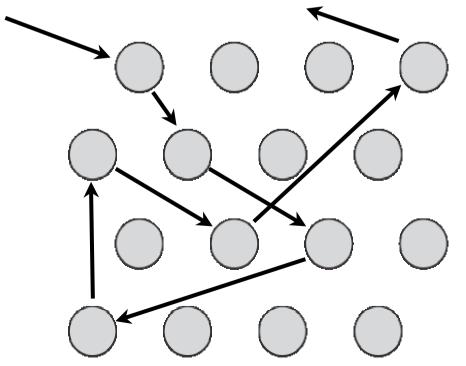
METALS-Drude's classical theory

- Theory by Paul Drude in 1900, only three years after the electron was discovered.
- Drude treated the (free) electrons as a classical ideal gas but the electrons should collide with the stationary ions, not with each other.



average speed

$$rac{1}{2}mv_t^2 = rac{3}{2}k_BT$$
 $v_t = \sqrt{rac{3k_BT}{m}}$

so at room temp.

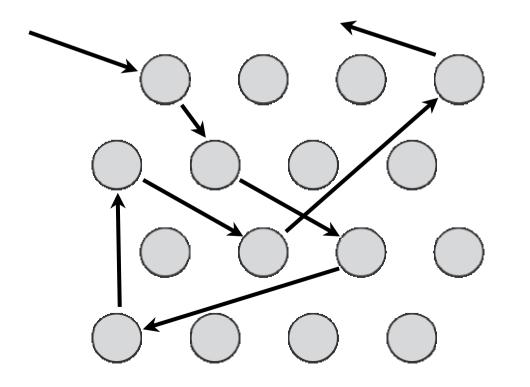
 $v_t \approx 10^5 \mathrm{ms}^{-1}$

Drude's classical theory

relaxation time au

scattering probability per unit time 1/ au

mean free path $\lambda = au v_t$



 $v_t \approx 10^5 {
m ms}^{-1}$ $\lambda \approx 1 {
m nm}$

 $\tau \approx 1 \times 10^{-14} \mathrm{s}$

classical ideal gas

Drude theory: electrical conductivity

Ohm's law
$$j = rac{n e^2 au}{m_e} E$$

$$j = \sigma E = rac{E}{
ho}$$

and we can define the conductivity

$$\sigma = \frac{n e^2 \tau}{m_e} = n \mu e$$

and the resistivity

$$\rho = \frac{m_e}{ne^2\tau} = \frac{1}{n\mu e}$$

ет

 m_e

μ=

and the mobility

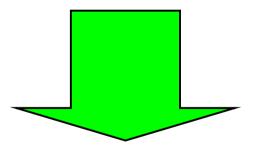
Validity of Ohm's law

- Valid for metals.
- Valid for homogeneous semiconductors

Failures of the Drude model: heat capacity

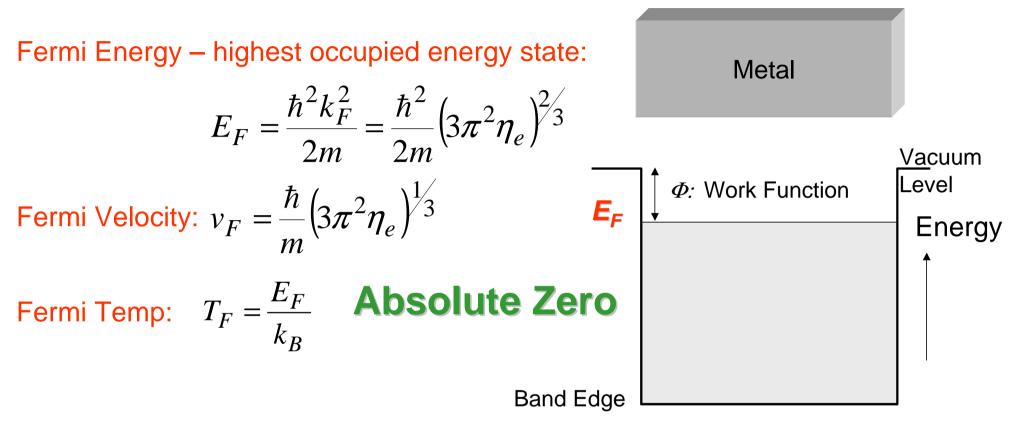
consider the classical energy for one mole of solid in a heat bath: each degree of freedom contributes with $\frac{1}{2}k_BT$

• Experimentally, one finds a value of about $3N_Ak_B$ at room temperature, independent of the number of valence electrons (rule of Dulong and Petit), as if the electrons do not contribute at all !!!!



Description by DOS - electron continuum Only state close to so called Fermi energy contribute

Description by DOS- electron continuum



Element	Electron	Fermi	Fermi	Fermi	Fermi	Work
	Density, η_e	Energy	Temperature	Wavelength	Velocity	Function
	$[10^{28} \text{ m}^{-3}]$	E_F [eV]	$T_F [10^4 \text{ K}]$	$\lambda_{F}[{ m \AA}]$	$v_F [10^6 \text{ m/s}]$	$\Phi[eV]$
Cu	8.47	7.00	8.16	4.65	1.57	4.44
Au	5.90	5.53	6.42	5.22	1.40	4.3
Fe	17.0	11.1	13.0	2.67	1.98	4.31
Al	18.1	11.7	13.6	3.59	2.03	4.25

Number and Energy Densities

classical ideal gas replaced by Electron Density of States- DOS

Number density:
$$\eta_e = \frac{N}{V} = \int_0^\infty f(E)D_e(E)dE;$$

Energy density:
$$\in_e = \frac{E_e}{V} = \int_0^\infty Ef(E)D_e(E)dE$$

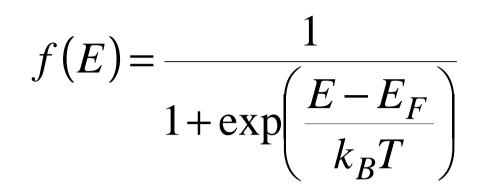
Density of States - Number of electron states available between energy *E* and *E*+*dE*

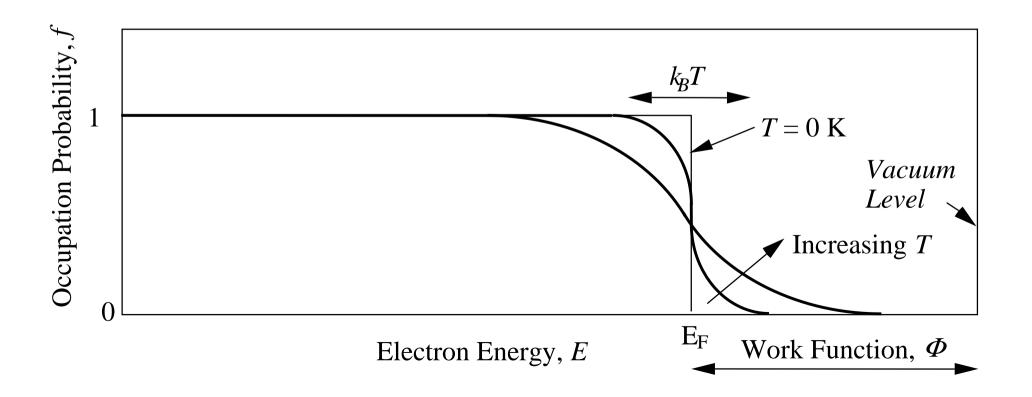
$$D_e(E) = rac{m}{\hbar^2 \pi^2} \sqrt{rac{2mE}{\hbar^2}}$$
 in 3D

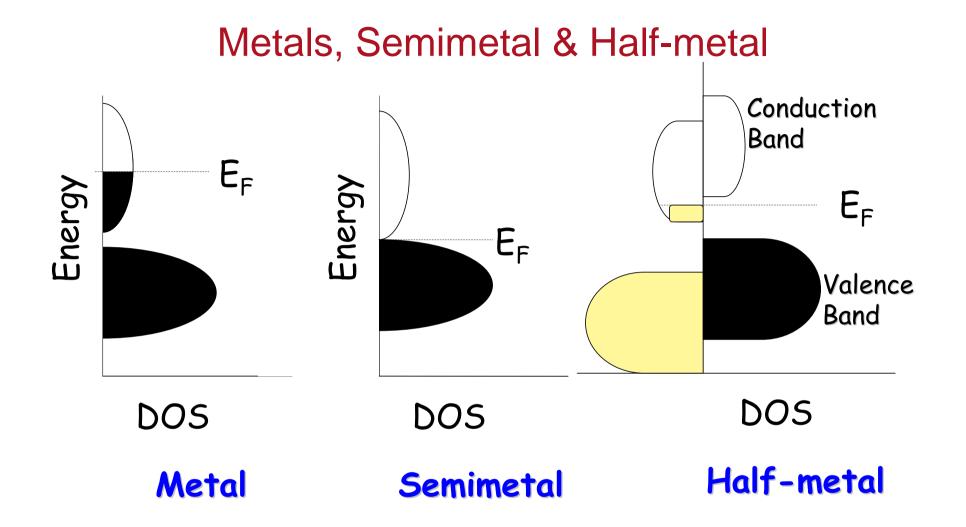
Effect of Temperature

Fermi-Dirac equilibrium distribution

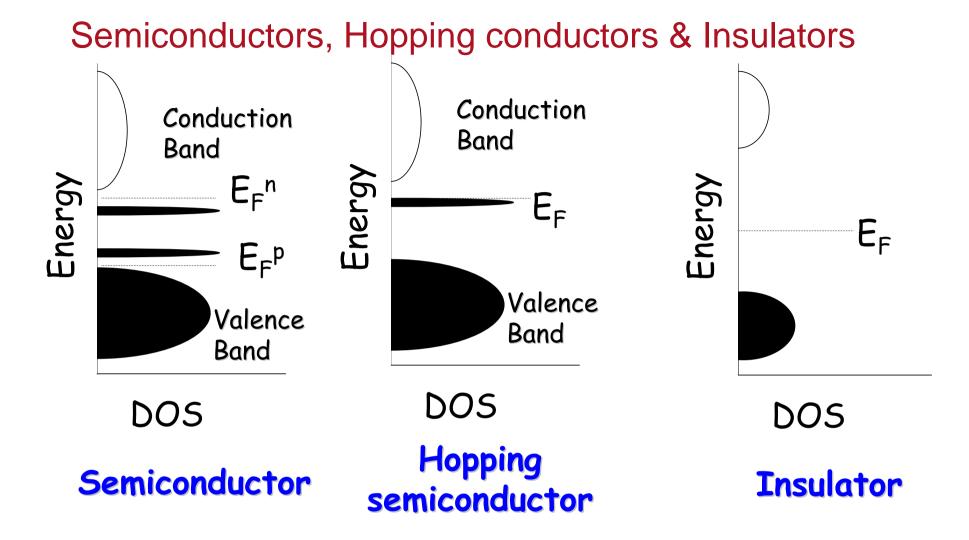
for the probability of electron occupation of energy level E at temperature T







In a metal the Fermi level cuts through a band to produce a partially filled band. A semimetal results when the band gap goes to zero. A half metal results when there is only one spin (up or down) of charge carriers.



In a semiconductor/insulator there is an energy gap between the filled bands and the empty bands. The distinction between a semiconductor and an insulator is artificial, but as the gap becomes large the material usually becomes a poor conductor of electricity. A hopping semiconductor results when the Fermi level falls within narrow band, W<k_BT, polarons, impurities, disorder.

Electrical transport-Temperature Dependence-

 $\sigma = n e^2 \tau / m^*$

•<u>In Metals</u>

- The carrier concentration, n, changes very slowly with temperature.
- τ is inversely proportional to temperature ($\tau \alpha$ 1/T), due to scattering by lattice vibrations (phonons).
- Therefore, a plot of σ vs. 1/T (or ρ vs. T) is essentially linear.
- Conductivity goes down as temperature increases

In Semiconductors-

- The carrier concentration increases as temperature goes up, due to excitations across the band gap, E_q.
 - •n is proportional to $exp\{-E_g/2kT\}$.
 - τ is inversely proportional to temperature
- The exponential dependence of n dominates, therefore, a plot of $\ln \sigma vs. 1/T$ is essentially linear.

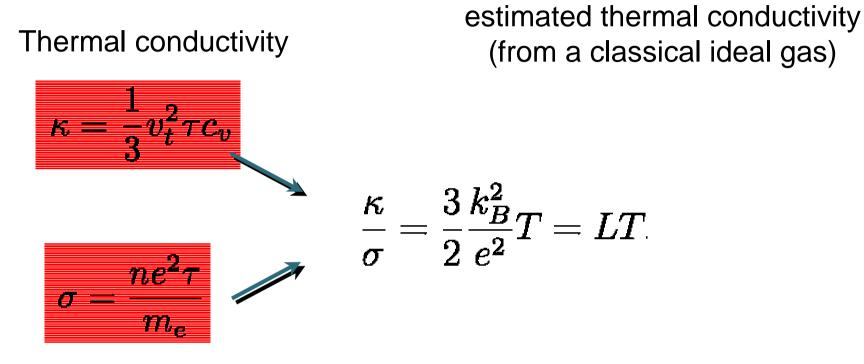
•Conductivity increases as temperature increases.

The Wiedemann-Franz law link between thermal and electrical conductivity

$$\frac{\kappa}{\sigma} = constant$$
$$\frac{\kappa}{\sigma T} = L$$

- Wiedemann and Franz found in 1853 that the ratio of thermal and electrical conductivity for ALL METLALS is constant at a given temperature (for room temperature and above). Later it was found by L. Lorenz that this constant is proportional to the temperature.
- Let's try to reproduce the linear behaviour and to calculate L
 here.

The Wiedemann Franz law



Electrical conductivity

the actual quantum mechanical result is

$$\frac{\kappa}{\sigma} = \frac{\pi^2}{3} \frac{k_B^2}{e^2} T = LT.$$

Comparison of the Lorenz number to experimental data at 273 K

metal	10 ⁻⁸ Watt Ω K ⁻²		
Ag	2.31		
Au	2.35		
Cd	2.42		
Cu	2.23		
Мо	2.61		
Pb	2.47		
Pt	2.51		
Sn	2.52		
W	3.04		
Zn	2.31		

$$\frac{\kappa}{\sigma} = \frac{\pi^2}{3} \frac{k_B^2}{e^2} T = LT$$
 L = 2.45 10⁻⁸ Watt Ω K⁻²

The electronic properties of metals, semimetals, half-metals, semiconductors and insulators

