
 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 1 
 

Module 1: INTRODUCTION TO C LANGUAGE 
Pseudo code solution to problem, Basic concepts in a C program, Declaration, Assignment & Print 

statements, Data Types, operators and expressions etc, Programming examples and exercise. 

 

PSEUDOCODE: Is one of the tools that can be used to write a preliminary plan that can be developed 

into a computer program. Pseudocode is a generic way of describing an algorithm without use of any 

specific programming language syntax. 

 

Key points: 

 No syntax rule – Independent from any programming language   

 Write in an ordinary language  

 Uses a structure resembling computer structure  

 No connector between pages 

Example: Write a pseudocode to add two numbers. 

Begin                                      -Start 

  Read A, B                            - Input  

  Calculate C = A*B              - Action  

  Display C                            - Output  

Stop                                       - Terminal 

Example: Write a pseudocode to calculate area and perimeter of rectangle  

 Begin 

                Input length, breadth 

  Calculate area = length * breadth 

  Calculate perimeter = 2*(length+breadth) 

  Print area, perimeter 

 End 

Example: Write a pseudocode to find sum and average of given two numbers. 

Begin  

 WRITE “Please enter two numbers to add” 

  READ num1 

    READ num2 

  Sum = num1+num2 

    Avg = Sum/2  

 WRITE Sum, Avg 

End 

Example: Write pseudocode that will take a number as input and tells whether a number is positive, 

negative or zero. 

Begin 

 WRITE “Enter a number”  

 READ num  

 IF num> 0  

THEN  

WRITE “The number is positive”  

 ELSE IF num = 0  

THEN  

WRITE “The number is zero”  

ELSE  

WRITE “The number is negative”  

ENDIF  

 ENDIF 

End 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 2 
 

 

Example: Write pseudocode that will calculate a sum n natural numbers. 

Begin 

  Read n 

  Set sum to 0 

  Set  i       1 

  While(i<=n)  

       Calculate  sum        sum+i 

   Print sum 

End 

Advantages and Disadvantages of Pseudocode: 

Pseudocode Disadvantages  

  It’s not visual  

 There is no accepted standard, so it varies widely from company to company 

 Pseudocode Advantages  

 Can be done easily on a word processor 

  Easily modified  

  Implements structured concepts well 

ALGORITHM: Step by step procedure to solve a given problem, and which (like a map or flowchart) 

will lead to the correct result if followed correctly. Algorithms have a definite beginning and a definite 

end, and a finite number of steps. 

Characteristics of an Algorithm: 

 Well-ordered: the steps are in a clear order.  

 Unambiguous: the operations described are understood by a computing agent without further 

simplification.  

 Effectively computable: the computing agent can actually carry out the operation. 

 Finiteness: algorithms must have a definite beginning and a definite end. 

Example: Write an algorithm to find the area of a Circle 

Step1: Start 

Step2: Read Radius r of the Circle    // input to problem 

Step3: Area PI*r*r              // calculation of area  

Step4: Print Area       //output of the problem 

Step5: Stop 

Example: Write an algorithm to read two numbers and find their sum 

Step1: Start  

Step2: Input the first number as num1.  

Step3: Input the second number as num2.  

Step4: Sum         num1+num2   // calculation of sum  

Step5: Output Sum  

Step6: End 

Example: Write an algorithm to Convert Temperature from Fahrenheit (℉) to Celsius (℃) 

Step1: Start  

Step 2: Read Temperature in Fahrenheit as F 

Step 3: C= 5/9*(F-32)  

Step 4: Print Temperature in Celsius: C 

Step5: End 

Example: write algorithm to find the greater number between two numbers 

Step1: Start 

Step2: Read A and B  

Step3: If A greater than B then C=A Goto step5 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 3 
 

Step4: If B greater than A then C=B  

Step5: Print C  

Step6: End 

Example: write an algorithm to find the largest value of any three numbers. 

Step1: Start 

Step2: Read A,B and C 

Step3: If (A>=B) and (A>=C) then Max=A  Goto Step6 

Step4: If (B>=A) and (B>=C) then Max=B   Goto Step6 

Step5: If (C>=A) and (C>=B) then Max=C   

Step6: Print Max  

Step7: End 

Example: Write an algorithm to find the factorial of a number entered by user. 

Step 1: Start 

Step 2: Read value of n  

Step 3: Initialize variables factorial←1, i←1  

Step 4: factorial ← factorial*i 

Step 5: i←i+1 

Step 6: Repeat the steps4 to 5 until i<=n 

Step 7: Display factorial 

Step 8: Stop 

Example: Write an algorithm to find the Fibonacci series till term≤1000. 

Step 1: Start  

Step 2: Initialize variables  first_term←0 ,second_term←1  

Step 3: Display first_term and second_term  

Step 4: Repeat the steps5 through 8 until second_term≤1000  

Step 5: temp←second_term  

Step 6: second_term←second_term+first term  

Step 7: first_term←temp 

Step 8: Display second_term 

Step 6: Stop 

FLOWCHARTS: A graphical or pictorial representation of an algorithm. Flowcharts use simple 

geometric symbols and arrows to define relationships. In programming, for instance, the beginning or end 

of a program is represented by an oval.  A process is represented by a rectangle, a decision is represented 

by a diamond and an I/O process is represented by a parallelogram. 

 

The most commonly used symbols: 

 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 4 
 

General rules for flowcharts: 

1. All symbols of the flowchart are connected by flow lines (note arrows, not lines) 

2.  Flowlines enter the top of the symbol and exit out the bottom, except for the Decision symbol, 

which can have flow lines exiting from the bottom or the sides 

3.  Flowcharts are drawn so flow generally goes from top to bottom 

4.  The beginning and the end of the flowchart is indicated using the Terminal symbol 

Flowchart Constructs: 

 

Example: Draw a flowchart for finding the area of a circle. 

 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 5 
 

Example: Flowchart for find the greater number between two numbers. 

 

Example: Flowchart for biggest among 3 numbers. 

 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 6 
 

Example: Flowchart for sum of first 50 natural numbers. 

 

BASIC CONCEPTS IN A C PROGRAM: 
History of C: 

1.The C programming language is a structure oriented programming language, developed at Bell  

   Laboratories in 1972 by Dennis Ritchie 

2.C programming language features were derived from an earlier language called “B” (Basic Combined  

   Programming Language – BCPL) 

3.C language was invented for implementing UNIX operating system 

4.In 1978, Dennis Ritchie and Brian Kernighan published the first edition “The C Programming  

   Language” and commonly known as K&R C 

5.In 1983, the American National Standards Institute (ANSI) established a committee to provide a  

   modern, comprehensive definition of C. The resulting definition, the ANSI standard, or “ANSI C”, was  

   completed late 1988. 

Features of c programming language: 
C language is one of the powerful languages. Below are some of the features of C language. 

 Reliability 

 Portability 

 Flexibility 

 Interactivity 

 Modularity 

 Efficiency and Effectiveness 

Which level is c language belonging to? 

There are 3 levels of programming languages. They are, 

1.Middle Level languages: 

Middle level languages don’t provide all the built-in functions found in high level languages, but provide 

all building blocks that we need to produce the result we want. Examples: C, C++ 

2.High Level languages: 

High level languages provide almost everything that the programmer might need to do as already built 

into the language. Example: Java, Python 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 7 
 

3.Low Level languages: 

Low level languages provide nothing other than access to the machines basic instruction set. 

 Example: Assembler 

Structure of C program and Example: 

 

Documentation section : We can give comments about the program, creation or modified date, author 

name etc in this section. The characters or words or anything which are given between “/*” and “*/”, 

won’t be considered by C compiler for compilation process. These will be ignored by C compiler during 

compilation. Example:  /* comment line1 comment line2 comment 3 */ 

Link Section: Header files that are required to execute a C program are included in this section. 

Definition Section: In this section, variables are defined and values are set to these variables. 

Global declaration section: Global variables are defined in this section. When a variable is to be used 

throughout the program, can be defined in this section. 

Function prototype declaration section:  Function prototype gives many information about a function 

like return type, parameter names used inside the function. 

Main function: Every C program is started from main function and this function contains two major 

sections called declaration section and executable section. 

User defined function section:  User can define their own functions in this section which perform 

particular task as per the user requirement. 

Key points to remember in c programming basics: 

1. C programming is a case sensitive programming language. 

2. Each C programming statement is ended with semicolon (;) which are referred as statement 

terminator. 

3. printf() command is used to print the output onto the screen. 

4. C programs are compiled using C compilers and displays output when executed. 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 8 
 

C LANGUAGE TOKENS: The smallest individual units in a C program are known as tokens. In a C 

source program, the basic element recognized by the compiler is the "token." A token is source-program 

text that the compiler does not break down into component elements. 

TOKEN TYPES IN ‘C’ 

C has 6 different types of tokens viz. 
1.Keywords     [e.g. float, int, while]  

2.Identifiers     [e.g. main, amount] 

3.Constants      [e.g. -25.6, 100]  

4.Strings           [e.g. “SMIT”, “year”]  

5.Special Symbols [e.g. {, }, [, ] ]  

6.Operators       [e.g. +, -, *] 

C programs are written using these tokens. 

1. THE KEYWORDS: "Keywords" are words that have special meaning to the C compiler. Their 

meaning cannot be changed at any instance. Serve as basic building blocks for program statements. All 

keywords are written in only lowercase. C language supports 32 keywords which are given below. 

 

Examples of C Keywords: auto, double, int, struct, const, float, short, unsigned, break, else, long, 

switch, continue, for, signed, void, case, enum, register, typedef, default, goto, sizeof, volatile, char, 

extern, return, union, do, if, static, while 

2. THE IDENTIFIERS: Identifiers are names for entities in a C program, such as variables, arrays, 

functions, structures, unions and labels. 

Rules for constructing identifier name in c: 

1. First character should be an alphabet or underscore ( _ ). 

2. Succeeding characters might be digits or letter. 

3. Punctuation and special characters aren’t allowed except underscore ( _ ). 

4. Identifiers should not be keywords. 

Examples for Valid and Invalid identifiers: 

a. record1 => Valid 

b. 1record => Invalid Identifier name must start with alphabets 

c. file_3 => Valid 

d. return => Invalid Keywords cannot be used as identifiers 

e. #tax => Invalid Identifier should not contain any special symbols except  underscore (_) symbol. 

f. name => Valid 

g. goto =>  Invalid It is a keyword and cannot be used as identifier. 

h. name and address =>  Invalid No white spaces are permitted in name of  identifier. 

i. name-and-address =>  Invalid Identifier should not contain any special symbols except underscore (_) 

symbol. 

j. 123-45-6789  =>  Invalid Identifier should not contain any special symbols  except underscore (_) 

symbol. And also identifier name must start with alphabet. 

k. void =>  Invalid It is a keyword and cannot be used as identifier. 

l. name_address => Valid 

m. NAME=> Valid 

Differentiate between Keywords words and identifiers: 

Identifier  Keword 

Predefined-word  User-defined word 

Must be written in lowercase only Can written in lowercase and uppercase 

Has fixed meaning Must be meaningful in the program 

Whose meaning has already been explained to the C 

compiler   

Whose meaning not explained to the C 

compiler 

Used only for it intended purpose Used for required purpose 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 9 
 

3. CONSTANTS: Constants in C are the fixed values that do not change during the execution of a 

program. 

Constants are classified in to: 
1. Numeric constants 

2. Character constants: 

3. String constants: 

4. Backslash character constants: 

1. Numeric constants: Numeric constants can be classified as, 

i. Integer constants and 

ii. Real constants. 

i). Integer constants: An integer constant refers to a sequence of digits. These are further classified into 

three types depending on the number systems they belong to they are  

a) Decimal integer constants 

b) Octal integer constants 

c) Hexadecimal constants 

Decimal integer constant: - A decimal integer constant is characterized by the following properties. 

 It is a sequence of one (or) more digit ({0....9}, the symbols of decimal numbers system). 

 It may have an optional + or - sign. In the absence of sign, the constant is assumed to be positive. 

 It should not have a period ( . ) as a part of it. 

 Commas and blank spaces are not permitted. 

Valid decimal integer constant:- 345 , -987  

Invalid decimal integer constant:- 3.45 decimal point is not permitted, 

     3, 34 commas are not permitted. 

Octal integer constant:-An octal integer characterized by the following properties. 

 It is a sequence of one or more digit ([0....7], symbols octal number system). 

 It may have an optional + or - sign. In the absence of sign, the constant is assumed to be positive. 

 It should start with digit 0. 

 It should not have a period ( . ) as a part of it. 

 Commas and blanks are not permitted. 

Valid: - 0345  

Invalid:- 03.34 decimal point is not permissible  

Hexadecimal integer constant: -A hexadecimal integer constant is characterized by the following 

properties. 

 It is a sequence of once or more symbols ([0...9][a...z],the symbols of hexadecimal number 

system. 

 It may have an optional + or - sign. In the absence of sign, the constant is assumed to be positive. 

 It should start with symbols 0X . 

Valid:-0X345  

Invalid:-0X3.45 decimal is not permissible 

ii) Real constants: 

 A real constant must have at least one digit 

 It must have a decimal point 

 It could be either positive or negative 

 If no sign precedes a real constant, it is assumed to be positive. 

 No commas or blanks are allowed within a real constant. 

Valid real constants: 0.0083, -0.78, +67.89 etc. 

 2. Character constants: Single character constant is a constant enclosed within a pair of a single quote 

marks. 

Example: ‘a’,’5’,etc  

Character constants have integer values that are determined by the computers particular character set . 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 10 
 

Most computers make use of the ASCII character set, in which each individual character is numerically 

encoded. 

Example: ‘A’=65 Maximum of one character is taken within a character constant 

 

3. String constants: A string constant contains sequence of zero or more characters (i.e., alphabets, 

digits, special symbols and blank spaces) enclosed in double quotes. 

Example:   ”” ( empty string),"Hello!", "1987", "?...!" 

 

4. Backslash character constants: 

 There are some characters which have special meaning in C language. 

 They should be preceded by backslash symbol to make use of special function of them. 

 Given below is the list of special characters and their purpose. 

Backslash_character   Meaning 

\b    Backspace 

\f    Form feed 

\n    New line 

\r    Carriage return 

\t    Horizontal tab 

\”    Double quote 

\’    Single quote 

\\    Backslash 

\v    Vertical tab 

\a    Alert or bell 

\?    Question mark 

 

How to use constants in a c program? 

We can define constants in a C program in the following ways. 

1. By “const” keyword 

2. By “#define” preprocessor directive 

 

VARIABLES IN C: C variable is a named location in a memory where a program can manipulate the 

data. This location is used to hold the value of the variable. 

Rules for writing the variable names are given below. 

1. Variable names consist of letters, digits and underscore. 

2. Variable names must begin with an alphabet or underscore. 

3. Variable names could have length up to 31 characters. 

4. Variable names are case sensitive i.e., "SUM" and "sum" are not equivalent. 

5. Keywords should not be used as, a variable names. 

6. Blank spaces, commas and special symbols are not allowed within variable names. 

 

Variable declaration: A variable stores data value of different types and to avoid the confusion to 

compiler, variables are declared with a data type once we declare any variable compiler reserve memory 

for that variable and stores some garbage (unwanted) value into it. It can store only the data values of the 

type associated with it. 

Syntax: data type variable_name; 

Examples: int sum;                                     sum    

       

    float avg,val;   or   float avg;              1000       1001         memory location 

             float val; 

      char ch; 

Garbage value 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 11 
 

Variable initialization: Storing some data into variables or named memory locations is called variable 

initialization. 

Syntax: varable_name = value; 

  Where value may be any constant, result of any expression or another variable. 

Example1:    int  avg;              what compiler will do after  execution of this line? 

                                 It will reserve 2 bytes of memory for avg and some garbage value will be stored in it. 

                                            avg 

                                      4000               4001             

                     avg=456;   //variable initialization  

                              After this line value will be stored in already reserved memory by avg. (Binary   

                              equivalent of 456)   

 

      avg 

    4000                 4001 

Examlpe2: float sum=100.34;    //declaration and initialization are at same time. 

                   char ch=’A’ 

Example3: int x; 

                  x=20+12;                //result of expression is initialized to x 

Example4: int a=100,b; 

                   b=a;                       //value of a is initialized to b 

Example5: int a,b,c; 

                   a=b=c=30             //30 is initialized or assigned to a, b and c(multiple variables are initialized  

                                                                                                                     in same line) 

DATA TYPES: C data types are defined as the data storage format that a variable can store a data to 

perform a specific operation. 

 Data types are used to define a variable before to use in a program. 

 Size of variable, constant and array are determined by data types. 

There are four data types in C language. They are, 

Types Data Types 

Basic data types int, char, float, double 

Enumeration data type enum 

Derived data type pointer, array, structure, union 

Void data type void 

  

BASIC DATA TYPES IN C LANGUAGE: 

1. INTEGER DATA TYPE (int): 

 Integer data type allows a variable to store numeric values. 

 “int” keyword is used to refer integer data type. 

 The storage size of int data type is 2 or 4 or 8 byte. 

 It varies depend upon the processor in the CPU that we use.  If we are using 16 bit 

processor, 2 byte  (16 bit) of memory will be allocated for int data type. 

 Like wise, 4 byte (32 bit) of memory for 32 bit processor and 8 byte (64 bit) of memory for 

64 bit processor is allocated for int datatype. 

 int (2 byte) can store values from -32,768 to +32,767 

 If you want to use the integer value that crosses the above limit, you can go for “long int”  

 for which the limits are very high. 

 Format Specifier for int is %d 

 

 

 

…..Garbage value…… 

11001000 00000001 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 12 
 

 

Note: 

 We can’t store decimal values using int data type. 

 If we use int data type to store decimal values, decimal values will be truncated and we 

will get only whole number. Example: 0, -5, 10 

Example:      int id;              // Here, id is a variable of type integer. In id you can store any integer value  

          within -32,768 to +32,767 if it is 2 byte. 

2. CHARACTER DATA TYPE: 

 Character data type allows a variable to store only one character. 

 Storage size of character data type is 1byte. We can store only one character using character 

data type. 

 “char” keyword is used to refer character data type. 

 For example, ‘A’ can be stored using char datatype. You can’t store more than one character 

using char data type. 

 char (1 byte) can store values from -128 to 127 

 unsigned char(1byte) can store values from 0 to 255 

 Format Specifier for char is %c 

Example:  char test = 'h';      // Here, test is a character variable. The value of test is 'h'. 

3. FLOATING POINT DATA TYPE: 

Floating point data type consists of 2 types. They are, 

i) float 

ii) double 

i). FLOAT: 

 Float data type allows a variable to store decimal values. 

 Storage size of float data type is 4 bytes. This also varies depend upon the processor in the CPU 

as “int” data type. 

 We can use up-to 6 digits after decimal using float data type. 

 For example, 10.456789 can be stored in a variable using float data type. 

 Range of float is -3.4E+38 to +3.4E+38 

 Format Specifier for float is %f 

Example:  float  x=1.000000    // Here, x is a float variable. The value of x is 1.000000. 

ii). DOUBLE: 

 Storage size of double data type is 8 bytes. 

 Double data type is also same as float data type which allows up-to 16 digits after decimal. 

 The range for double datatype is from -1.7E+308 to +1.7E+308. 

 Format Specifier for double is %lf 

Example: double  y; 

C QUALIFIERS: Qualifiers alters the meaning of base data types( int, float, double, char) to yield a new 

data type. 

Size qualifiers: 

 Size qualifiers alter the size of a basic type. There are two size qualifiers, long and short. For 

Example: long double i; 

 The size of double is 8 bytes. However, when long keyword is used, that variable becomes 10 

bytes. 

 There is another keyword short which can be used if you previously know the value of a variable 

will always be a small number. 

 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 13 
 

Sign qualifiers: Integers and floating point variables can hold both negative and positive values. 

However, if a variable needs to hold positive value only, unsigned data types are used. 

Example: unsigned int  sum; 

There is another qualifier signed which can hold both negative and positive only. However, it is not 

necessary to define variable signed since a variable is signed by default. 

NOTE: It is important to note that, sign qualifiers can be applied to int and char types only. 

Constant qualifiers: An identifier can be declared as a constant. To do so const keyword is used. 

Example: const int cost = 20;      // The value of cost cannot be changed in the program. 

Volatile qualifiers: A variable should be declared volatile whenever its value can be changed by some 

external sources outside the program. Keyword volatile is used for creating volatile variables. 

Examples:  volatile int foo; 

                  int volatile foo;   

both of these declarations will declare foo to be a volatile integer: 

The following table provides the details of standard data types with their storage sizes, value ranges and 

format specifier. 

 

C Data types / storage Size in 

bytes(16 bit machine)  

Range Format 

Specifier 

char / 1 –127 to 127 %c 

int / 2 –32,767 to 32,767 %d 

float / 4 
1E–37 to 1E+37 with six digits of 

precision 
%f 

double / 8 
1E–37 to 1E+37 with 16 digits of 

precision 
%lf 

long double / 10 
1E–37 to 1E+37 with 16 digits of 

precision 
%Lf 

long int / 4 –2,147,483,647 to 2,147,483,647 %ld 

short int / 2 –32,767 to 32,767 %hd 

unsigned short int / 2 0 to 65,535 %hu 

signed short int / 2 –32,767 to 32,767 %hd 

long long int / 8 -(2^63) to (2^63)-1 %lld 

signed long int / 4 –2,147,483,647 to 2,147,483,647 %ld 

unsigned long int / 4 0 to 4,294,967,295 %lu 

unsigned long long int / 8 (2^64) –1 %llu 

 

ENUMERATION DATA TYPE: 

 Enumeration data type consists of named integer constants as a list. 

 It start with 0 (zero) by default and value is incremented by 1 for the sequential identifiers in the 

list. 

Syntax in C:  enum identifier [optional{ enumerator-list }]; 

    

Example:1. enum month { Jan, Feb, Mar }; or   /* Jan, Feb and Mar variables will be assigned to 0, 1 and   

                                                                                2  respectively by default */  

  

    2. enum month { Jan = 1, Feb, Mar };     /* Feb and Mar variables will be assigned to 2 and 3  

                                                                          respectively by default */ 

    3. enum month { Jan = 20, Feb, Mar };    /* Jan is assigned to 20. Feb and Mar variables will be  

                                                                           assigned to 21 and 22 respectively by default */ 

  



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 14 
 

DERIVED DATA TYPE: Derived data types are created from the basic integers, characters and floating 

data types. Array, pointer, structure and union are called derived data type in C language.  

  

VOID DATA TYPE: Void is an empty data type that has no value. This can be used in functions and 

pointers.    

Simple Example addition of two numbers: 

#include<stdio.h> 

#include<conio.h> 

void main() 

{ 

int a,b,sum;              //variable declaration 

a=10;                      //variable definition or initialization 

b=20;                   //variable definition or initialization 

sum=a+b; 

printf("Sum is %d",sum); 

getch(); 

} 

 

INPUT/OUTPUT (I/O) STATEMENTS: There are some library functions which are 

available for transferring the information between the computer and the standard input and output 

devices.  

Formatted and Unformatted Input/Output functions of C: 

Unformatted Input/Output is the most basic form of input/output. Unformatted input/output transfers 

the internal binary representation of the data directly between memory and the file. 

 

Formatted output converts the internal binary representation of the data to ASCII characters which are 

written to the output file. Formatted input reads characters from the input file and converts them to 

internal form. 

Formatted Input & Output using printf() and scanf(): 

printf():This function is used to print text as well as value of the variables on the standard output 

device (monitor), printf is very basic library function in c language that is declared in stdio.h header file. 

Syntax: 

1. printf(“message”); 

2. printf(“message + format-specifier”,variable_list); 

First printf() style printf the simple text on the monitor, while second printf() prints the message with 

values of the variable list 

How to print value of the variables? 

To print values of the variables, you need to understand about format specifiers are the special characters 

followed by % sign, which are used to print values of the variable s from variable list. 

Format specifiers 

Here are the list some of the format specifiers, use them in printf() & scanf() to format & print values of 

the variables: 

             Character                  (char)                  %c 

Integer                 (int)                    %d 

    Insigned integer    (unsigned int)       %ld 

              Long                       (long)                   %ld 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 15 
 

  Unsigned long       (unsigned long)   %lu 

             Float                       (float)                     %f 

             Double                    (double)                %lf 

Octal Value             (octal value)         %o 

Hexadecimal Value   (hex value)     %x 

String                        (char[])               %s 

**NOTE** Use ‘u’ for unsigned type modifier, ‘l’ for long. 

Consider the following examples: 

#include <stdio.h> 

 

int main() 

{ 

 int num=100; 

 float val=1.23f; 

 char sex='M'; 

 //print values using different printf 

 printf("Output1:"); 

 printf("%d",num); 

 printf("%f",val); 

 printf("%c",sex); 

 //print values using single printf 

 printf("\nOutput2:"); // \n: for new line in c 

 printf("%d,%f,%c",num,val,sex); 

 return 0; 

} 

 

scanf():This function is used to get (input) value from the keyboard. We pass format specifiers, in 

which format we want to take input. 

Syntax: 

   scanf(“format-specifier”, &var_name); 

   scanf(“fromat-specifier-list”, &var_name_list); 

First type of scanf() takes the single value for the variable and second type of scanf() will take the 

multiple values for the variable list. #include <stdio.h> 

Example: 

int main() 

{ 

     int a; 

     float b; 

     char c; 

     printf("Enter an integer number (value of a)?:"); 

     scanf("%d",&a);           //  single value 

     printf("Enter a float number (value of b)?:"); 

     scanf("%f",&b); //single value 

     printf("\nEnter value of a,b,c (an integer, a float, a character):"); 

    scanf("%d%f%c",&a,&b,&c); //multiple variable list 

    return 0; 

} 

 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 16 
 

Unformatted input/output (I/O) Functions: 

getchar():function will read a single character from the standard input. The return value of getchar() is 

the first character in the standard input. The input is read until the Enter key is pressed, but only the first 

character in the input will be returned. 

putchar(): function will print a single character on standard output. The character to be printed is 

passed to putchar() function as an argument. The return value of putchar() is the character which was 

written to the output. 

Note:getchar() and putchar() functions are part of the standard C library header stdio.h 

Example: 

#include <stdio.h> 

void main() 

{  

 char ch; 

 printf("Input some character and finish by pressing the Enter key.\n"); 

 ch = getchar(); 

 printf("The input character is "); 

 putchar(ch); 

 } 

getch(), getche() and putch(): 

These functions are similar to getchar() and putchar(), but they come from the library header conio.h. The 

header file conio.h is not a standard C library header and it is not supported by compilers that target Unix. 

However it is supported in DOS like environments. 

getch(): reads a single character from the standard input. The input character is not displayed (echoed) 

on the screen. Unlike the getchar() function, getch() returns when the first character is entered and does 

not wait for the Enter key to be pressed. 

getche(): is same as getch() except that it echoes the input character. 

putch(): writes a character that is passed as an argument to the console. 

Example: 

#include <conio.h> 

#include <stdio.h> 

void main() 

{ 

 char ch; 

 printf("Press any key\n"); 

 ch = getch(); 

 printf("The key pressed is: "); 

 putch(ch); 

 } 

 

gets():This function is used for accepting any string until enter key is pressed 

Syntax:    char str[length of string in number];  

                 gets(str); 

Example:  char xyz[20]; 

                 gets(xyz); 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 17 
 

puts():This function prints the string or character array. It is opposite to gets() 

Syntax:    char str[length of string in number];  

                gets(str); 

                puts(str); 

Example: char abc[20]; 

                gets(abc); 

                puts(abc); 

OPERATORS AND EXPRESSIONS: 

An operator is a symbol that tells the compiler to perform specific mathematical or logical functions. C 

language is rich in built-in operators and provides the following types of operators: 

1. Arithmetic operators 

2. Assignment operators 

3. Relational operators 

4. Logical operators 

5. Bit wise operators 

6. Conditional operators (ternary operators) 

7. Increment/decrement operators 

8. Special operators 

1. Arithmetic operators: C Arithmetic operators are used to perform mathematical calculations like 

addition, subtraction, multiplication, division and modulus in C programs. 

Arithmetic operators are of two types: 

a). Unary Operators: Operators that operates or works with a single operand are unary operators. 

      For example: (++ , –,etc) 

b). Binary Operators: Operators that operates or works with two operands are binary operators. 

     For example: All arithmetic operators (+ , – , * , /,%) 

Syntax: operand1 Operator operand2; 

Operator Description Examples 

+ This operator adds two operands. A+B, 2+A, 20+10.5, 20+100, etc 

- Subtracts second operand from the first. A-B, B-4, 100-20, 10.23-C, etc 

* Multiplies both operands. A*B, 10*C, 10.43*2, A*9.0, etc 

/ 
Operator divides the first operand by the second 

and returns quotient  
A/B,100/D, X/20, 100/20.9, etc 

% 

Operator returns the remainder when first operand 

is divided by the second 

Note: Only integer operation (Ex: 20%10), No 

floating point operation(Ex: 10.5%5.6 is invalid).  

A%B, 20%10, 10%X, Y%5, etc 

(A,B,X,Y must be integer values) 

2. Assignment Operators: Assignment operators are used to assign value to a variable. The left side 

operand of the assignment operator is a variable and right side operand of the assignment operator is a 

value. 

Syntax: Vriable Assignment Operator Value(constant) or result of any expression or  

                                                                 value of other variable 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 18 
 

 

Operator Description Examples 

= 

This is the simplest assignment operator. This 

operator is used to assign the value on the right to 

the variable on the left. 

A=B, X=12,  C=2+3, D=A-21, 

S=4/6,  B=10.5, Ch=’A’, etc 

+= 

This operator is combination of ‘+’ and ‘=’ 

operators. This operator first adds the current value 

of the variable on left to the value on right and then 

assigns the result to the variable on the left. 

(a+=b) can be written as (a= a+b), 

(c+=2) can be written as (c=c+2), 

Etc. 

-= 

This operator is combination of ‘-‘and ‘=’ 

operators. This operator first subtracts the current 

value of the variable on left from the value on right 

and then assigns the result to the variable on the 

left. 

(a-=b) can be written as (a= a-b), 

(c-=2) can be written as (c=c-2), 

etc. 

*= 

This operator is combination of ‘*’and‘=’ 

operators. This operator first multiplies the current 

value of the variable on left to the value on right 

and then assigns the result to the variable on the 

left. 

(a*=b) can be written as (a= a*b), 

(c*=2) can be written as (c=c*2), 

etc. 

/= 

This operator is combination of ‘/’ and ‘=’ 

operators. This operator first divides the current 

value of the variable on left by the value on right 

and then assigns the result to the variable on the 

left. 

(a/=b) can be written as (a= a/b), 

(c/=2) can be written as (c=c/2), 

etc. 

3. Relational operators: Relational operators are used for comparison of the values of two operands. 

For example: checking if one operand is equal to the other operand or not, an operand is greater than 

the other operand or not etc. The result of all relational operators is either true(1) or false(0).  

Syntax: operand1 relational operator operand2; 

Operator Description Examples 

== 

Checks if the values of two operands are equal. If 

yes, then the condition becomes true (1) otherwise 

condition fails(0). 

X==Y, 10==10, 2+2==1+3, 

‘C’==’C’, 10.23==10.23, 

10==9(fail), etc 

!= 

Checks if the values of two operands are not equal. 

If the values are not equal, then the condition 

becomes true (1) otherwise condition fails (0). 

X!=Y,  10!=10(fail),  10-2!=10-3, 

’A’!=’B’,  2.3!=1.5,   a+c!=d*2, etc 

> 

Checks if the value of left operand is greater than the 

value of right operand. If yes, then the condition 

becomes true(1) otherwise condition fails(0). 

X>Y,  10>9,  20-2>10, 

100.5>200(fail),  ‘B’>’A’, etc 

< 

Checks if the value of left operand is less than the 

value of right operand. If yes, then the condition 

becomes true(1) otherwise condition fails(0). 

D<C, 9<10, 25.3-2<11, 

‘C’<’A’(fail), 2*2<3+5, etc 

>= 

Checks if the value of left operand is greater than or 

equal to the value of right operand. If yes, then the 

condition becomes true(1) otherwise condition 

fails(0). 

X>=Y, 10>=10, 20>=30(fail), 

10*2>=10+5, etc 

<= 

Checks if the value of left operand is less than or 

equal to the value of right operand. If yes, then the 

condition becomes true(1) otherwise condition 

fails(0). 

E<=W, 10<=20,  

10+20<=10*2(fail), etc 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 19 
 

4. Logical Operators: C provides three logical operators when we test more than one condition to 

make decisions. The result of all logical operators is either true (1) or false (0). 

Syntax: operand1 logical Operator operand2; 
              Operands may be any expression or any variable or any value 

Operator Description Examples 

&& 

Logical AND, operator returns true when both the 

operands in consideration are satisfied. Otherwise it 

returns false. 

If c = 5 and d = 2 then, expression 

((c == 5) && (d > 5)) equals to 0. 

|| 

Logical OR, operator returns true when one (or both) 

of the operands in consideration is satisfied. 

Otherwise it returns false. 

If c = 5 and d = 2 then, expression 

((c == 5) || (d > 5)) equals to 1. 

! 

Logical NOT, It is used to reverse the logical state of 

its operand. If a condition is true, then Logical NOT 

operator will make it false. This is unary operator. 

If c = 5 then, expression  ! (c == 5) 

equals to 0. 

5. Bit wise operators: The Bitwise operators are used to perform bit-level operations on the operands. 

The operands are first converted to bit-level and then calculation is performed on the operands. The 

mathematical operations such as addition, subtraction, multiplication etc. can be performed at bit-

level for faster processing. 

Syntax: operand1 bitwise operator operand2; 

Truth table for bitwise &, | and ^ 

Input A Input B Output of A&B Output of A|B Output of A^B Output of ~A 

0 0 0 0 0 1 

0 1 0 1 1 1 

1 0 0 1 1 0 

1 1 1 1 0 0 

 

Assume A = 60 and B = 13 in binary format, they will be as follows − 

A = 0011 1100 

B = 0000 1101 

Operator Description Examples 

& 

Bitwise AND, Takes two numbers as operands and 

does AND on every bit of two numbers. The result 

of AND is 1 only if both bits are 1. 

A = 0011 1100 

B = 0000 1101 

A&B =0000 1100 

i.e. 12 in decimal         

| 

Bitwise OR, Takes two numbers as operands and 

does OR on every bit of two numbers. The result of 

OR is 1 if any of the two bits is 1. 

A = 0011 1100 

B = 0000 1101 

A|B = 0011 1101 

i.e. 61 in decimal 

^ 

Bitwise XOR, Takes two numbers as operands and 

does XOR on every bit of two numbers. The result 

of XOR is 1 if the two bits are different. 

A = 0011 1100 

B = 0000 1101 

A^B = 0011 0001 

i.e. 49 in decimal 

~ 

Bitwise NOT, Takes one number as operand and 

inverts all bits of it. It is unary operator. 

B=00001101 

                               ~B=11110010 

i.e. -14 in decimal 

 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 20 
 

Operator Description Examples 

<< 

Bitwise Left Shift. Takes two numbers, left shifts the 

bits of the first operand, the second operand decides 

the number of places to shift. 

A = 0011 1100 

               A<<2=1111 0000 

i.e. 240 in decimal 

>> 

Bitwise Right Shift. Takes two numbers, right shifts 

the bits of the first operand, the second operand 

decides the number of places to shift. 

A = 0011 1100 

               A>>2=0000 1111 

i.e. 15 in decimal 

Note: Bit wise left shift and right shift: In left shift operation “x << 1 “, 1 means that the bits will be left 

shifted by one place. If we use it as “x << 2 “, then, it means that the bits will be left shifted by 2 

places. 

6. Conditional operators (ternary operators): Conditional operators return one value if condition 

is true and returns another value is condition is false. This operator is also called as ternary operator. 

Syntax     :        (Condition)? true_value : false_value; 

Example:1        y= (A > 100)  ?  0  :  1; depending on A the value of y is either 0 or 1; 

               2.       X= (10>20) ? 10 : 20; 

                         X value is 20; 

7. Increment/decrement operators: The ones falling into the category of unary arithmetic 

operators. These operators are used to either increase or decrease the value of the variable by one. 

Syntax: 

Increment operator: ++var_name;             pre-increment 

                                var_name++;             post-increment 

Decrement operator: – -var_name;            Pre-decrement 

                                 var_name – -;            post-decrement 

 

Operator Description Examples 

++ 

This operator is used to increment the value of an 

integer by one. 
 

When placed before the variable name (also called 

pre-increment operator), its value is incremented 

instantly. 

X=3; 

Y=++X; 

Value of Y is 4 and value of X is 4; 

When it is placed after the variable name (also 

called post-increment operator), its value is used 

first and it gets updated before the execution of the 

next statement.  

X=3; 

Y=X++; 

Value of Y is 3 and value of X is 4; 

-- 

This operator is used to decrement the value of an 

integer by one. 
 

When placed before the variable name (also called 

pre-decrement operator), its value is decremented 

instantly. 

X=3; 

Y=--X; 

Value of Y is 2 and value of X is 2; 

When it is placed after the variable name (also 

called post-decrement operator), its value is 

preserved temporarily until the execution of this 

statement and it gets updated before the execution of 

the next statement. 

X=3; 

Y=X--; 

Value of Y is 3 and value is X is 2; 

 

 

 

 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 21 
 

8. Special operators: Apart from the above operators there are some other operators available in C 

used to perform some specific task. 

 

Operator Description Examples 

sizeof() Returns the size of a variable. 
sizeof(a), where a is integer, will 

return 4. 

, 

The comma operator (represented by the token ,) is a 

binary operator that evaluates its first operand and 

discards the result, it then evaluates the second 

operand and returns this value (and type). 

int  i = (5, 0);  10 is assigned to i 

& Returns the address of a variable. 
&a; returns the actual address of the 

variable. 

* Pointer to a variable. *a; 

 

Precedence of operators: If more than one operators are involved in an expression, C language 

has a predefined rule of priority for the operators. This rule of priority of operators is called operator 

precedence. 

Example1:  (1 > 2 + 3 && 4) 

  This expression is equivalent to: 

  ((1 > (2 + 3)) && 4) 

  i.e, (2 + 3) executes first resulting into 5 

  then, first part of the expression (1 > 5) executes resulting into 0 (false) 

  then, (0 && 4) executes resulting into 0 (false)  

  result is 0 

 

Examlpe2:  10 + 20 * 30 is calculated as 10 + (20 * 30) and not as (10 + 20) * 30. 

 

Associativity of operators: Associativity is used when two operators of same precedence appear 

in an expression. Associativity can be either Left to Right or Right to Left. Associativity of operators 

indicates the order in which they execute. 

 

Example1: 1 == 2 != 3 

      Here, operators == and != have same precedence. The associativity of both == and != is left to    

     right, i.e, the expression on the left is executed first and moves towards the right. 

      Thus, the expression above is equivalent to : 

      ((1 == 2) != 3)  i.e, (1 == 2) executes first resulting into 0 (false) 

                 then, (0 != 3) executes resulting into 1 (true) 

      result is 1(true) 

 

Example2: 100 / 10 * 10 is treated as (100 / 10) * 10. 

Note: 1. Associativity is only used when there are two or more operators of same precedence. 

     2. All operators with same precedence have same associativity. 

     3. Precedence and associativity of postfix ++ and prefix ++ are different 

 

 

 

 

 

 

 

 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 22 
 

Operators with the highest precedence appear at the top of the table: 

Category Operator Associativity 

Postfix ()    []   ->   .    ++    - - Left to right 

Unary +   -   !   ~   ++   - -       (type)  *   &   sizeof Right to left 

Multiplicative *    /   % Left to right 

Additive +      - Left to right 

Shift <<     >> Left to right 

Relational <        <=         >             >= Left to right 

Equality ==         != Left to right 

Bitwise AND & Left to right 

Bitwise XOR ^ Left to right 

Bitwise OR | Left to right 

Logical AND && Left to right 

Logical OR || Left to right 

Conditional ?: Right to left 

Assignment =   +=   -=    *=    /=    %=    >>=    <<=     &= ^=    |= Right to left 

Comma , Left to right 

 

Example1: Solve the given expression. 

  x = 9 – 12 / 3 + 3 *2 - 1 

Solution: x = 9 – 12 / 3 + 3 *2 – 1   

    x = 9 – 4 + 3 *2 - 1 [/] 

    x = 9 – 4 + 6 – 1       [*] 

    x = 5 + 6 – 1  [-] 

    x = 11 – 1  [+] 

                x = 10  [-] 

Example2: Solve the given expression: x =9 – 12 / (3 + 3) * (2 – 1) 

Solution: x =9 – 12 / (3 + 3) * (2 – 1) 

                x =9 – 12 / 6 * (2 – 1)               [(3+3)] 

                x =9 – 12 / 6 * 1  [(2–1)] 

                x =9 – 2 * 1   [/] 

                x =9 – 2    [*] 

                x =7    [-] 

Example3: Evaluate the below expression. 

 f = ((i + j) < 10) && (b > (k - j)); where i = 5, j = 6, k = 7, b = 0. 

Solution: f = ((i + j) < 10) && (b > (k - j)); 

                f = ((5 +6) < 10) && (0 > (7 -6));             

                f = (11 < 10) && (0 > (7 -6));  [+]  

                f = 0 && (0 > (7 -6));   [<] 

                f = 0 && (0 > 1);   [-] 

                f = 0 && 0;    [>] 

                f = 0;     [&&] 

Example4: Evaluate the below expression. 

 a = i++ + j++;      if i = 1, j = 2, 

Solution: a = i++ + j++; 

                a = 1 + j++;  [i++, use i value first and update i. i.e. i=i+1=1+1=2] 

                a = 1 + 2;  [j++, use j value first and update j. i.e. j=j+1=2+1=3] 

                a = 3;   [+] 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 23 
 

Example5: Evaluate the below expression. 

 a = b += c++ − d + −−e/−f ;  With a=1, b=2, c=12, d=2, e=5, f=2 

Solution: a = b += c++ − d + −−e/−f ;   

                a = b += 12 − d + −−e/−f ;  [c++, use c value i.e.12 and update c=c+1=12+1=13] 

                a = b += 12 − d + 4/−f ;  [--e, decrement e first i.e. e=e-1=5-1=4 use this value i.e.  

                                                                                e=4] 

                a = b += 12 − d + 4/−2 ;  [-f] 

                a = b += 12 − d -2 ;   [/] 

                a = b += 10 -2 ;   [-] 

                a = b += 8 ;    [-] 

                a = b =10 ;    [+=] 

                a = b =10 ;    [=] 

                Ans: a=10 and b=10 

Type Conversion/ Type Casting: 
Type casting/conversion is a way to convert a variable from one data type to another data type. There are 

two types of type conversion: 

1. Implicit Type Conversion: Also known as ‘automatic type conversion’. 

 Done by the compiler on its own, without any external trigger from the user. 

 Generally takes place when in an expression more than one data type is present. In such 

condition type conversion (type promotion) takes place to avoid loss of data. 

 All the data types of the variables are upgraded to the data type of the variable with largest 

data type. 

bool -> char -> short int -> int ->  unsigned int -> long -> unsigned ->  long long -> float -> double -> 

long double 

Example1: int x=10; 

                  float y; 

                  y=x+1.0;    // x is implicitly type converted to float 

                  y=11.000000 

Example2:int a=100,b; 

                  b=a/13;  //no type conversion because all the operations are of same type(integer) so result is  

                                   truncated to only integer part i.e. 7 instead of 7.692307 

                  b=7 ; 

Example3: int p=7, q=3; 

                  float m;   

                  m=p/q; 

                  m=2.000000 

       In this example right of = operator the operation is integer division(p/q), so the result of that 

operation is only integer (no type conversion) i.e. 2, but this result we are assigning to float variable(m) 

that’s why type conversion is needed for assignment i.e. instead of integer 2 it will store 2.000000. 

 

2. Explicit type Conversion: 

The type conversion performed by the programmer by posing the data type of the expression of specific 

type is known as explicit type conversion. 

The explicit type conversion is also known as type casting. 

Type casting in c is done in the following form: 

   (data_type)expression; 

where, data_type is any valid c data type, and expression may be constant, variable or expression. 

For example, 

   x=(int)a+b*d; 

   y=(int)22.3/(int)4.5=22/4=5 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 24 
 

Programming Examples: 

1. C Program to find the simple interest. 
#include<stdio.h> 

void main() 

 { 

   int amount, rate, time, si; 

  printf("\nEnter Principal Amount : "); 

  scanf("%d", &amount); 

  printf("\nEnter Rate of Interest : "); 

  scanf("%d", &rate); 

  printf("\nEnter Period of Time   : "); 

  scanf("%d", &time); 

  si = (amount * rate * time) / 100; 

  printf("\nSimple Interest : %d", si); 

  getch(); 

} 

 

2.Write a c program to Calculate Area of Triangle with given three sides. 
#include<stdio.h> 

#include<conio.h> 

#include<math.h> 

void main() 

 { 

   float a,b,c,s,area; 

   clrscr(); 

   /* reading part */ 

   printf("Enter Three side of triange  -> "); 

   scanf("%f%f%f",&a,&b,&c); 

   /* processing part */ 

   s=(a+b+c)/2.0; 

   area=sqrt(s*(s-a)*(s-b)*(s-c)); 

   /*display result */ 

   printf("Side1 =%f\nSide2 =%f\nSide3 =%f\n",a,b,c); 

   printf("\nArea of Triange  :-> %f \n",area); 

   getch(); 

} 

 

3. C Program to Swap Numbers Using Temporary Variable. 
#include <stdio.h> 

void main() 

{ 

      int firstNumber, secondNumber, temporaryVariable; 

      printf("Enter first number: "); 

      scanf("%d", &firstNumber); 

      printf("Enter second number: "); 

      scanf("%d",&secondNumber); 

      // Value of firstNumber is assigned to temporaryVariable 

      temporaryVariable = firstNumber; 

      // Value of secondNumber is assigned to firstNumber 

      firstNumber = secondNumber; 

      // Value of temporaryVariable (which contains the initial value of firstNumber) is assigned to secondNumber 

      secondNumber = temporaryVariable; 

      printf("\nAfter swapping, firstNumber = %d\n", firstNumber); 

      printf("After swapping, secondNumber = %d", secondNumber); 

      getch(); 

} 

 



 

 S J P N Trust's 

Hirasugar Institute of Technology, Nidasoshi. 
Inculcating Values, Promoting Prosperity 

Approved by AICTE and Affiliated to VTU Belgaum. 

 

CSE 

Academic 

Notes(Module 1) 

17PCD13/23 

 

Prof. Ravindra R Patil                        Programing in C and Data Structures      17PCD13/23 25 
 

4. C Program to Swap Number without Using Temporary Variables. 
#include <stdio.h> 

void main() 

{ 

    int firstNumber, secondNumber; 

    printf("Enter first number: "); 

    scanf("%d", &firstNumber); 

    printf("Enter second number: "); 

    scanf("%d",&secondNumber); 

    // Swapping process 

    firstNumber = firstNumber - secondNumber; 

    secondNumber = firstNumber + secondNumber; 

    firstNumber = secondNumber - firstNumber; 

    printf("\nAfter swapping, firstNumber = %d\n", firstNumber); 

    printf("After swapping, secondNumber = %d", secondNumber); 

    getch(); 

} 

 

5. C Program to find area and circumference of circle. 
#include<stdio.h> 

 void main()  

{ 

    int rad; 

   float PI = 3.14, area, ci; 

   printf("\nEnter radius of circle: "); 

   scanf("%d", &rad); 

   area = PI * rad * rad; 

   printf("\nArea of circle : %f ", area); 

   ci = 2 * PI * rad; 

   printf("\nCircumference : %f ", ci); 

   getch(); 

} 

 

6. C Program to convert temperature from degree centigrade to Fahrenheit. 
#include<stdio.h> 

 void main() 

 { 

 float celsius, fahrenheit; 

 printf("\nEnter temp in Celsius : "); 

 scanf("%f", &celsius); 

 fahrenheit = (1.8 * celsius) + 32; 

 printf("\nTemperature in Fahrenheit : %f ", fahrenheit); 

 getch(); 

} 


