
Resistivity

Electric resistance R of a conductor depends on its size and shape as well as on the

conducting material. The size- and shape-dependence was discovered by Georg Simon Ohm

and is often treated as the second part of the Ohm’s Law: A conductor of length L and

uniform cross-sectional area A — such as a wire — has resistance

V

A
= R =

L

A
× ρ (1)

where ρ is the resistivity of the conducting material. Note: the only geometric

aspects of a wire which affect its resistance are the length L and the cross-sectional area A;

the shape of the cross-section — round, or square, or elliptic, or whatever — does not affect

the resistance.

Example: a copper wire of diameter d = 1
16

inch ≈ 1.6 mm and length L = 1.0 mile ≈
1600 m. The cross-sectional area of this wire is A = π(d/2)2 ≈ 2.0 mm2 while the resistivity

of copper is ρ ≈ 1.7 · 10−8 Ωm, hence the resistance is

R =
L

A
× ρ =

1.6 · 103 m

2.0 · 10−6 m2
× (1.7 · 10−8 Ωm) ≈ 14 Ω. (2)

Intuitively, we may understand the L/A dependence of resistance in terms of series or

parallel circuits: Every meter of a wire is in series with every other meter, hence R ∝ L.

On the other hand, every mm2 of the wire’s cross-section is in parallel with every other

mm2, hence R ∝ 1/A. However, similar arguments do not work for hydraulics where viscous

resistance to water flow through a pipe depends on shape of the pipe’s cross-section and

behaves like 1/radius4 instead of 1/radius2. The reason for this difference is the friction

between the flowing water and the pipe’s walls, which makes the water near a wall flow

slower than in the middle of the pipe. But in the electric case, the ‘friction’ is between the

moving electrons and the non-moving ions throughout the conducting metal, so the ‘walls’

or rather outer boundaries of the wire do not matter. Consequently, the electric resistance

is local in nature, which leads to its L/A dependence on the wire’s length and cross-section.
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To see how this works, let’s rewrite eq. (1) in a local form which does not refer to the

conductor’s geometry at all. For this, we need to define the electric current density

J =
I

A
=

current

cross− sectional area
. (3)

To be precise, J is a vector pointing in the direction of the current; in a wire J is parallel to

the wire, but in a more complicated conductor J can have different directions and different

magnitudes in different parts of the conductor. Thus, J(x, y, z) is a local vector quantity.

For a non-uniform J, the net current through some cross-section of the conductor is

I =

∫∫

crosssection

J · d2Area. (4)

Another important local quantity is the electric field E(x, y, z). In static electricity E van-

ishes inside a conductor, but once the current flows E 6= 0. In fact, the local form of Ohm’s

Law relates the electric field to the current density,

E = ρJ. (5)

The ρ here is precisely the same resistivity as in eq. (1). Indeed, for a uniform wire of length

L and cross-sectional area A, we have

V = L×E, I = A× J (6)

and therefore

R =
V

I
=

L×E

A× J
=

L

A
× E

J
=

L

A
× ρ. (7)

Resistivities of some common metals, semiconductors, and insulators are given in tables

24.2–4 on textbook pages 866 and 871. There are also plenty of online resources, for example

http://www.engineeringtoolbox.com/resistivity-conductivity-d˙418.html. Most metals have

resistivities between 1.6·10−8 Ωm (silver) and 10−6 Ωm (nichrome alloy) while most insulator

have ρ’s ranging from 2 ·10+11 Ωm (polystyrene) to 10+24 Ωm (teflon). The semiconductors

have intermediate resistivities ranging from 10−3 Ωm to 10+3 Ωm, depending on purity and

doping.

2

http://www.engineeringtoolbox.com/resistivity-conductivity-d_418.html


Resistivities of metals increase with temperature. For example, the figure below

shows ρ(T ) for the tungsten:

The light-emitting filaments in light bulbs are made of tungsten. They get very hot, about

2800 K or 4600
◦

F, which increases the resistivity tenfold compared to room temperature.

Thus, once a light bulb has been lit for a couple of seconds, its electric resistance is ten times

larger than the cold bulb’s resistance!

For smaller changes of temperature, one often uses a linear approximation

ρ(T ) = ρ0 ×
(

1 + α× (T − T0)
)

(8)

where T0 is some reference temperature (typically 20
◦

C), ρ0 = ρ(T0), and α is the tempera-

ture coefficient of resistivity. For example α(copper) ≈ 3.9 · 1003 K−1, thus at 100
◦

C copper

has resistivity

ρ(100◦C) = ρ(20◦C)×
(

1 + α× (100◦ − 20◦)
)

≈ ρ(20◦C)× 1.31 ≈ 2.2 · 10−8 Ωm. (9)

On the other hand, at liquid nitrogen temperature 77 K (−196◦C or −321◦F), resistivity of

copper drops to just 0.18 of its room temperature resistivity.
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In contrast, resistivities of semiconductors and insulators decrease with tem-

perature:

The inverse resistivity

σ =
1

ρ
(10)

is called the conductivity. In terms of conductivity, the Ohm’s Law becomes

J = σE (11)

Drude Theory of Metals

Following the 1897 discovery of the electron by J. J. Thomson, Paul Drude and Hendrik

Antoon Lorentz developed a theory of electric properties of metals based on electron gas.

It’s a classical theory — it does not include any quantum effects — and it ignores long-range

interactions between electrons and ions, so it is not too accurate, but qualitatively it works

surprisingly well. In these notes, I’ll show how this theory — called the Drude model explains

the electric resistivity of metals.
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In the Drude model a metal comprises a lattice of positive ion cores and a gas of free

electrons flying around between those cores; in a metal of valence z, each atom gives up z

electrons to the gas. The electron gas behaves like an ideal gas: the electrons fly around

at high speeds in random direction, and sometimes collide with the ion cores, as shown

in this you-tube video. The long-range interactions between the electrons, or between the

electrons and the ions are neglected in the Drude model.

To understand the electric current and resistivity in Drude model, we need several col-

lective properties of the electron gas. First, we need the electron density

ne =
#electrons

volume
. (12)

For a metal of density ρm = mass/volume, atomic weight µ, and valence z,

ne = z × natoms = z × ρm
µ/NA

(13)

where NA = 6.02 · 1023 atoms/mol = 6.02 · 1026 atoms/kmol. Please mind the units — mol

v. kilomol, gram v. kilogram — when evaluating eq. (13). For example, copper has density

ρm = 8960 kg/m3, atomic weight µ = 63.55 kg/kmol, and valence z = 1 (in metallic form),

hence

ne = (1 el/atom)× 8960 kg/m3

(63.55 kg/kmol)/(6.02 · 1026 atom/kmol)
= 8.49 · 1028 electrons/m3.

(14)

The next collective quantity we need is the drift velocity of the electron gas, which is the

average velocity vector of an electron,

vd = 〈v〉 =
1

N

N
∑

i=1

vi . (15)

Since the electrons fly in random directions, this drift velocity is much smaller than the
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average speed of an electron

vavg =
√

〈v2〉 =

√

1

N

∑

v2
i
. (16)

By analogy, the average velocity vector of an air molecule is the wind velocity,

for the air, 〈vmolecule〉 = vwind , (17)

while the average speed of air molecule due to thermal motion is

√

〈

v2
molecule

〉

=

√

3kBoltzmannT

mmolecule

∼ 500 m/s, (18)

much faster than any wind! For the electron gas, the contrast is even larger: at room

temperature, the average speed of an electron due to classical thermal motion is

vavg =

√

3kT

me

≈ 120, 000 m/s, (19)

while the drift velocity is usually just a few millimeters per second!

The drift velocity vd and the electron density ne determine the electric current density

J = −enevd (20)

where −e is the electron’s charge. For example, drift velocity vd = 1.0 mm/s in copper with

ne = 8.5 · 1028 m−3 gives rise to current density

J = (−1.6 · 10−19 C)× (1.0 · 10−3 m/s)× (8.5 · 1028 m−3) ≈ −14 · 106 A/s, (21)

so a wire of cross-section A = 1 mm2 carries current I = −14 A. The − sign here indicates

that the direction of the current is opposite to the direction of the electron gas’s drift velocity.
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To see where eq. (20) come from, consider the electron gas moving along a wire of

cross-sectional area A at drift velocity vd.

A

vd∆t

vd

In time interval ∆t, the gas travels through distance L = vd×∆t. Consequently, the volume

of gas traversing any particular cross-section of the wire during this integrval is

V = L× A = vd ×∆t× A. (22)

This volume has N = V × ne electrons of net charge

∆Q = −e×N = −e× ne × V = −enevd ×A×∆t. (23)

Consequently, the electric current is

I =
∆Q

∆t
= −enevd ×A (24)

and the current density is

J =
I

A
= −enevd . (25)

One last property of the electron gas we need is the mean time τ an electron flies

free between collisions with ions. The Drude model assumes this time is independent from

electron’s velocity or position. It also assumes that each collision with an ion completely

randomizes the direction of the electron’s motion. Consequently, right after a collision, the

average velocity vector of an electron is zero.

But what happens a short time ∆t after a collision? In the absence of electric field, there

are no forces acting on electrons between the collisions, so their velocities remain constant
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until the next collision. But the electric field E pushes each electron with a force F = −eE,

which gives it acceleration

a = − e

me

E . (26)

Consequently, at time ∆t after the last collision,

v(ith electron) = v0(i
th electron) + a∆t, (27)

so after averaging over the electrons

〈v〉 = 〈v0〉 + a 〈∆t〉 = 0 + aτ. (28)

In other words, the electric field E give the electron gas drift velocity

vd = aτ = − eτ

me

E. (29)

Another way to derive eq. (29) is to consider effect of collisions on the net momentum

P =
∑

i

mevi = Nmevd (30)

of N electrons. (Note: N is very very large.) In very short time ∆t ≪ τ ,

Ncoll = N × ∆t

τ

of the electrons will suffer a collision with an ion. On average, the momentum vector of an

electron after a collision is zero, so the collisions reduce the net momentum P by

−∆Pcoll =
Ncoll

N
P =

∆t

τ
P. (31)

At the same time, the electrostatic forces F = −eE on each electron increase the net mo-
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mentum by

∆PE = N∆tF = −N∆t eE. (32)

Altogether, the two effects change the net momentum at the net rate

∆Pnet

∆t
= −P

τ
− NeE . (33)

In a steady current, the net electron momentum should not change with time, ∆Pnet = 0,

which requires

−P

τ
− NeE = 0. (34)

In light of eq. (30), this means

−Nmevd

τ
− NeE = 0 (35)

and hence

vd = − eτ

me

E (36)

in accordance with eq. (29).

Finally, let us combine eq. (29) for the drift velocity of the electron gas and eq. (20) for

the electric current density:

J = −enevd = +
e2neτ

me

E. (37)

Comparing this formula with the Ohm’s Law

J = σE, (38)

we immediately obtain the electric conductivity

σ =
e2neτ

me

, (39)

or in terms of resistivity

ρ =
me

e2neτ
. (40)
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Before we compare this prediction of the Drude model to the resistivities of real metals,

we need an estimate of the mean time between collisions τ . Drude and Lorentz assumes a

fixed (for a particular metal) mean free path λ an electron travels between collisions, typically

λ ∼ a few interatomic distance, hence

τ =
λ

vavg
(41)

where vavg is the average speed of the electron’s random motion. In classical statistical

mechanics, this speed is given by eq. (19).

Example: Let’s assume a 30 Ångstrom mean free path, λ = 30 · 10−10 m, and a thermal

average speed for a room temperature, thus vavg ≈ 120, 000 m/s, and hence mean time

between collisions τ = 2.5 · 10−14 s. Let’s also assume a copper-like electron density ne =

8.5 · 1028 m−3. Plugging all these values into eq. (40), we obtain ρ = 1.7 · 10−8 Ωm, very

close to the real copper’s resistivity.

Finally, consider the temperature dependence of the resistivity. In the Drude model the

mean free path λ of an electron does not depend on the temperature, while the average speed

vavg increases like
√
T . Consequently, the mean time between collisions τ decreases as

τ ∝ 1√
T
. (42)

Nothing else in eq. (40) depends on the temperature, hence in the Drude model, the resistivity

increases with temperature as

ρ(T ) ∝
√
T . (43)

Experimentally, the sign of this effect is correct, and the magnitude is in the right ballpark,

but the more specific prediction ρ ∝
√
T is wrong.

The reason for this disagreement is the purely classical nature of the Drude–Lorentz

theory. In the more accurate quantum theory, the average speed of electrons’ random motion

is larger than the classical thermal speed (19) but it does not depend on the temperature.

On the other hand, the mean free path λ becomes shorter with increasing temperature due
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to phonons which collide with the electrons. Consequently, the mean time between collisions

decreases with temperature, but in a more complicated way than τ ∝ 1/
√
T , which leads for

a more complicated formula for the ρ(T ).
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