donor (cf. Fig.6.3). Ed may in 

Eq.6.32 be considered to be the enthalpy of the ionisation of the donor. 
 
When no other imperfections are present, the situation described here can be approximated by  
 
 n = [D.] ≈ ND         (6.33) 

 
and if the donors are present in an invariable amount as a fully soluble or frozen-in impurity, 
then n = [D·] ≈ND = constant. From Eq. 6.29, we then get the minority concentration of 

neutral unionised donors: [Dx] = N
2
D  N

-1
C   exp(+Ed/kT). 

 
If, on the other hand the donor level is mainly unionised, then [D·]<<[Dx] ≈ ND and 

Boltzmann statistics give  
 

 [D·] = ND exp(-
(EF-ED)

kT  )       (6.34) 

 
and then, by combination with Eqs. 6.18, 6.29, and 6.30 we again obtain KD = NC exp(-
Ed/kT) as in Eq.6.32.  

 
If the electroneutrality condition in the oxide is still given by  
 
 n = [D. ]          (6.35) 
 
(but now [D·]<<ND), then the concentration of electrons is, from insertion in Eq.6.29: 

 

 n = [D·] = (KD ND)1/2 = (NC ND)1/2 exp (- 
Ed

2kT )    (6.36) 

 
The reader may find it useful to note the similarity between the form of this expression and 
Eq.6.25. However, we also remind ourselves that ND may be a constant concentration of 

impurities or a constant or varying level of other point defects such as anion vacancies or 
cation interstitials. 
 
In the above we have seen that the same equilibrium constant KD for Eq. 6.28 applies whether 

the donor level is approximately empty (fully ionised) or approximately fully occupied 
(practically unionised, or, in this case, neutral). But our treatment does not hold for 
intermediate situations, i.e. what we may call partly filled donor levels. In the latter case 
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Boltzmann statistics do not represent a sufficiently good approximation, and instead Fermi-
Dirac statistics must be used.  
 
Let us recapitulate briefly the treatment of the ionisation of a constant concentration of a 
donor in the forbidden gap of an otherwise pure, stoichiometric, ideal semiconductor: At low 
temperatures, the concentration of electrons is given by a minor degree of ionisation of the 
donors, as given by Eq.6.36. If we neglect the temperature dependence of NC, the situation 

can be illustrated as in the right-hand part of Fig. 6.4; the concentration of electrons increases 
with an apparent enthalpy of Ed/2. At a sufficiently high temperature (middle part of Fig. 6.4) 

all donors are ionised, and the concentration of electrons becomes constant (Eq.6.33). At even 
higher temperatures intrinsic semiconduction may predominate, i.e., n = p, and in principle the 
temperature dependence becomes as illustrated in the left hand part of Fig.6.4, with an 
apparent enthalpy close to Eg/2 (cf. Eq.6.25). Thus at low temperatures this oxide is an n-

conductor due to the ionisation of the donors and at high temperatures intrinsic ionisation 
predominates. The behaviour over the entire temperature range could in principle be solved 
from the full electroneutrality equation 
 
 n = [D·]+ p          (6.37) 
 
in combination with the constancy of the donor concentration and the expressions for the 
equilibrium constants Ki (Eq.6.24) and KD (Eq. 6.32). However, as noted above, the 
expression for KD would not be valid between the intermediate and low temperature (right 

hand side) domains in Fig. 6.4. 
 

 
 
 
 
 
 
Fig.6.4  Schematic illustration of the 
logarithm of the concentration of defect 
electrons as a function of the reciprocal 
absolute temperature for a semiconductor 
with donors. 
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Effects of acceptors.   A corresponding treatment may be made for ionisation of acceptors, 
which in terms of a defect reaction may be written 
 
 Ax = A' + h.          (6.38) 
 
The equilibrium constant for the defect reaction is given by  
 

 
[A'] p
[Ax]   = KA         (6.39) 

 
Following a similar treatment as for the donor, KA may under the assumption that Boltzmann 
statistics apply to the valence band (small concentration of holes) and the acceptor (nearly full 
or nearly empty acceptor levels) be expressed by 
 

 KA = NV exp (-
EA-EV

kT  ) = NV exp (-
Ea
kT )     (6.40) 

 
where EA is the energy level of the acceptor and Ea = EA-EV is called the ionisation energy of 

the acceptor (cf. Fig.6.3).  
 
For an acceptor doped oxide the temperature dependence of the concentration of holes will be 
qualitatively analogous to that of electrons in the donor doped case (cf. Fig. 6.4) with the 
same constrictions. 
 
The Fermi level and chemical (or electrochemical) potential of electrons. 
In this chapter we have so far treated the defect equilibria for semiconductivity in terms of the 
band model. In this model one makes use of the parameter termed the Fermi level, EF. As the 

defect equilibria are otherwise described by equilibrium thermodynamics, it is of interest to 
correlate the band model with the thermodynamic approach.  
 
A chemical equilibrium implies that the chemical potential of a species is the same in all 
phases. As regards electrons in a system, this also means that their chemical potentials (or 
electrochemical potentials if the inner potential can not be neglected) must be equal, although 
they may have different energies. Thus the chemical potential of the electrons in general, µe, 
must be equal to the chemical potential of valence electrons, conduction electrons, etc., 
 
 µe = µ(cond. electrons) = µ(valence electrons)    (6.41) 
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The chemical potential of electrons, for instance, the conduction electrons, may be written in 
terms of the chemical potential in a standard state, µ°(cond. electrons) and a term for the 
entropy of mixing: 
 

 µe = µ(cond. electrons) = µ°(cond. electrons) + kT ln 
n

NC
    (6.42) 

 
From the relation between the concentration of conduction electrons, n, the conduction band 
energy level EC and the Fermi level EF (Eq.6.18) we may write 

 

 EF = EC + kT ln 
n

NC
         (6.43) 

 
By comparing Eqs. 6.42 and 6.43 it is seen that if EC is considered to be the chemical 
potential in the standard state for conduction electrons, the Fermi level represents the chemical 
potential of the conduction electrons, and thus of all electrons in a substance. 
 
CHARGE CARRIER MOBILITIES OF ELECTRONS AND ELECTRON HOLES. 
In the preceding chapters we have looked at temperature dependencies of concentrations of 
electronic defects and point defects, and we have looked at the conductivity and mobility of 
thermally activated diffusing species. In the following we consider the charge carrier 
mobilities of electrons and holes in some more detail. For instance for an intrinsic electronic 
semiconductor (where n=p) we can from Eq. 6.26 in combination with Eqs.6.20 and 6.21 
write an expression for σel: 
 

 σel = {2e(  
2 k
h

 2

π
)3/2 (m*

e .m*
h )3/4 T3/2 exp (- 

Eg
2kT )}(un + up)  (6.44) 

 
The effective mass of electrons and electron holes can be interpreted by a quantum 
mechanical treatment of electronic motion of electrons and electron holes in solids. The 
effective mass differs from the real mass of electrons due to the interaction of electrons with 
the periodic lattice of the atoms. Only for a completely free electron is the mass equal to the 
real mass, me=m*

e . As mentioned above, the values of the effective masses are not accurately 

known, and the value of me is often used as an approximation.  
 
In order to obtain an accurate description of the temperature dependence of the electronic 
conductivity it is necessary to consider the temperature dependencies of the charge carrier 
mobilities. 
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Non-polar solids.   The temperature dependence of the charge carrier mobility is dependent 
on the electronic structure of the solid. For a pure non-polar semiconductor - as in an ideal and 
pure covalent semiconductor - the electrons in the conduction band and the electron holes in 
the valence band can be considered as quasi-free particles. Then the mobilities of electrons 
and electron holes, un and up, are determined by the thermal vibrations of the lattice in that the 
lattice vibrations result in electron and electron hole scattering (lattice scattering). Under these 
conditions the charge carrier mobilities of electrons and electron holes are both proportional to 
T-3/2, e.g. 
 
 un,latt = const. T-3/2         (6.45) 
 
In this case the temperature dependence of σel (Eq.6.44) becomes 
 

 σel = const. T3/2.T-3/2 exp (- 
Eg

2kT ) = const. exp (- 
Eg

2kT )    (6.46) 

 
If, on the other hand, the scattering is mainly due to irregularities caused by impurities or 
other imperfections, the charge carrier mobility is proportional to T3/2, e.g. 
 
 un,imp = const. T3/2        (6.47) 
 
If both mechanisms are operative, the mobility is given by 
 

 u = 
1

1
ulatt

 + 
1

uimp

         (6.48) 

 
and from the temperature dependencies given above it is evident that impurity scattering 
dominates at low temperature while lattice scattering takes over at higher temperature.  
 
Polar oxides.   When electrons and electron holes move through polar oxides, they polarise 
the neighbouring lattice and thereby cause a local deformation of the structure. Such an 
electron or electron hole with the local deformation is termed a polaron. The polaron is 
considered as a fictitious single particle. 
 
When the interaction between the electron or electron hole and the lattice is relatively weak, 
the polaron is referred to as a large polaron. Large polarons behave much like free carriers 
except for an increased mass caused by the fact that polarons carry their associate 
deformations. Large polarons still move in bands, and the expressions for the effective density 
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of states in the valence and conduction bands are valid. The temperature dependence of the 
mobilities of large polarons at high temperatures* is given by  
 
 ularge pol. = const. T-1/2        (6.49) 
 
For an intrinsic semiconducting oxide where the electronic conductivity mechanism can be 
described in terms of a large polaron mechanism, the temperature dependence of σel can be 
written by combination of Eqs.6.44 and 6.49 
 

 σel = const. T. exp (- 
Eg
2kT )        (6.50) 

 
Thus in this case the value of the band gap can be deduced by plotting log(σel/T) vs 1/T. 
 
The large polaron mechanism has been suggested for highly ionic non-transition metal oxides. 
Such oxides have large energy gaps (Eg ≥ 6 eV), where the band structure is characterised by 
large band widths. Due to the large band gap one expects electronic semiconductivity to 
predominate only at high temperatures in these oxides. 
 
For other oxides it has been suggested that the interactions between the electronic defects and 
the surrounding lattice can be relatively strong and more localised. If the dimension of the 
polaron is smaller than the lattice parameter, it is called a small polaron or localised polaron, 
and the corresponding electronic conduction mechanism is called a small polaron mechanism.  
 
The transport of small polarons in an ionic solid may take place by two different mechanisms. 
At low temperatures small polarons may tunnel between localised sites in what is referred to 
as a narrow band. The temperature dependence of the mobility is determined by lattice 
scattering and the polaron mobility decreases with increasing temperature in a manner 
analogous to a broad band semiconductor.  
 
However, at high temperatures (for oxides >~500 °C) the band theory provides an inadequate 
description of the electronic conduction mechanism. The energy levels of electrons and 
electron holes do not form bands, but are localised on specific atoms of the crystal structure 
(valence defects). It is assumed that an electron or electron hole is self-trapped at a given 
lattice site, and that the electron (or electron hole) can only move to an adjacent site by an 

                                                 
* "High temperatures" are temperatures above the optical Debye temperature, θ. For oxides θ~(hω)/2πk, where h 

is the Planck constant, k the Boltzmann constant and ω the longitudinal optical frequency which for an oxide is  

~1014 s-1. 
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activated hopping process similar to that of ionic conduction. Consequently it has been 
suggested that the mobility of a small polaron can be described by a classical diffusion theory 
as described in a preceding chapter and that the Nernst -Einstein can be used to relate the 
activation energy of hopping, Eu, with the temperature dependence of the mobility, u, of an 

electron or electron hole: 
 

 u = e
kT  D =  const. T-1 exp ( - 

Eu
kT )      (6.51) 

 
where Eu is the activation energy for the jump. In a more detailed treatment it has also been 

shown that for very strong interactions (so-called nonadiabatic case) the small polaron 
mobility can alternatively be written  
 

 u = const. T-3/2 exp ( - 
Eu
kT )       (6.52) 

 
Both expressions have been used in the literature in interpretations of the small polaron 
mechanisms. 
 
At high temperatures, the exponential temperature dependence of small polaron mobilities can 
thus in principle be used to distinguish it from the other mechanisms. The different 
mechanisms can also be roughly classified according to the magnitude of the mobilities; the 
lattice and impurity scattering mobilities of metals and non-polar solids are higher than large-
polaron mobilities which in turn are larger than small-polaron mobilities.  
 
Large polaron mobilities are generally of the order of 1-10 cm2/V-1s-1, and it can be shown 
that a lower limit is approximately 0.5 cm2V-1s-1.  
 
Small polaron mobilities generally have values in the range 10-4-10-2 cm2V-1s-1. For small 
polarons in the regime of activated hopping the mobility increases with increasing temperature 
and the upper limit is reported to be approximately 0.1 cm2V-1s-1.  
 
 
NONSTOICHIOMETRIC SEMICONDUCTORS. 
 
Corresponding expressions for σel for nonstoichiometric electronic semiconductors readily 
follows by considering the temperature and oxygen pressure dependence of the concentration 
of the electronic defects.  
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For nonstoichiometric oxides the concentration of electronic defects is determined by the 
deviation from stoichiometry, the presence of native charged point defects, aliovalent  
impurities and/or dopants. The concentration of electronic defects can be evaluated from 
proper defect structure models and equilibria. Various defect structure situations have been 
described in previous chapters and at this stage only one example - dealing with oxygen 
deficient oxides with doubly charged oxygen vacancies as the prevalent point defects - will be 
described to illustrate the electrical conductivity in nonstoichiometric oxides.  
 
 
Oxygen deficient oxides. 
Let us recapitulate the equations for formation of doubly charged oxygen vacancies. As 
described in Chapter 3 the defect equation may be written 
 

 OO = V2.
O  + 2e' + 12 O2       (6.53) 

 
The corresponding defect equilibrium is given by 
 

 [V2.
O ] n2 = KV2.

O
  p

-1/2
O2         (6.54) 

 
If we deal with a high-purity oxide where the concentration of impurities can be ignored 
compared to the concentration of oxygen vacancies and electrons, the electroneutrality 
condition becomes 
 

 n = 2[V2.
O ]         (6.55) 

 
By combining equations 6.54 and 6.55 the concentration of electrons is given by  
 

 n = 2[V2.
O ] = (2KV2.

O
 )1/3 p

-1/6
O2        (6.56) 

 
The total electrical conductivity is given by the sum of the conductivity of the electrons and of 
the oxygen vacancies: 
 

 σt = 2 e [V2.
O ] uV

2.
O

  + e n un       (6.57) 
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2 e [V2.
O ] uV2.

O
  represents the ionic conductivity due to the oxygen vacancies and where uV2.

O
  

is the mobility of the oxygen vacancies. However, if the electrons and oxygen vacancies are 
the prevalent charge carriers, the contribution due to oxygen vacancies can be ignored due to 
the much higher mobility of electrons than oxygen vacancies, and the oxide is an n-conductor 
where the conductivity can then be written 
 

 σt = σn = e n un = e un (2KV2.
O

 )1/3 p
-1/6
O2       (6.58) 

 
As described in previous chapters the equilibrium constant for the formation of doubly 
charged oxygen vacancies and 2 electrons is given by 
 

  KV2.
O

  = exp (
∆S

k
VO

2.

) exp(- 
∆H

kT
VO

2.

)      (6.59) 

 
When one combines Eqs.6.58 and 6.59 the n-conductivity may be written: 
 

 σt = σn = e un exp (
∆S

3k
VO

2.

) exp (- 
∆H
3kT

VO
2.

) p-1/6
O2      (6.60) 

 
Let us further assume that the electrons are small polarons and thus that the mobility of the 
electrons are given by Eq.6.51. The conductivity can then be expressed by  
 

 σn = const. 1T   exp (- 
∆H / 3 + E

kT
VO

2.
u ) p

-1/6
O2       (6.61) 

 

Thus following this equation the n-conductivity is proportional to p
-1/6
O2  , and if this defect 

structure situation prevails over a temperature range from T1 to T5, one will obtain a set of 
isotherms of the n-conductivity as shown in Fig.6.5. 
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Fig.6.5  Schematic presentation of 
different isotherms of the n-
conductivity at temperatures from 
T1 to T5 for an oxygen deficient 
oxide where the predominant defects 
are doubly charged oxygen 
vacancies and electrons. 
 
 

 
Furthermore, if it can be assumed that mobility of the charge carriers (defect electrons) is 
independent of the defect concentration, then a plot of the values of log10(σT) at a constant 
oxygen pressure yields a straight-line relationship as illustrated in Fig.6.6. The slope of the 

line is given by  - 
1

2.303k
 

H
3

  V O
2.∆

+ Eu, where the factor 2.303 is the conversion factor in 

changing from lne to log10. The activation energy is given by the term 
 

 Eσ = 
∆H

3
  V O

2.

+ Eu.        (6.62) 

 
 
 
 
Fig.6.6  Schematic illustration of a plot of  
log10(σnT) vs. the reciprocal absolute 
temperature at constant oxygen pressure (cf. 
Fig.6.5). The slope  of the line is given by  - 

 
1

2.303k
 

H
3

  VO
2.∆

+ Eu where   
H
3

  VO
2.∆

+ Eu  

is the activation energy for the n-conductivity. 
 
 

 
In general the temperature dependence of the charge carrier mobility of the electrons is much 
smaller than the enthalpy term associated with the formation of doubly charged oxygen 
vacancies. 
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The mobility of electronic charge carriers may be determined by measuring the electrical 
conductivity and combine these measurements with independent measurements of the 
concentration of the electronic charge carriers. The concentration of the charge carriers may 
be estimated from measurements of the Seebeck coefficient or by measurements of the 
nonstoichiometry combined with  the proper description of the defect structure (cf. Ch.7). 
 
For mixed conductors that exhibit both ionic and electronic conductivities it is necessary to 
delineate the ionic and electronic contributions. A commonly used technique for this is the 
emf method originally derived by Wagner. This will be described in the next chapter (Ch.7) 
dealing with electrochemical transport in metal oxides.  
 
 
CORRELATION EFFECTS: TRACER DIFFUSION AND IONIC CONDUCTION 
 
In the discussions of diffusion mechanisms in Chapter 5 it was pointed out that successive 
jumps of tracers atoms in a solid may for some mechanisms not be completely random, but are 
to some extent correlated. This is, for instance, the case for the vacancy and interstitialcy 
mechanisms. For a correlated diffusion of a tracer atom in a cubic crystal the tracer diffusion 
coefficient, Dt, is related to the random diffusion coefficient for the atoms, Dr, through the 
correlation coefficient f: 
 
 Dt = f Dr         (5.56) 
 
The value of f is governed by the crystal structure and the diffusion mechanism. 
 
Ionic conductivity method 
Values of the correlation coefficient may be determined by comparing the measured values of 
the ionic conductivity and the tracer diffusion coefficient. Thus the use of the Nernst-Einstein 
relation gives the following expression for the correlation coefficient: 
 

 f  = 
Dt
Dr  = 

Dt
σi

 
ci (zie)2

kT          (6.63) 

 
This equation is applicable to any diffusion process for which the atom jump distance is equal 
to the displacement of the effective charge, e.g. for vacancy and interstitial diffusion.  
 
However, in interstitialcy diffusion the charge displacement is larger than the atom jump 
distance, and a displacement factor S must be included in the Nernst-Einstein relation. In 
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collinear interstitialcy diffusion (Fig.5.9) the effective charge is, for instance, moved a 
distance twice that of the tracer atom and Dt/Dr is given by 
 

 
Dt
Dr  = 

Dt
S  

ci (zie)2

σikT   = f
S   (collinear)     (6.64) 

 
where S = 2. For a collinear jump in an fcc structure the displacement factor is 4/3. 
 
Studies on alkali and silver halides have provided illustrative, and by this time, classical 
examples of the applicability of the ionic conductivity method for determining the correlation 
factor and detailed aspects of the jumps in diffusion processes. NaCl, for instance, is 
essentially a pure cationic conductor. Measured ratios of Dt/Dr are in good agreement with the 
assumption that f =  0.78, i.e. that the Na-ions diffuse by a vacancy mechanism. 
 
However, such a simple relationship was not found for AgBr. AgBr is also a cationic 
conductor and comparative values of Dt (diffusion of Ag in AgBr) and of values of Dr  
evaluated from conductivity measurements are shown in Fig.6.7. 
 
From studies of the effect of Cd-dopants on the ionic conductivity it could be concluded that 
cationic Frenkel defects predominate in AgBr. Thus the diffusion was therefore expected to 
involve both vacancy diffusion and transport of interstitial ions. The experimentally measured 
ratios of Dt/Dr varied from 0.46 at 150 °C to 0.67 at 350°C. For vacancy diffusion a constant 
ratio of 0.78 (=f) would have been expected, and the diffusion mechanism could thus be ruled 
out. For interstitial diffusion f=1, and this mechanism could also be excluded. 
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Fig.6.7.   Values of Dt and of Dr evaluated 
from conductivity measurements for diffusion 
of Ag in AgBr. Results after 
Friauf(1957,1962). 
 

 
 
For interstitialcy diffusion of Ag in AgBr the value of f equals 2/3 for a collinear jump and 
0.97 for a non-collinear jump. Following Eq.6.64 one would thus expect that Dt/Dr would 
range from 0.33 for a collinear jumps to 0.728 for non-collinear jumps. On this basis Friauf 
(1957, 1962) concluded that the interstitialcy diffusion is the important mechanism in AgBr 
and that collinear jumps are most important at low temperatures while non-collinear jumps 
become increasingly important the higher the temperature. 
 
Simultaneous diffusion and electric field 
The ionic conductivity and Dt may in principle be studied in a single experiment, as described 
by Manning (1962) and others. If a thin layer of the isotopes is sandwiched between two 
crystals and the diffusion anneal is performed while applying the electric field, the tracer 
distribution profile is displaced a distance ∆x = uiEt relative to the profile in the absence of 
the applied field (Eq.5.31).The resultant tracer distribution is given by  
 

 c =  
c

2( D t)
  o

t
1/2π

exp (-
(x - x)

4D t
 

2

t

∆
)      (6.65) 

 
The maximum in the concentration profile is - as illustrated in Fig.6.8 - displaced a distance 
∆x, and ui and Dt may be determined from the same experiment. If the crystal is a mixed 
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ionic/electronic conductor, the value of the ionic transport number under the experimental 
conditions must be known. 
 

 
 
 
 
Fig.6.8  Schematic illustration of the concentration 
profile of a radioactive tracer when an electric field 
is applied during the diffusion anneal. The tracers 
are originally located at 0, but the concentration 
profile is displaced a distance ∆X = uiEt. 
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